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Abstract

Historically, planning problems have often been constructed
by hand, with the domain model and the goal developed to-
gether, leading to the model and goal being in harmony in
the sense that the goal describes exactly which parts of the
modelled state were desired to be changed (and not changed)
as a consequence of the execution of the plan. With models
learned from data, human goal specifiers may not know all
the aspects of the model, nor have spent much time think-
ing about the real world situation that is being modelled.
Also, naive users may expect the goals they specify to be in-
terpreted in a commonsensical way by the automated plan-
ning system. These things may lead human goal specifiers to
more often create incomplete goal specifications, failing to
take into account all the different ways the environment can
be changed – the potential side effects of plans. This could
threaten safety. However, learned models may in some cases
also have the feature of having detailed state representations,
affording the opportunity for symbolic planning algorithms
to recognize side effects that their human users did not think
of, and to help avoid them. We propose in this position pa-
per that researchers in symbolic planning should take up the
challenge of developing planning algorithms that can safely
deal with underspecified objectives – i.e., with problem goals
that fail to specify everything that people want.

1 Introduction
Planning with a model relies on the model – the description
of possible states and the transition system, as well as the ini-
tial state – being sufficiently faithful to the real world to en-
sure that a plan is valid in relation to the real world. That is,
execution of the plan, starting in the real-world initial state,
should lead to the achievement of the goal. Of course, this
doesn’t always happen, and execution monitoring techniques
have long been developed to mitigate that (e.g., Fikes, Hart,
and Nilsson 1972). However, there is another risk with auto-
mated planning that has been less well studied and that may
increase with the use of learned planning artefacts – nega-
tive side effects arising from plans made for underspecified
goals. In this position paper we discuss this risk and how
it may be amplified by the use of learned planning models
in symbolic planning. We further discuss how the learned
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models may also provide features that help ameliorate the
risk.

The field of AI safety has considered how incomplete ob-
jective specifications may lead to undesirable side effects,
for instance how a robot directed to move somewhere may
break a valuable vase that’s in the way (Amodei et al. 2016).
In this context, a “side effect” is a change made by the AI
system’s actions that wasn’t specified as part of the objec-
tive.1 Amodei et al. wrote that

[O]bjective functions that formalize “perform task X”
may frequently give undesired results, because what
the designer really should have formalized is closer to
“perform task X subject to common-sense constraints
on the environment,” or perhaps “perform task X but
avoid side effects to the extent possible.”

The problem of side effects has attracted recent research
interest (e.g., Zhang, Durfee, and Singh 2018; Krakovna
et al. 2019, 2020; Turner, Hadfield-Menell, and Tadepalli
2020; Saisubramanian, Kamar, and Zilberstein 2020, 2022;
Alizadeh Alamdari et al. 2021, 2022), though with few ex-
ceptions (Klassen and McIlraith 2021; Klassen et al. 2022)
the problem has been considered in the context of Markov
Decision Processes (MDPs) or similar formulations, and of-
ten with reinforcement learning (RL).

In this paper, we argue that objective underspecification
may also become an important issue for future symbolic
planning systems, and propose developing algorithms to
deal with it as a challenge to the planning community. The
symbolic planning community has devised various more re-
stricted ways of symbolically modelling environments (e.g.,
STRIPS or FOND planning). Investigating side effects in
such restricted settings may allow for finding different, more
efficient algorithms. Furthermore, it may be easier to con-
ceptually develop side-effect-related ideas in a simplified
setting, which can later be generalized to more complex set-
tings.

Some points that we raise are the following:

• Many plans generate side effects in the real world since
actions can have effects beyond those necessary for goal
achievement and/or exposed in a model.

1Note that this notion of “side effect” may not align with the
everyday use of the phrase (Ashton 2022).



• People may create underspecified objectives for planning
models, leading to plans with (negative) side effects.

• Furthermore, using learned models may make such un-
derspecified objectives more likely, by changing how
much the typical objective (goal) designer knows (about
the model, the part of the world being modelled, and how
goals are interpreted by the planning system).

• Some learned models may provide large vocabularies (of
fluents) that at least allow for representing side effects,
which affords opportunities for algorithmically dealing
with them, even though the human goal designer didn’t
refer to them (e.g., in the simplest case, by trying to min-
imize how many fluents are changed).

• In order for the last point to apply, model-learning algo-
rithms have to find models with sufficiently rich vocabu-
laries – in the case where the vocabularies are not given
but are a learned abstraction of lower-level states like im-
ages – that is, sufficiently rich to describe not just the
sorts of goals people may explicitly state but also pos-
sible side effects. So development of such algorithms is
also an important component of dealing with side effects.

• What characterizes negative side effects? How should
they be identified (so they can be avoided)?

We expand on the risk of objective underspecification
with learned models in Section 2, reflect on some existing
approaches that relate or could be related to side effects in
Section 3, and conclude with some research suggestions in
Section 4.

2 Side Effects with Learned Models
In this section we consider in more detail why underspec-
ified objectives may be created, how using learned models
may increase the risk of that, and also how learned models
may allow for creating safer systems. To start, it will be use-
ful to be explicit about the definition of a side effect we have
in mind:
Definition 1 (Side effect (informal definition)). A side ef-
fect of a plan is any change in the real world caused by the
execution of the plan, that was not prescribed explicitly as
part of the goal.

This is similar to Klassen et al.’s Definition 5 (2022), but
here we are not assuming that the planning model agrees
with the real world, so we have emphasized that the def-
inition of a side effect is in terms of change in the real
world (similarly to Saisubramanian, Zilberstein, and Kamar
(2021)). A plan might have side effects in the real world
which an inaccurate model fails to predict.

Note that this definition does not distinguish whether side
effects are negative or not. Krakovna et al. (2020) suggested
“side effects matter because we may want the agent to per-
form other tasks after the current task in the same environ-
ment,” and so proposed an approach for an (RL) agent to
avoid interfering with its own ability to act in the future. In
more recent work, we have observed that whether a side ef-
fect is negative is sometimes difficult to measure objectively
and that we should consider the impact of side effects on
other agents’ abilities and well-being (Klassen and McIlraith

2021; Klassen et al. 2022; Alizadeh Alamdari et al. 2021,
2022). We will discuss that more later.

Undesirable side effects may result from having under-
specified goals that fail to include everything that the de-
signer actually wanted. Historically, planning problems have
often been constructed by hand, with the domain model and
the goal developed together. So the model and goal are typi-
cally in harmony in the sense that the goal describes exactly
which parts of the modelled state are desired to be changed
and the dynamics may only include those action effects that
are relevant to achievement of the specified goal. (The model
might not agree with the world, though, so there still was
some risk.) The use of learned models, which may increase
in the future, may lead to changes in how much goal de-
signers typically know. Below we suggest a number of situ-
ations that might cause people to produce underspecified ob-
jectives, and consider how using a learned model may make
some of these situations more likely.

1. The model and real world may agree, but the human goal
designer lacks knowledge or awareness that some side
effect is possible in the real world, so doesn’t design the
goal to preclude it. For example, when designing a goal
requiring moving a robot, the human may not think about
how the robot would break a vase if it drove into it, and so
will make a goal that doesn’t refer to vases. (If the human
had designed the model by hand, they may have been
forced to think more carefully about the relevant part of
the real world and may have averted this problem.)

2. The human knows how the real world works, and also
how the model works, but doesn’t fully understand the
relation between them – what the fluents in the learned
model refer to (for example, how small an object has to
be for a predicate called small to apply to it). So the hu-
man misspecifies the goal (this case might lead to errors
other than just underspecification). If the human had also
designed the vocabulary, this case would seem much less
likely.

3. The human lacks knowledge of the model – they don’t
know all the fluents that exist in the vocabulary – and so
don’t know how to encode their complete goal. Again, if
the human had designed the vocabulary, this would seem
less likely to happen.

4. The model doesn’t even have the vocabulary to represent
some side effect, so the human (whether or not they can
anticipate the side effect in the real world) can’t make
avoiding it part of the goal, at least not in a direct way.

5. The model’s dynamics are inaccurate and show some
side effect as being impossible, and the human relies on
that and doesn’t design the goal to preclude it. (In this
case, even if the human had made avoiding the side ef-
fect part of the goal – perhaps thanks to having real-world
knowledge – a plan found for the model might still cause
the side effect in the real world, so goal underspecifica-
tion may not be the biggest problem.)

6. The untrained human may expect the AI system to be
able to fill in underspecified objectives in a commonsen-
sical way, taking into account things like social norms



(such as not injuring people) the way another human
would. There may be more untrained people designing
goals in the future if learned models lead to broader use
of automated planning in society. Furthermore, planning
goals might be automatically generated from natural lan-
guage instructions, which might increase the expectation
for human-like understanding.

We will not say much more about possible model inac-
curacy (involved in point 5 above) in this paper, since we
are focusing on underspecified objectives. See the work of
Saisubramanian, Zilberstein, and Kamar (2021) for a con-
ception of how inaccurate models relate to negative side ef-
fects.

Let’s return to the problem of an incomplete vocabulary
(point 4 above). Saisubramanian, Zilberstein, and Kamar
(2021) also note that “the agent’s state representation may
only include the features relevant to its assigned task. This
limited representation can impact the agent’s ability to learn
and mitigate [negative side effects].” However, some future
learned models may be intended to be general-purpose, and
have very large vocabularies. If the learned model is com-
plete enough, such negative side effects (e.g., a vase being
broken) may be expressible in the language of the model. So
a feature of a learned model is that it can expose side effects.
Some of these side effects may be irrelevant in relation to the
intended objective, and that’s why they don’t appear in the
human goal specification, but others may not be irrelevant
and they necessitate consideration. That may help to allow
symbolic methods to potentially find ways to avoid negative
side effects. Some of the approaches to dealing with side ef-
fects discussed in the next section take advantage of this.

3 Approaches to Dealing with Side Effects
In this section we discuss existing work that deals with, or
could be related to dealing with, side effects in automated
planning.

The problem of avoiding side effects has recently been
considered in the context of STRIPS planning by Klassen
et al. (2022). In that work, we identify a class of negative
side effects: effects of the agent’s plan that compromise the
agency and well being of other agents in the environment.
In the example of the Canadian wildlife domain (Figure 1),
the robot truck leaves behind a trail of oil which blocks the
movement of wildlife (the beaver and raccoon). This cre-
ates the possibility of the robot causing negative side effects
(from the point of the view of the wildlife). In the domain,
there are fluents indicating whether grid cells are contami-
nated with oil, and the cause and effects of oil contamina-
tion are encoded in the transition dynamics. This allows for
algorithms operating on the planning model to try to avoid
interfering with the other agents, even though the given goal
is only for the robot to reach the factory.

Note that considering the ability of other agents to reach
goals or follow plans gives a way to identify which side ef-
fects are negative (we have also described a version of this in
the context of MDPs that considers possible value functions
of other agents (Alizadeh Alamdari et al. 2022)). Klassen
et al. considered a number of symbolic planning algorithms,

(a) (b)

Figure 1: The Canadian wildlife domain from Klassen et al.
(2022). The robot truck’s movement leaves behind a trail of
leaked oil, so if the robot just goes directly to the factory, it
obstructs subsequent movement by the beaver and raccoon.
By cleaning a few cells of oil, the robot can do better.

which optimize for different things:

• minimizing how many possible goals are made unreach-
able for other agents (given a set of possible goal-agent
pairs),

• minimizing how many goals are made unreachable for
agents following particular policies (given a set of possi-
ble goal-policy pairs),

• or minimizing how many fluents are changed (this does
not try to identify in any sense which side effects are neg-
ative).

These optimization problems are compiled into planning
problems with costs. These approaches illustrate how, given
an accurate model with a suitable fluent vocabulary (for this
example, including fluents relating to oil contamination), it
is possible to try to use planning techniques to avoid some
side effects. While the Canadian wildlife domain and the
other domains Klassen et al. experimented with were not
learned from data but handcrafted to include the relevant
fluents, similar techniques could find application in future
learned models. There still is need for more efficient algo-
rithms, though (and more features, like dealing with action
costs).

The above algorithms are non-interactive, in that they do
not involve any attempt to interact with humans to gather in-
formation about what side effects should be avoided. An al-
ternative approach would be to find plans that involve query-
ing humans about side effects. That sort of approach was
used for finding plans for factored MDPs (Markov Decision
Processes) by Zhang, Durfee, and Singh (2018). In a fac-
tored MDP, a state is described in terms of the values of fea-
tures. Zhang, Durfee, and Singh’s approach, which involves
asking users about which features are safe to change, also
relies on having the relevant features included in the state
representation.

Another work that could be viewed as a sort of interactive
approach to avoiding side effects is by Nguyen et al. (2012),
who considered preference-based planning with incomplete
preferences. They proposed having the planning system deal
with its lack of knowledge about user preferences by gener-
ating a diverse set of plans and having the user pick among



them which plan should be executed. If the user has knowl-
edge about action effects that are not encoded in the model
they might, in choosing a plan, even be able to avoid side ef-
fects that the model does not predict and can not represent.
However, picking a plan may require more human effort than
is available in all circumstances.

While not specifically aimed at discovering side effects,
the area of model reconciliation aims to convey the relevant
aspects of a model to a human user in a variety of ways,
all based on a mental model of what the human user under-
stands about the domain (Sreedharan, Kulkarni, and Kamb-
hampati 2022). By viewing the interaction with human
users and contingent outcomes, Sreedharan, Chakraborti,
and Kambhampati propose a method for gradually recon-
ciling information on a partially understood model of the
environment (2018). Zahedi et al. build on this further to
focus on the user preferences and how they intersect with
the explanation process itself (2019). This line of model rec-
onciliation work pre-supposes that an agent has a complete
model of the environment and is conveying this model to a
human user. One could imagine this process taking side ef-
fects into account for the selection of explanations, but these
techniques do not inherently consider this aspect.

4 Conclusion
We have discussed how the use of learned planning models
may raise the risks of incomplete goal specifications being
used, resulting in plans being found whose executions would
have undesirable consequences. We advance that more work
is needed on planning algorithms that try to reduce such side
effects. The existing literature on avoiding side effects in
planning has limitations, in algorithmic scalability or in re-
quiring a lot of human effort (e.g., for evaluating proposed
plans). We conclude with some suggestions for future work.

• To minimize human effort it may be useful to incorpo-
rate additional information into the planning process, like
possible goals of other agents that shouldn’t be interfered
with (as Klassen et al. (2022) explored). While Klassen
et al. manually constructed possible goals in their ex-
amples, for real-life problems that sort of information
could potentially be learned from data. More generally,
construction of general-purpose knowledge bases about
typical human preferences and social norms could aid in
avoiding side effects, by being used by planning algo-
rithms to augment explicitly given goals.

• Another research idea that might be worth considering
would be execution monitoring that kept track not just
of whether the goal is still achievable but of what side
effects might occur or had occurred.

• Standard planning benchmarks like those in the Interna-
tional Planning Competition (IPC) are not designed to
expose safety issues – they assume the state-space rep-
resentations are complete, and the goals are complete
specifications of what is desired with respect to them.
We propose that, similarly to how safety-related bench-
marks have been developed for reinforcement learning
(e.g., Leike et al. 2017), they should be developed for
symbolic planning.

• Finally, as we increasingly rely on models that are
learned in a data-driven fashion, we feel that increased
effort should be spent on learning more effects of an ac-
tion than just those relevant to achieving a particular ob-
jective. In the absence of this, methods that address safety
will be inadequate on learned representations.
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