ICAPS 2022, the 32nd International Conference on Automated Planning and Scheduling, will take place virtually in June 2022.

ICAPS 2022 is part of the ICAPS conference series, the premier forum for exchanging news and research results on theory and applications of intelligent and automated planning and scheduling technology. The ICAPS 2022 program committee invites paper submissions related to automated planning and scheduling. Relevant contributions include, but are not limited to:

  • Theoretical and empirical studies of planning and scheduling problems and algorithms;
  • Novel techniques and approaches that extend the scope and scale of problems that can be
  • solved;
  • Analytic and implemented tools supporting automated planning and scheduling; and
  • Studies of applying automated planning and scheduling technologies to significant problems with deep technical insight.

Key Dates

Abstract submission December 10, 2021
Paper submission December 15, 2021
Author feedback January 25-28, 2022
Author notification February 18, 2022
Workshops & Tutorials June 13-17, 2022
Doctoral Consortium June 20, 2022
Main conference sessions June 21-24, 2022

Venue

Virtual

Invited Talks (2022)


Emma Brunskill profile image

Emma Brunskill (Stanford University)

Reinforcement Learning for Human-Focused Applications

Abstract: TBD

Bio: Emma Brunskill is an associate (tenured) professor in the Computer Science Department at Stanford University whose lab is part of the Stanford AI Lab, the Stanford Statistical ML group, and AI Safety @Stanford. Brunskill's work has been honored by early faculty career awards (National Science Foundation, Office of Naval Research, Microsoft Research (1 of 7 worldwide)) and her lab has received several best research paper nominations (CHI, EDMx3) and awards (UAI, RLDM, ITS).


Malte Helmert profile image

Malte Helmert (University of Basel)

Beyond Distance Estimates: Reasoning about Solutions in Factored Transition Systems

Abstract: TBD

Bio: Malte has worked in AI planning and heuristic search since 1998 and holds the record for the most consecutive ICAPS appearances. He served on the ICAPS Council from 2011-2020, the last two years as president. He is currently the associate editor-in-chief of JAIR.

Malte's main research areas are classical planning and heuristic search, and especially the combination of the two. He firmly believes that strong theory begets strong algorithms and vice versa, and in his research he tries to contribute to both aspects evenly. His work on classical planning and heuristic search has been recognized with a total of 21 best paper awards and honourable mentions at major AI conferences, including two best paper awards and one honourable mention at AAAI, five best paper and three best student paper awards at ICAPS, and two ICAPS influential paper awards. In 2011, he received the IJCAI Computers and Thought Award "for fundamental contributions to the theory and practice in automated planning and combinatorial search". Malte has co-developed the planning systems MIPS and Fast Downward, which very successfully participated in the International Planning Competitions between 2000-2018.


Sven Koenig profile image

Sven Koenig (University of Southern California)

Multi-Agent Path Finding and Its Applications

Abstract: The coordination of robots and other agents becomes more and more important for industry. For example, on the order of one thousand robots already navigate autonomously in Amazon fulfillment centers to move inventory pods all the way from their storage locations to the picking stations that need the products they store (and vice versa). Optimal and, in some cases, even approximately optimal path planning for these robots is NP-hard, yet one must find high-quality collision-free paths for them in real-time. Algorithms for such multi-agent path-finding problems have been studied in robotics and theoretical computer science for a longer time but are insufficient since they are either fast but of insufficient solution quality or of good solution quality but too slow. In this talk, I will discuss different variants of multi-agent path-finding problems, cool ideas for both solving them and executing the resulting plans robustly, and several of their applications, including warehousing, manufacturing, and autonomous driving. I will also discuss how three Ph.D. students from my research group and one Ph.D. student from a collaborating research group at Monash University used multi-agent path-finding technology to win the NeurIPS-20 Flatland train scheduling competition. Our research on this topic has been funded by both NSF and Amazon Robotics.

Bio: Sven Koenig is Dean's Professor of Computer Science at the University of Southern California. Most of his research centers around techniques for decision making (planning and learning) that enable single situated agents (such as robots or decision-support systems) and teams of agents to act intelligently in their environments and exhibit goal-directed behavior in real-time, even if they have only incomplete knowledge of their environment, imperfect abilities to manipulate it, limited or noisy perception or insufficient reasoning speed. Additional information about him can be found on his webpages: idm-lab.org.


Timothy Miller profile image

Timothy Miller (University of Melbourne)

Explainable Artificial Intelligence: Beware the Inmates Running the Asylum
(or How I Learnt to Stop Worrying and Love the Social and Behavioural Sciences)

Abstract: In his book “The Inmates are Running the Asylum: Why High-Tech Products Drive Us Crazy and How to Restore the Sanity”, Alan Cooper argues that a major reason why software is often poorly designed (from a user perspective) is that programmers are in charge. As a result, programmers design software that works for themselves, rather than for their target audience; a phenomenon he refers to as the ‘inmates running the asylum’. In this talk, I will argue that the field of explainable AI risks a similar fate if AI researchers and practitioners do not take a cross-disciplinary approach to explainable AI. I will present an overview of the intersection of explainable AI and will present some key examples of how to integrate social science knowledge into these methods for explainability in sequential decision making problems.

Bio: Tim is a professor of computer science in the School of Computing and Information Systems at The University of Melbourne, and Co-Director for the Centre of AI and Digital Ethics. His primary area of expertise is in artificial intelligence, with particular emphasis on human-AI interaction and collaboration and Explainable Artificial Intelligence (XAI). His work is at the intersection of artificial intelligence, interaction design, and cognitive science/psychology.


Siddhartha Srinivasa profile image

Siddhartha Srinivasa (University of Washington and Amazon Inc.)

New Connections Between Motion Planning and Machine Learning for Robotics

Abstract: TBD

Bio: Siddhartha Srinivasa is the Boeing Endowed Professor at The Paul G. Allen School of Computer Science & Engineering at the University of Washington, and an IEEE Fellow. He is a full-stack roboticist, with the goal of enabling robots to perform complex manipulation tasks under uncertainty and clutter, with and around people. To this end, he founded the Personal Robotics Lab in 2005. He was a PI on the Quality of Life Technologies NSF ERC, DARPA ARM-S and the DARPA Robotics Challenge, has built several robots (HERB, ADA, CHIMP, MuSHR), and has written software frameworks (OpenRAVE, DART) and best-paper award winning algorithms (CBiRRT, CHOMP, BIT*, Legibility) used extensively by roboticists around the world. Sidd received a B.Tech in Mechanical Engineering from the Indian Institute of Technology Madras in 1999, and a PhD in 2005 from the Robotics Institute at Carnegie Mellon University. He played badminton and tennis for IIT Madras, captained the CMU squash team, and lately runs competitively.

Sponsors

News and Updates