
Neural Network Heuristic Functions: Taking Confidence into Account

Daniel Heller,*1 Patrick Ferber,*1, 2 Julian Bitterwolf,*3 Matthias Hein,3 Jörg Hoffmann1,4

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 University of Basel, Basel, Switzerland

3 University of Tübingen, Tübingen, Germany
4 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

patrick.ferber@unibas.ch, julian.bitterwolf@uni-tuebingen.de, matthias.hein@uni-tuebingen.de,
hoffmann@cs.uni-saarland.de

Abstract

Neural networks (NN) are increasingly investigated in AI
Planning, and are used successfully to learn heuristic func-
tions. NNs commonly not only predict a value, but also out-
put a confidence in this prediction. From the perspective of
heuristic search with NN heuristics, it is a natural idea to
take this into account, e.g. falling back to a standard heuris-
tic where confidence is low. We contribute an empirical study
of this idea. We design search methods which prune nodes,
or switch between search queues, based on the confidence
of NNs. We furthermore explore the possibility of out-of-
distribution (OOD) training, which tries to reduce the over-
confidence of NNs on inputs different to the training distri-
bution. In experiments on IPC benchmarks, we find that our
search methods improve coverage over standard methods, and
that OOD training has the desired effect in terms of prediction
accuracy and confidence, though its impact on search seems
marginal.

Introduction
Neural networks (NN) can learn powerful search guidance.
Successes include the AlphaGo series (Silver et al. 2016,
2017, 2018), as well as heuristic search for single-agent
games such as Rubik’s Cube (Agostinelli et al. 2019). Given
the prominence of heuristic search in AI Planning (Hoff-
mann and Nebel 2001; Helmert and Domshlak 2009; Richter
and Westphal 2010; Helmert et al. 2014; Domshlak, Hoff-
mann, and Katz 2015), training NNs as heuristic functions
is highly promising, and is actively pursued (Toyer et al.
2018; Garg, Bajpai, and Mausam 2019; Ferber, Helmert,
and Hoffmann 2020; Shen, Trevizan, and Thiébaux 2020;
Rivlin, Hazan, and Karpas 2020; Yu, Kuroiwa, and Fuku-
naga 2020; Karia and Srivastava 2021; Ferber et al. 2022).
We contribute a new angle to this line of research, honing in
on NN prediction confidence.

Commonly, a NN predicts not only a value, but also has a
confidence in the prediction. From the perspective of heuris-
tic search with NN heuristics (hNN), it is a natural idea to
take this into account. For example, if the NN’s confidence
in the estimate is low, then it might be beneficial to fall back
to a standard heuristic like hFF (Hoffmann and Nebel 2001).

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We contribute an empirical study of this idea. We design
two kinds of search methods which take decisions based
on NN confidence: Pruning states with low confidence, and
switching between search queues based on confidence. In
the latter, we use dual-queue search (Röger and Helmert
2010), with hNN in one search queue and hFF in the other,
and define a variety of switching schemes giving preference
to hNN on high-confidence states only.

We furthermore explore the possibility of out-of-
distribution (OOD) training to avoiding the frequent prob-
lem of overconfidence on inputs differing from the training
distribution (Nguyen, Yosinski, and Clune 2015; Amodei
et al. 2016). Such overconfidence suggests knowledge the
NN has not actually learned. In heuristic search with a NN
heuristic hNN, this may happen for states s dissimilar from
the states that hNN encountered during training.

A successful approach for OOD training is to train the
NN additionally on dissimilar data where we teach it to
be unconfident (Lee et al. 2018; Hein, Andriushchenko,
and Bitterwolf 2019; Hendrycks, Mazeika, and Dietterich
2019). The OOD data does not have to be related to the
actual OOD inputs encountered at execution time, so that
the OOD training data can be designed in a generic manner.
We transfer this idea to NN heuristic functions in planning.
Starting from the supervised-learning approach by Ferber,
Helmert, and Hoffmann (2020), we explore OOD training
data based on “white noise”, randomly generated states, as
well as “weighted noise”, which gives higher probability to
facts that are frequently true and may thus be closer to OOD
states encountered during search.

We implemented all these methods in Neural Fast Down-
ward (NFD, Ferber, Helmert, and Hoffmann 2020), which is
an extension of Fast Downward (Helmert 2006) to incorpo-
rate NN. Running experiments on the NFD collection of IPC
domains, we find that (1) our search methods can improve
coverage over standard methods, in both the single-search-
queue and the dual-search-queue setting; and that (2) our
OOD training methods have the desired effect, preserving
prediction-error performance while decreasing confidence
on OOD inputs. Unfortunately, (3) the impact of OOD train-
ing on the actual search performance is marginal.

Overall, we contribute insights into the role of prediction
confidence in search with neural heuristic functions, forming
a basis for future research on this subject.

Planning Background
We use the FDR planning framework (Bäckström and Nebel
1995). A planning task is a tuple Π = 〈V,A, sI ,G〉. V is a
set of variables, A is a set of actions, sI is the initial state,
and G is the goal. Every variable has a domain D. A fact
is a variable-value pair 〈v, d〉 where v ∈ V and d ∈ Dv .
A state is a complete variable assignment, i.e. one fact per
variable. The state space S is the set of all state of Π and
the initial state is one of those states. Each action a ∈ A
defines a precondition prea and an effect effa , both are par-
tial variable assignments. An action a is applicable in a state
s if prea ⊆ s. Applying a in s leads to the successor state
s′ = {〈v, d〉 | 〈v, d〉 ∈ s,¬∃d′ : 〈v, d′〉 ∈ effa} ∪ effa . The
function succ(s) generates all successor states of s, i.e. the
set of states produced by applying the applicable actions of s
to s. For simplicity, we consider unit action costs (all actions
cost 1). A plan π is a sequence of actions 〈a1, . . . , an〉, such
that starting from sI and sequentially applying the action in
π results in a state s∗ with s∗ ⊆ G.

Satisficing planning tries to find for task any plan, not nec-
essarily a shortest plan. Greedy Best-First Search (GBFS) is
a wide-spread method for this. It maintains a single search
queue of unexplored, reachable states. At every step, GBFS
explores a state swith minimum heuristic value of this queue
and adds the successor states succ(s) to the queue. A heuris-
tic is a value function h : S → R+

0 ∪ {∞}. A highly
successful variant is dual-queue search (Röger and Helmert
2010), which maintains two queues differing in the used
heuristic functions and/or pruning methods. Successor states
generated by one queue are evaluated and inserted - unless
pruned - in all queues. The search alternates between the
queues. Often, this is a simple round-robin alternation. An
important metric is coverage. Given a set of tasks T and a
search method m, the coverage denotes for how many tasks
of T , m found a plan.

To train neural network (NN) heuristic functions hNN,
we extend the method by Ferber, Helmert, and Hoffmann
(2020), which trains hNN generalizing over states in a fixed
planning task. This amortizes if we encounter many different
initial states for which we can use the offline-trained heuris-
tic, as it is the case in many puzzles. Their method executes
random walks - from some initial state - to generate seed
states. From each seed state, it executes GBFS with hFF. For
every plan found by this search, all states along the plan are
stored with their remaining cost on the plan. States are rep-
resented as Boolean vector s where each entry is associated
with a fact. A feed-forward NN f is trained on those state-
cost pairs. The output f(s) ∈ [0, 1]H+1 is a probability dis-
tribution over the possible costs estimates i, which runs over
all integers from 0 to the maximum observed cost H in the
training data. The NN is trained with the cross-entropy loss,
which is L(hNN, s, c) = − log(hNN(s)c) for a training state
s with stored cost c. The predicted cost of the NN which we
use as heuristic value is hNN(s) = arg maxi f(s)i.

Search Methods
By standard definitions, the confidence of a NN is cNN(s) =
maxi f(s)i. For a NN trained with cross-entropy loss this is

the maximum a posteriori probability for any of the classes
(Richard and Lippmann 1991). Our idea is to take this con-
fidence into account during search. Intuitively, the lower the
confident of the NN is, the fewer we can rely on the predic-
tions. Exploring an unconfident region means exploring a re-
gion without guidance and should be avoided. We introduce
three methods along these lines. The first two methods use
confidence for pruning, discarding low-confidence states. If
used in a single queue search, the search is incomplete. Our
third method uses the confidence to regulate the alternation
in a dual-queue configuration.

Mean Threshold
The simplest way to incorporate NN confidence is to de-
fine a threshold t below which states are pruned. That is, for
any newly generated state s, we check whether cNN(s) < t,
and if so we discard s. We thus focus the search on confi-
dent regions. Obviously, it can happen that all solutions pass
through regions of low confidence, which would halt single-
queue search.

Choosing the threshold t is a problem in itself. Good val-
ues of t are highly domain-dependent – even task-dependent
– as the distribution of NN confidence may differ widely
with the task. To counter-act this problem, we choose t as
a function of NN confidence on the training data. We fix a
value X (e.g. X = 40) and choose t such that X% of the
training data are pruned.

This method can be used in any search configuration, in-
cluding in particular single-queue search but also dual-queue
search, by applying it to the hNN search queue. In a dual-
queue search where the other search queue is complete, we
resolve the halting issue and recovers completeness.

Adaptive Threshold
The mean threshold method adapts the value of t to the task,
but we observed that within a task, confidence often cor-
relates negatively with the predicted heuristic value, since
the exact heuristic value is harder to estimate far away from
the goal. Thus, the mean-threshold technique tends to prune
states with large heuristic values, an unwanted bias that may
be highly detrimental.

To counteract this phenomenon, we introduce an adap-
tive threshold method. As before, we consider the NN confi-
dences on all training states. But this time, we group sam-
ples by their observed cost. For each group Gi with i ∈
{0, . . . ,H}, we calculate an individual threshold ti using
the same method as before, i.e. we fix ti such that X% of
the states within Gi are pruned. As some groups are small,
we combine groups with adjacent values i until each group
contains at least 100 states.

As before: A state s on which the NN is unconfident,
cNN(s) < ti where hNN(s) = i, is pruned during search.

Prioritizing Queue
Our third approach uses the same thresholds t or ti as above,
in a dual-queue setting where one queue uses hNN and the
other hFF. But instead of pruning states in the hNN queue,
we employ confidence to control the alternation between the

two queues. We do not schedule the two queues in round-
robin fashion, but we stick to the hNN queue so long as it is
confident. Specifically, whenever the hNN queue expands a
state s where cNN(s) ≥ t (respectively cNN(s) ≥ ti where
hNN(s) = i), in the next search iteration we again expand
a state from the hNN queue. If the NN was unconfident,
cNN(s) < t, we switch to the hFF queue, expand one state
and switch back.

Training with OOD Inputs
Previous work (Nguyen, Yosinski, and Clune 2015;
Hendrycks and Gimpel 2017; Hein, Andriushchenko, and
Bitterwolf 2019) showed that a NN classifier which is
trained only on its training distribution often is overconfi-
dent when evaluated on inputs that are very different from
what has been encountered during training.

Consequently, confidence can be a bad indicator of pre-
diction quality. The problem of detecting OOD inputs was
approached with Bayesian neural networks (Kristiadi, Hein,
and Hennig 2020; Wang and Aitchison 2022; Henning,
D’Angelo, and Grewe 2021), distributional confidence pre-
dictors (Malinin and Gales 2018), density based methods
(Nalisnick et al. 2019; Ren et al. 2019), and confidence cali-
brated classifier training (Lee et al. 2018). The latter, which
uses classification NN, are among the most successful and
established methods for OOD detection.

The aforementioned OOD methods have mostly been
studied in the image domain and in some biological con-
texts. We transfer one of the most successful approaches to
planning. To this end, we follow Lee et al. (2018), Hein,
Andriushchenko, and Bitterwolf (2019) and Hendrycks,
Mazeika, and Dietterich (2019). We simultaneously train the
NN on the training states – the in-distribution – as well as
on OOD inputs where the NN should have a low-confidence.
We train the low confidence for OOD inputs s̄ by mini-
mizing the cross-entropy loss between f(s̄) and the uni-
form distribution (1

H+1 , . . . ,
1

H+1) over all H + 1 possible
outputs. The resulting additional loss is LOOD(hNN, s̄) =

− 1
H+1

∑H
i=0 log(hNN(s̄)i) The training process mixes in-

distribution and OOD inputs according to a fixed proportion,
which we denote by Y% OOD inputs.

To generate the required OOD training inputs, we investi-
gate two sampling methods:

• Uniform Noise: Hein, Andriushchenko, and Bitterwolf
(2019) showed that data-agnostic synthetic noise can re-
duce confidence on OOD inputs. We adapt their approach
to our discrete facts and set every entry of the input vector
s̄ to 0 or 1 with a 50% chance.

• Weighted Noise: Some facts are more frequently true in
the in-distribution training data D than others. For every
fact f , we calculate the empirical probability pf that f
is in a state of D. To generate weighted noise we sample
each entry e (associated with a fact f) of s̄ independently
from the Bernoulli distribution with P (s̄e = 1) = pf .

It may happen that our noises produce states from the in-
distribution. As long as this happens rarely - which is the
case - the NN still becomes less confidence on states outside

the in-distribution and stays confident on states from the in-
distribution.

Experiments
Next, we describe our setup, then we discuss our results.
In the results, we start with the effect of OOD training
on hNN prediction error and confidence, as this starts the
overall pipeline in our machinery. We then compare our
confidence-aware search methods against their confidence-
unaware counterparts, keeping a heuristic function fixed. We
finally compare the impact of OOD training on search by
fixing instead the search and varying the heuristic functions.

Setup
We build on Neural Fast Downward (NFD), changing Fer-
ber, Helmert, and Hoffmann (2020)’s machinery only where
needed. Hence we train feed-forward networks with 3 hid-
den layers using sigmoid activation function on the hidden
layers, softmax on the final layer, the cross-entropy losses
described above, and the Adam optimizer. Ferber, Helmert,
and Hoffmann (2020) evaluate a single integer, a one-hot,
and a unary encoding as output of the NN. We use only the
one-hot encoding as output - thus a multi-class classifica-
tion network - which enables us to build upon current OOD
detection research.

The training is implemented in Keras (Chollet 2015) with
TensorFlow (Abadi et al. 2015) as backend. We execute each
training run on 4 cores of an Intel Xeon E5-2660 cpu with a
memory limit of 15GB. For each configuration we use 10
fold cross-validation, i.e. we split the training data in 10
folds and train 10 NN. Each NN uses a different fold to mon-
itor its training progress and trains on the remaining 9 folds.
Once progress on that validation fold converges, the train-
ing stops. Hyper-parameters are not selected, but fixed for
all runs.

We run experiments on the NFD collection of IPC
domains, which encompasses Blocksworld, Depots,
Grid,Pipesworld-NoTankage, Rovers, Scanalyzer, Storage,
and Transport. We use the same categorization of tasks
into easy, moderate, and hard difficulty as Ferber, Helmert,
and Hoffmann (2020). In our experiments, we skip tasks
categorized as easy; 49 tasks are categorized as moderate;
and 63 tasks are categorized as difficult.

Every NN is trained for the state space of a specific plan-
ning task. For each task we generated 60 test instances, dif-
fering in the initial state. We evaluate our NNs by using
them in search on these instances. To reduce the computa-
tional burden, we do not evaluate every test instance with
each of the 10 NNs trained for its state space, but instead
we run each NN on one-tenth of the test instances. Each
search is executed on a single CPU core, with a 15GB mem-
ory limit, and with a time limit of 30 minutes for moderate
tasks, and 120 minutes for hard tasks. Our code is online
available (Heller et al. 2022).

OOD Training Effect on NN Confidence
Table 1 shows the effect of OOD training on confidence and
prediction error. To measure the latter, we use the Kendall

Training Confidence Ranking
Method In Out-U Out-W Coefficient

Standard 29.3 14.5 10.9 84.1
U50 30.0 0.5 12.0 84.0
U90 30.8 0.4 12.2 84.1
W50 29.0 10.9 1.1 84.6
W90 29.2 5.5 0.6 84.5

Table 1: Effect of OOD training on median confidence
(in %) over all tasks and ranking coefficient (see text).
In: in-distribution, Out-U: uniform out-distribution, Out-
W: weighted out-distribution. Standard: NN trained without
OOD, U: uniform noise, W: weighted noise, 50/90: propor-
tion Y of noise used during training.

depot grid pipes block rover scan stora trans

M
od

er
at

e
Ta

sk
s

Si
ng

le
Q

. Base 0.85 0.89 0.80 1.00 0.51 0.89 1.00 0.97
M5 -.09 -.42 -.20 -.23 -.05 -.11 -.04 -.33
M40 -.79 -.89 -.75 -.91 -.50 -.91 -.86 -.96
A5 +.05 +.02 +.04 +.00 +.17 -.35 +.00 -.04
A40 -.29 -.78 -.45 -.62 -.09 -.59 -.41 -.50

D
ua

lQ
ue

ue

Base 0.96 1.00 0.94 1.00 0.89 0.98 1.00 0.98
M40 +.02 -.07 +.02 +.00 -.01 +.02 +.00 +.02
M80 -.07 -.09 -.19 +.00 -.13 -.03 -.08 -.24
A40 +.03 -.04 +.05 +.00 +.01 +.02 +.00 +.02
A80 +.03 -.08 +.04 +.00 +.00 +.02 +.00 +.01
P20 +.02 -.01 +.02 +.00 +.00 +.01 +.00 +.01
P80 +.02 +.00 +.02 +.00 +.01 +.01 +.00 +.02

H
ar

d
Ta

sk
s

D
ua

lQ
ue

ue Base 0.90 0.92 0.88 0.52 0.37 0.98 0.01
A40 +.05 +.03 +.01 -.01 +.07 +.01 -.01
A80 -.01 -.19 -.03 +.01 +.01 +.00 -.01
P20 -.01 +.00 +.00 +.01 -.04 +.00 +.00
P80 -.04 -.04 -.01 +.01 -.10 +.00 -.01

Table 2: Coverage (in %) and coverage change of search
configurations. Base: confidence-unaware search, M: mean
threshold, A: adaptive threshold, P: prioritizing queue.
5/20/40/80 fraction X% underlying the thresholds. Best
configurations per block (top, middle, bottom) are bold.

rank correlation coefficient (Kendall and Gibbons 1990) be-
tween the state orders induced by the training data vs. the
predicted heuristic values.

The data for in-distribution confidence and rank correla-
tion are almost identical for the different heuristic functions.
This is intended and expected – OOD training aims at pre-
serving prediction confidence and quality, changing only the
confidence on OOD data. The latter effect also clearly shows
in Table 1: on their respective OOD distribution, the heuris-
tics trained with OOD are far less confident than the other
heuristics. For weighted-noise OOD training, this effect gen-
eralizes (to a lesser degree) also to uniform-noise OOD data.
Overall, our OOD training methods have the desired effect.

Search Method Performance
We now evaluate the confidence-aware search methods (cf.
Table 2). We fix the hNN heuristic function here, to use
weighted noise in a 1:1 ratio to the in-distribution data. The

depot grid pipes block rover scan stora trans

M
od

er
at

e Standard 0.98 0.94 0.98 1.00 0.90 1.00 1.00 1.00
W50 +.01 +.02 +.01 +.00 +.00 +.00 +.00 +.00
W90 +.02 +.03 +.01 +.00 +.00 -.01 +.00 +.00
U50 +.00 +.01 +.00 +.00 +.00 +.00 +.00 +.00
U90 -.01 +.03 -.01 +.00 +.00 +.00 +.00 +.00

H
ar

d

Standard 0.93 0.96 0.90 0.51 0.44 1.00 0.02
W50 +.02 -.01 -.01 +.00 +.00 -.01 -.02
W90 -.03 -.02 +.00 +.00 -.01 -.01 -.02
U50 +.02 +.00 -.02 +.01 -.13 +.00 -.02
U90 +.00 -.02 -.04 +.00 -.10 +.00 -.02

Table 3: Coverage (in %) and coverage change of search
with differently trained NNs. Standard: no OOD training,
U: uniform noise, W: weighted noise, 50/90: proportion Y
of noise used during training. Best configurations per block
(top, bottom) are bold.

thresholds 5%, 20% 40%, and 80% are chosen based on pre-
liminary experiments identifying the interesting ranges.

Consider first the single-queue search configurations (Ta-
ble 2 Top) The mean-threshold variant consistently de-
creases coverage. This is expected given our previously dis-
cussed observations: states far away from the goal tend to
have low confidence, and these are aggressively pruned here.
Choosing the threshold adaptively instead performs much
better, indeed this method dominates mean-threshold almost
consistently given the same pruning fraction X . Ignoring
states where hNN is very unconfident (A5) improves cov-
erage in 5 domains and harms in only 2. As before however,
pruning too aggressively (e.g. 40%) is detrimental.

Consider now the dual-queue search configurations (Ta-
ble 2 Middle/Bottom). We run these configurations also on
the hard tasks (the largest instances) as they are more ef-
fective and coverage is near perfect on the moderate tasks
already for the baseline. We include mean-threshold only on
the moderate tasks as it is, again, dominated by adaptive-
threshold. Beyond these two methods, we include the third
method, using NN confidence information not for pruning
but to prioritize search queues.

As the data shows, mean threshold is less detrimental
here than in single-queue search – in fact can be benefi-
cial – which is expected given the dual-queue “safety net”
against too aggressive pruning. However, adaptive-threshold
still works better consistently. Our best setting M40 for that
method improves coverage in 4 domains on the moderate
tasks and in 5 domains on the hard tasks, while deteriorating
coverage only on 1 domain and 2 domains respectively.

For the prioritization variants P20 and P80, keep in mind
that higher values of X here mean a weaker prioritization
and hence more similarity to the baseline, as the hNN queue
continues while its confidence is above the threshold. The
empirical benefits from this method are higher for more ag-
gressive prioritization with X = 20. With few exceptions,
the method is dominated by adaptive-threshold.

OOD Training Effect on Search Performance
Let us finally turn to the impact of OOD NN training meth-
ods on search performance (cf. Table 3). Here we fix the
search configuration to the best-performing one, dual queue
A40.

Somewhat surprisingly, as the data clearly shows, OOD
training in whichever form has little effect on search per-
formance. The strongest beneficial case is that of W90 in
Depots and Grid on moderate tasks, but the improvements
there are counter-balanced by similar losses for the same do-
mains and configuration on hard tasks. Given our observa-
tions in Section showing that the OOD training does have
the desired effect of decreasing prediction confidence on
OOD data while preserving similar prediction accuracy, this
raises the question whether the particular OOD data we used
in OOD training are at fault. Possibly, these OOD data are
too far away from the state distribution encountered during
search, so that hNN confidence does not allow us to distin-
guish search states s that are similar to the training data from
ones that aren’t. Whether this is the case and how it can be
improved remains a question for future research.

Conclusion
We have contributed a study of NN confidence in the
context of NN heuristic functions in planning, including
confidence-aware search methods and an exploration of out-
of-distribution training. The empirical advantages so far are
moderate, but they show that these issues can be of interest
when using learned heuristics for search. We see our contri-
bution as an initial study yielding first methods and insights,
forming a basis for future research on this subject.

Acknowledgments
This work was funded by DFG (German Research Founda-
tion) Grant 389792660 as part of TRR 248 (CPEC, https://
perspicuous-computing.science). The authors acknowledge
support from the German Federal Ministry of Education and
Research (BMBF) through the Tübingen AI Center (FKZ:
01IS18039A), from the DFG under Germany’s Excellence
Strategy (EXC number 2064/1, Project number 390727645),
and by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation pro-
gramme (TAILOR, no. 952215 and BDE, no. 817639).

References
Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard,
M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Lev-
enberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.;
Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,
I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.;
Fern; a Viégas; Vinyals, O.; Warden, P.; Wattenberg, M.;
Wicke, M.; Yu, Y.; and Zheng, X. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Systems. http:
//tensorflow.org/. Accessed: 2022-05-31.
Agostinelli, F.; McAleer, S.; Shmakov, A.; and Baldi, P.
2019. Solving the Rubik’s cube with deep reinforcement

learning and search. Nature Machine Intelligence, 1: 356–
363.
Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in AI safety.
arXiv:1606.06565 [cs.AI].
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Chollet, F. 2015. Keras. https://keras.io. Accessed: 2022-
05-31.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-black
planning: A New Systematic Approach to Partial Delete Re-
laxation. AIJ, 221: 73–114.
Ferber, P.; Geißer, F.; Trevizan, F.; Helmert, M.; and Hoff-
mann, J. 2022. Neural Network Heuristic Functions for
Classical Planning: Bootstrapping and Comparison to Other
Methods. In Proc. ICAPS 2022.
Ferber, P.; Helmert, M.; and Hoffmann, J. 2020. Neural Net-
work Heuristics for Classical Planning: A Study of Hyper-
parameter Space. In Proc. ECAI 2020, 2346–2353.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In Proc. ICAPS 2019,
631–636.
Hein, M.; Andriushchenko, M.; and Bitterwolf, J. 2019.
Why ReLU networks yield high-confidence predictions far
away from the training data and how to mitigate the prob-
lem. In Proc. CVPR 2019.
Heller, D.; Ferber, P.; Bitterwolf, J.; Hein, M.; and Hoff-
mann, J. 2022. Code for the SoCS 2022 paper “Neural
Network Heuristic Functions: Taking Confidence into Ac-
count”. https://doi.org/10.5281/zenodo.6553254.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR, 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS 2009, 162–169.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. JACM, 61(3):
16:1–63.
Hendrycks, D.; and Gimpel, K. 2017. A Baseline for De-
tecting Misclassified and Out-of-Distribution Examples in
Neural Networks. In Proc. ICLR 2017.
Hendrycks, D.; Mazeika, M.; and Dietterich, T. 2019. Deep
Anomaly Detection with Outlier Exposure. In Proc. ICLR
2019.
Henning, C.; D’Angelo, F.; and Grewe, B. F. 2021. Are
Bayesian neural networks intrinsically good at out-of-
distribution detection? In ICML 2021 Workshop on Uncer-
tainty and Robustness in Deep Learning (UDL).
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. JAIR, 14:
253–302.
Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In Proc. AAAI 2021, 8064–8073.

Kendall, M.; and Gibbons, J. D. 1990. Rank Correlation
Methods. A Charles Griffin Title, 5th edition.
Kristiadi, A.; Hein, M.; and Hennig, P. 2020. Being
bayesian, even just a bit, fixes overconfidence in relu net-
works. In Proc. ICML 2020, 5436–5446.
Lee, K.; Lee, H.; Lee, K.; and Shin, J. 2018. Train-
ing confidence-calibrated classifiers for detecting out-of-
distribution samples. In Proc. ICLR 2018.
Malinin, A.; and Gales, M. 2018. Predictive uncertainty es-
timation via prior networks. In Proc. NeurIPS 2018.
Nalisnick, E.; Matsukawa, A.; Teh, Y. W.; Gorur, D.; and
Lakshminarayanan, B. 2019. Do deep generative models
know what they don’t know? In Proc. ICLR 2019.
Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Deep neural
networks are easily fooled: High confidence predictions for
unrecognizable images. In Proc. CVPR 2015, 427–436.
Ren, J.; Liu, P. J.; Fertig, E.; Snoek, J.; Poplin, R.; Depristo,
M.; Dillon, J.; and Lakshminarayanan, B. 2019. Likelihood
ratios for out-of-distribution detection. In Proc. NeurIPS
2019.
Richard, M. D.; and Lippmann, R. P. 1991. Neural network
classifiers estimate Bayesian a posteriori probabilities. Neu-
ral computation, 3(4): 461–483.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
JAIR, 39: 127–177.
Rivlin, O.; Hazan, T.; and Karpas, E. 2020. Generalized
Planning With Deep Reinforcement Learning. In ICAPS
Workshop on Bridging the Gap Between AI Planning and
Reinforcement Learning (PRL), 16–24.
Röger, G.; and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Proc. ICAPS 2010, 246–249.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
Domain-Independent Planning Heuristics with Hypergraph
Networks. In Proc. ICAPS 2020, 574–584.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529(7587): 484–489.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018. A
general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419): 1140–
1144.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2017. Mastering
the Game of Go Without Human Knowledge. Nature,
550(7676): 354–359.

Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018.
Action Schema Networks: Generalised Policies with Deep
Learning. In Proc. AAAI 2018, 6294–6301.
Wang, X.; and Aitchison, L. 2022. Bayesian OOD detec-
tion with aleatoric uncertainty and outlier exposure. In Proc.
AABI 2022.
Yu, L.; Kuroiwa, R.; and Fukunaga, A. 2020. Learning
Search-Space Specific Heuristics Using Neural Network. In
ICAPS Workshop on Heuristics and Search for Domain-
independent Planning, 1–8.

