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Would you let HAL-320 
be your captain today?



Dear passengers, welcome in 2059.
I'm HAL-320, your new captain. John fell 
asleep, so I'm just taking over the commands 
to fly you back home.
Keep calm and enjoy your flight!



Well… Keep calm, we're not still there 😅



A typical use case: airport diversion strategy

Autonomous system 
to take over the pilot 
as a last resort

Must ensure:

✈ Safety

Must ensure 
landing success 

with at least 1-1e-12 
probability on 
chosen airport



A typical use case: airport diversion strategy

Autonomous system 
to take over the pilot 
as a last resort

Must ensure:

✈ Safety

✈ Robustness

Must adapt to 
uncertain 

adversarial 
conditions



A typical use case: airport diversion strategy

Autonomous system 
to take over the pilot 
as a last resort

Must ensure:

✈ Safety

✈ Robustness

✈ Explainability

Flying the nominal route will 
now hit the thunderstorm with 
probability 0.95. Would you like 

to avoid it but delaying the 
landing by 5 mn?

Adding the pilot's drowsiness 
status to the input state of the RL 
policy improves mission successExecution explanations

Design explanations



Diversion management based on 
Probabilistic Flight Planning

Pre-Flight

Ensemble Weather Forecast

Traffic Data
Probabilistic 

Model of Events 
Impacting the 

Flight
In-Flight

average fuel

av
er

ag
e 

ti
m

e

Live 
observations

Dynamic Flight Plan:
● Event-based trajectory
● Proactively modifies the 

trajectory to mitigate 
upcoming risks

Continuous update 
(dynamic mode)

controlled risk of 
violating safety 
constraints

Other Events



DONUT project: benchmarking of two 
complementary flight planning algorithms

CSSP - Constrained Stochastic Shortest Path
Optimal and Heuristic Approaches for Constrained Flight Planning under Weather 
Uncertainty. F. Geißer, G. Povéda, F. Trevizan, M. Bondouy, F. Teichteil-Königsbuch, S. 
Thiébaux. ICAPS 2020

Take-off

Landing

Take-off

Landing

expensive
Take-off

Landing

Iterative algorithm based on LP and column generation

No use of heuristics due to simulation-based aircraft 
performance model

➕ Satisfy constraints by 
construction

➕ Robust by construction
➕ Handle waypoint graph

➖ Computationally expensive
➖ Simplified weather and 

transition model
➖ Cannot handle continuous 

variables

Parallel Robust Optimal Control
Probabilistic 4D Flight Planning in Structured Airspaces through Parallelized 
Simulation on GPUs. D. Arribas, E. Andrés-Enderiz, M. Soler, A. Jardines, J. García-Heras. 
Computer Science, 2020

Uses Augmented Random 
Search and Optimal Control to 
produce waypoint-constrained 

continuous trajectories 
evaluated on a set of 

probabilistic weather 
scenarios

➕ Use continuous aircraft 
performance model

➕ Robust by construction

➖ Not optimal
➖ A posteriori projection on 

discrete waypoints



No approach ruling all the others out

Aircraft 
Dynamics

Aircraft 
Systems

Airways 
Graph

Weather 
Model

ATC 
Model

Search/Planning 
methods (e.g. 
CSSP)

⭐✩✩✩✩ ⭐⭐⭐⭐
✩

⭐⭐⭐⭐
⭐

⭐⭐✩✩✩ ⭐⭐⭐⭐
⭐

Control-based 
methods (e.g. 
ROC, MPC)

⭐⭐✩✩✩⭐⭐⭐⭐
✩

⭐⭐⭐✩✩⭐⭐✩✩✩⭐⭐⭐⭐
⭐

Simulation-based 
methods (e.g. RL, 
EA, MCTS)

⭐⭐⭐⭐
✩

⭐⭐⭐⭐
✩

⭐⭐⭐⭐
⭐

⭐⭐✩✩✩ ⭐⭐⭐⭐
✩



Numerical Weather 
Prediction model

Ensemble Weather Forecast

A complex probabilistic weather model

Observation at 
time t merged 
with ensemble 

forecast at time t

Probability Weather Map 
indexed by time

Duplicate waypoint graph 
per possible weather

Time and 
spatial

interpolation



A complex probabilistic weather model

Observation at 
time t merged 
with ensemble 

forecast at time t

Probability Weather Map 
indexed by time

Duplicate waypoint graph 
per possible weather

Time and 
spatial

interpolation

Planning 
engine

State s 
at time t

Waypoint W1

State s11 at 
time t+1

State s12 at 
time t+1

State s13 at 
time t+1

Waypoint W2

State s21 at 
time t+1

State s22 
at time t+1

State s23 
at time t+1

next states 
query



The full transition model story

Planning 
engine

State s 
at time t

next states 
query

Waypoint W1 
Speed S1

State s111 
at time t+1

State s112 
at time t+1

State s113 
at time t+1

Waypoint W1 
Speed S2

State s121 
at time t+1

State s122 
at time t+1

State s123 
at time t+1

Waypoint W2 
Speed S1

State s211 
at time t+1

State s212 
at time t+1

State s213 
at time t+1

Waypoint W2 
Speed S2

State s221 
at time t+1

State s222 
at time t+1

State s223 
at time t+1

ATC and weather 
uncertainties

Evaluate fuel 
consumption and 
feasible trajectory



No free lunch: need for hybrid planning method

Complex and 
computationally expensive 

transition model
Can be modeled as Deep Neural 

Network surrogate model to speed 
up transition queries

Logical goal

Airways graph

Aircraft systems logics

Search-based 
methods

Simulation-based 
methods

Where 
we 

want to 
be



Possible hybridizations of deep learning
with a typical search algorithm

Surrogate 
model of 

transitions
(aircraft performance 
evaluation, weather  & 

ATC prediction)

Heuristic 
function

(learned from previous 
solved instances of the 

search problem)

Surrogate 
model of the 

solver



Another example of hybridization:
stochastic manufacturing task scheduling

A1

A2

A3

A4

A5

A6

A8

A7

R1:3, 
R2:1,
Sk3:1
Δ=5

R1:1,
Sk2:1
Δ=2

R2:1,
R3:1,
Sk2:1
Δ=3

R1:2,
Δ=10
Sk1:1

R1:2, 
R2:1,
Sk1:1
Δ=5

R1:2, 
R3:1,
Sk1:1
Δ=4

R2:1,
Sk2:1
Δ=8

R1:2, 
R2:1,
Sk3:1
Δ=2

Stochastic Multi-Skill Multi-Mode Resource 
Constrained Project Scheduling Problem with 

Time-Constrained Precedence Constraints



Solving extended 
RCPSPs with Large 
Neighborhood Search

👍 Scales to large 
industrial 
problems 
(thousands of 
multi-mode tasks with 
multi-skilled workers 
and temporal 
precedence 
constraints)

👎 But does not 
handle 
uncertainty



Towards uncertainty and adaptivity
handling with Graph Neural Networks

reverse link
(to propagate information 

in both ways)
pre.: [0, 0, 0, 1, 0]

res.: [0, 0, 1, 0, #consumed]

precedence
[0, 1, 0, 0, 0]

resource
[1, 0, 0, 0, #consumed]

[0, 1, 0, duration]

[1, 0, #resources, 0]

Currently using 
TransformerConv 
as NN layers:x_i

e_ijGraph Neural Network encoding of a RCPSP

https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html?highlight=parallel#torch_geometric.nn.conv.TransformerConv


Hybridizing CP+GNN (supervised learning from CP solution examples)

TRAINING
RCPSP

j
Batch

i

CP solver

Graph Neural 
Network Loss minimization

Back propagation

TESTING
RCPSP

j CP solver

Infeasible 
schedule

Feasible 
schedule

Make 
feasible



CP + GNN : training statistics
(80% of 2040 RCPSP instances)

Loss

Makespan

Precedence 
constraints 

violation 
percentage

Precedence 
constraints 
violation 
magnitude

Resource 
constraints 
violation 
percentage

Resource 
constraints 

violation 
magnitude



CP + GNN : testing statistics
(20% of 2040 RCPSP instances)

👍 Benchmarks where warm-starting the CP 
solver with the GNN inferred solution helps

👎 Benchmarks where warm-starting the CP 
solver with the GNN inferred solution harms

Protocol: evaluate vanilla CP solver time to get same quality solution as GNN+CP solver, then 
compare with GNN+CP solver time ⇒ Does warm-starting CP with GNN solution help?



Possible hybridizations of deep learning
with a Constraint Programming solver

A1

A2

A3

A4

A5

A6

A8

A7

R1:3, 
R2:1,
Sk3:1
Δ=5

R1:1,
Sk2:1
Δ=2

R2:1,
R3:1,
Sk2:1
Δ=3

R1:2,
Δ=10
Sk1:1

R1:2, 
R2:1,
Sk1:1
Δ=5

R1:2, 
R3:1,
Sk1:1
Δ=4

R2:1,
Sk2:1
Δ=8

R1:2, 
R2:1,
Sk3:1
Δ=2

Learn constraints 
from example 

schedules

Learn task 
duration and 

resource 
uncertainties 

Solver

Learn surrogate model of the 
CP solver and warm-start it 
with the inferred solution

Learn human schedules to 
warm-start the CP solver



Trustable decision-making systems

Robust
Reach objectives 
while adapting to 
uncertainties and 

unknowns

Explainable
Provide rationales 
for action choices 

w.r.t the future

Safe
Don't reach unsafe 

states with 
sufficient 

probability

Trusted

Different from trustworthy 
deep learning:

valid independently from 
using deep learning models 
in decision-making

Relying on deep learning 
adds to the complexity:

Trustworthy properties for 
deep learning-based 

decision-making rest upon 
trustworthy deep learning 

properties



Explaining manufacturing schedules

✅ Precedence constraints analysis

✅ Resource needs analysis

✅ Feature importance analysis of 
embedded deep learning 
models

❌ Runtime task choice 
explanation

Precedence constraint analysis

Resource needs analysis



NLP-based chatbot for schedule explanation



Robustness: adapt to uncertainties
(and you can't go without a simulator)

Option 1 : Reinforcement Learning Option 3 : Optimization
In Hindsight

State …

Action 1 …

Sampled scenario
 1

Sampled scenario 2

Sampled scenario N

Compute 
deterministic plan 

for scenario 1

Compute 
deterministic plan 

for scenario 2

Compute 
deterministic plan 

for scenario N

A
verag

e statistics fo
r actio

n
 1

Action M …

Sampled scenario
 1

Sampled scenario 2

Sampled scenario N

Compute 
deterministic plan 

for scenario 1

Compute 
deterministic plan 

for scenario 2

Compute 
deterministic plan 

for scenario N

A
verag

e statistics fo
r actio

n
 M

Option 2 : Width-Based Planning



Robustness: optimization in hindsight 
showcase

Manufacturing scheduling under 
uncertain task durations

Flight planning under uncertain 
convective areas



Safety: HAL-320, don't crash the plane!
Example: maximum flight time in convective area

👍 Perfectly deals with flight time constraints that can 
be modeled in the LP

👎 Unable to capture fuel constraints because aircraft 
performance model is based on simulation engines

Optimal and Heuristic Approaches for Constrained 
Flight Planning under Weather Uncertainty
F. Geißer, G. Povéda, F. Trevizan, M. Bondouy, F. 
Teichteil-Königsbuch, S. Thiébaux. ICAPS 2020

How to solve C-SSPs with simulation-based 
transitions? With deep-learning surrogate models?



So, HAL-320, how can I help you to be trusted?

1. Solve the right problem efficiently: hybridize search and 
deep learning

2. Explain: (i) algorithm parameter impact to system 
designers; (ii) algorithm online choices to end users

3. Be robust: proactively reasons about uncertainty while 
optimizing the plan or the schedule

4. Be safe: prove that the plan or schedule - be hybridized with 
deep learning or not - satisfy probabilistic constraints
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