Stochastic Resource Optimization over Heterogeneous Graph Neural Networks for Failure-Predictive Maintenance Scheduling
Zheyuan Wang and Matthew Gombolay
Abstract: Resource optimization for predictive maintenance is a challenging computational problem that requires inferring and reasoning over stochastic failure models and dynamically allocating repair resources. Predictive maintenance scheduling is typically performed with a combination of ad hoc, hand-crafted heuristics with manual scheduling corrections by human domain experts, which is a labor-intensive process that is hard to scale. In this paper, we develop an innovative heterogeneous graph neural network to automatically learn an end-to-end resource scheduling policy. Our approach is fully graph-based with the addition of state summary and decision value nodes that provides a computationally lightweight and nonparametric means to perform dynamic scheduling. We augment our policy optimization procedure to enable robust learning in highly stochastic environments for which typical actor-critic reinforcement learning methods are ill-suited. In consultation with aerospace industry partners, we develop a virtual predictive-maintenance environment for a heterogeneous fleet of aircraft, called AirME. Our approach sets a new state-of-the-art by outperforming conventional, hand-crafted heuristics and baseline learning methods across problem sizes and various objective functions.
*This password protected talk video will only be available after it was presented at the conference.