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Abstract

A popular approach for sequential decision-making is to per-
form simulator-based search guided with Machine Learning
(ML) methods like policy learning. On the other hand, model-
relaxation heuristics can guide the search effectively if a full
declarative model is available. In this work, we consider how
a practitioner can improve ML-based black-box planning on
settings where a complete symbolic model is not available.
We show that specifying an incomplete STRIPS model that
describes only part of the problem enables the use of relax-
ation heuristics. Our findings on several planning domains
suggest that this is an effective way to improve ML-based
black-box planning beyond collecting more data or tuning
ML architectures.

1 Introduction
Multiple AI areas deal with sequential decision-making
problems. When a black-box simulator is available, an in-
creasingly popular approach is to use search guided with
learned policies (Williams 1992) or value/heuristics func-
tions (Silver et al. 2016), either by ML using collected data
or by online reinforcement learning (RL) (Sutton and Barto
2018). The main advantage of these approaches is that the
simulator can implement an arbitrarily complex transition
function, as a symbolic model is not required to guide the
search. However, such ML methods sometimes feature high
sample complexity or fail to generalize to instances beyond
the training data distribution, running out of time or mis-
leading the search. For improving them, practitioners might
attempt to collect more data or to tune the ML algorithms.

An alternative is to use a state-of-the-art automated plan-
ner, which leverages a full symbolic description of the state
space, e.g., expressed in the Planning Domain Definition
Language (PDDL) (McDermott 2000). This results in a
symbolic model (e.g. in STRIPS formalism (Fikes and Nils-
son 1971)) that compactly describes the state space, and
can be used to guide the search via relaxation-based heuris-
tics (Bonet and Geffner 2001; Hoffmann and Nebel 2001).
In fact, recent comparisons have shown that, whenever a
declarative description is available, these model-relaxation
heuristics often outperform ML-based heuristics even when
learning for a fixed planning task (Ferber, Helmert, and
Hoffmann 2020).

In this paper, we are interested in settings where plans are
obtained by searching using an ML-based method and a full
symbolic model of the black-box simulator is not available.
Our hypothesis is that such systems can be enhanced by us-
ing an incomplete STRIPS model and combining the guid-
ance of the learned heuristics/policies with relaxation-based
heuristics (e.g. FF (Hoffmann and Nebel 2001)) over the par-
tial, incomplete, model. We consider situations where a hy-
pothetical practitioner has already trained a heuristic and/or
policy to find sequences of actions that reach a goal. Then,
to improve performance, the practitioner models part of the
domain in STRIPS/PDDL, resulting in an incomplete model
that describes only part of the state-space without assuming
that the black-box state is fully symbolic. The question we
tackle is, can the practitioner improve the performance of
the overall system by specifying only part of the model in
a symbolic way, while still relying on the ML-guidance for
capturing other (e.g., non-symbolic) aspects? And if so, how
important it is which parts of the model are specified?

We take a first step towards answering these questions by
running several case studies on planning domains for which
a full model is available. This allows us to exhaustively ana-
lyze the performance under a diverse range of partial models
that focus on different aspects of the domain and compare
the relative improvement with respect to the best possible
scenario: having a full STRIPS model. Moreover, we also
considered cases where the data was the most convenient for
training the chosen ML-based baseline. Our methodology is
similar to ML papers that evaluate methods where the data
is obtained from a known generative model.

Our experiments show that partial STRIPS models can
indeed improve the performance over ML-based heuristic-
s/policies that show low coverage when used in isolation.
This is the case even when both search guidance mecha-
nisms are combined in a simple way, not requiring a heav-
ily engineered algorithm nor any additional training, which
could be expensive. While the overall performance improves
as models become more accurate, it sometimes may suffice
to specify a small part of the domain to achieve a noticiable
improvement. Therefore, our findings suggest that specify-
ing partial symbolic models is a good alternative way to im-
prove ML-based black-box planning beyond collecting more
data or tuning ML architectures.



2 Background / Planning Representation
A planning task is a tuple Π = ⟨S,A, f, sI , SG⟩, where S is
a finite set of states, A is a finite set of actions, f : S×A →
S is the transition function, sI ∈ S is the initial state and
SG ⊆ S is the set of goal states. A plan π = ⟨a0, . . . , an⟩ is
a sequence of actions from s0 to any state sg ∈ SG such that
f(f(f(s0, a0), a1), . . . , an) = sg .

A planning task can be specified in multiple ways. Fol-
lowing (Katz, Moshkovich, and Karpas 2018), a black-box
planning task is a tuple ΠB = ⟨S,A, sI , succ, goal⟩, where
succ and goal are arbitrary, black-box, functions, which de-
fine f(s, a) = succ(s, a) and SG = {sg | goal(s) =
True}, respectively. Black-box tasks are suitable for per-
forming lookahead search, by starting at the initial state and
repeteadly applying the succ function. Such a search can be
guided using heuristics. Formally, a heuristic h : S → R+

0
is a function mapping states to numeric values, such as h(s)
estimates the distance from s to the goal. The heuristic func-
tion can be implemented manually, or, e.g., learned automat-
ically from previous tasks (Ferber, Helmert, and Hoffmann
2020; Shen, Trevizan, and Thiébaux 2020).

On the other hand, declarative approaches specify plan-
ning tasks by representing states in terms of a set of variables
or fluents (Fikes and Nilsson 1971; Bäckström and Nebel
1995). A STRIPS task is a tuple ΠD = ⟨F,A, sI , G⟩, where
F is a set of facts, and A is a set of actions. A state s ⊆ F is a
set of facts, sI ⊆ F is the initial state and G ⊆ F is the goal
specification. The semantics of ΠD are defined as follows.
S = 2F is the set of all states, which correspond to sets of
facts that are true in such a state. SG = {sg | G ⊆ sg}.
An action a ∈ A is a tuple ⟨pre(a), add(a),del(a)⟩, where
pre(a) ⊆ F is a set of preconditions, and add(a) ⊆ F and
del(a) ⊆ F are sets of add and delete effects, respectively.
An action a is applicable in a state s if pre(a) ⊆ s. The re-
sulting state of applying an applicable action a in a state s is
the state f(s, a) = (s \ del(a)) ∪ add(a).

STRIPS models are usually expressed in PDDL, where
the set of facts F is the set of all possible grounding of a
fixed set of predicates over a fixed set of objects (McDer-
mott et al. 1998). Having a STRIPS model enables new ways
for automatically obtaining heuristic functions via domain-
independent relaxations of the problem, such as the delete-
relaxation FF heuristic (Hoffmann and Nebel 2001).

3 Guiding Black-Box Searches with Partial
STRIPS Models

Our general hypothesis is that symbolic models can help
to improve over black-box search methods that are guided
with ML-based heuristics and/or policies. We assume a set-
ting, where a practitioner starts with an already trained ML-
based method and a black-box simulator, similar to the set-
ting commonly used in Deep RL (DRL) (Arulkumaran et al.
2017). Our hypothesis is that, when ML-based black-box
does not scale well, the practitioner can specify a partial
STRIPS model and select a suitable search algorithm to lead
to further scalability. This hypothesis does not imply that,
for a given ML-based method and partial STRIPS model,
such an improvement will always manifest. The empirical

results in our evaluation show that such improvements are
possible in black-box planning. In the rest of the section we
answer questions crucial for proving our hypothesis: what
ML-based methods we consider, how can partial STRIPS
models be defined, and what search algorithms can be be
used for combining the strengths of the ML-based methods
and the heuristics obtained from the partial STRIPS models.

3.1 ML-based methods
RL methods focus on estimating one of two quantities. One
is value estimation, that is the expected cost/reward of act-
ing from a state. The second one is action selection where
an action is chosen for a given state. They are related, re-
spectively, to the standard RL algorithms value-iteration and
policy-iteration (Sutton and Barto 2018). For instance, DRL
algorithms for learning a policy might use ML for classi-
fying which action should be applied in each state. In such
cases, the ML model returns an estimate of the likelihood of
the actions. If the estimation were perfect, maximizing the
likelihood corresponds to an optimal policy for the problem.
When we are using a policy, we will assume that we can rank
actions according to its likelihood.

We focus on black-box planning, where these are used to
guide a best-first search, either selecting the state with best
value or the node with highest likelihood. Therefore, in this
work we refer to value estimation as heuristics, and action
selection as policies.

3.2 Partial STRIPS Models
We assume that we are provided a black-box task, ΠB , for
which we have limited ML-based search guidance. Our mo-
tivation is that practitioners would write down or extract a
symbolic model that represents part of the dynamic of the
environment. Such a model would be intentionally added, so
practitioners have incentives to capture the weakness of their
ML-based method. To do so, they will provide a STRIPS
task ΠD as well as a way of mapping states from ΠB to ΠD.

Definition 1 (Partial Model). Let ΠB =
⟨S,A, sI , succ, goal⟩ be a black-box planning task.
A partial model of ΠB is a tuple ⟨ΠD, σ⟩ where
ΠD = ⟨F,A, σ(sI), G⟩ is a STRIPS task, and σ is a
mapping S 7→ 2F from states in ΠB to states in ΠD.

Partial models allow using any heuristic function that has
been defined for STRIPS tasks on searches for ΠB . In par-
ticular, let hD be any heuristic for ΠD, we define a heuristic
for ΠB as hB(s) = hD(σ(s)).

In principle, there are no requirements on the relation be-
tween ΠB and ΠD. For example, the set of actions in ΠD

can be completely different as that of ΠB . If the precon-
ditions and effects of actions in ΠB are hard to formal-
ize in STRIPS, one can model alternative actions encoding
each original action as a sequence of STRIPS actions. But
of course, the properties of hB greatly depend on the rela-
tion between ΠB and ΠD. An interesting case is whenever
ΠD models only part of the state, and the actions in ΠD ex-
pressing the same transition function as those in ΠB . In that
case, ΠD is a projection of ΠB and the heuristic hB pre-
serves the properties safeness, admissibility and consistency



of the heuristic hD over ΠD (Culberson and Schaeffer 1998;
Edelkamp 2001).

3.3 Algorithms
We consider two search algorithms that can use both meth-
ods we have for guiding the search, the ML-based method
and the heuristics from the partial STRIPS models:

1. Multi-heuristic best-first search (Helmert 2006) is a vari-
ation of Greedy Best-First Search (GBFS) with two
queues, which interleaves the corresponding queue to se-
lect for expansion its best node. We call this algorithm
double-queue.

2. GBFS with tie-breaking, which selects for expansion the
best node according to the main heuristic. If more than
one node has the best heuristic value, it uses the sec-
ondary heuristic for tie-breaking.

For dealing with policies, we use the concept of discrep-
ancy (Harvey and Ginsberg 1995), as was defined by Karoui
et al. (2007). The method ranks the successors of a node
(starting from 0) in ascending order according to their
heuristic value and/or the preferences of the policy. Then,
the heuristic value of a node is the sum of the value of its
parent plus its rank. Therefore, the value of each node is the
sum of all ranks from the initial state to the node resulting
on a path-dependent heuristic. This method was previously
used in the context of bounded suboptimal search with good
results (Araneda, Greco, and Baier 2021; Greco, Araneda,
and Baier 2022).

4 Methodology
Even though our hypothesis is that symbolic models can
help to improve over ML-based methods in the general case
where a complete declarative model is unknown, we eval-
uate it on a controlled environment using multiple classi-
cal planning domains (see Section 5) for which a complete
STRIPS model is already available. This allows us to an-
alyze the benefits from using partial models in a systematic
way, using several models per domain that include the “orig-
inal” model that perfectly describes the dynamics of the en-
vironment.

4.1 Implementation
All algorithms were implemented on the Fast Downward
(FD) Planning System (Helmert 2006). To compute heuris-
tics on partial STRIPS models, we implemented them as
domain-dependent task transformations within the planner,
allowing the computation of arbitrary heuristic functions on
the partial model.

In our experiments, we use the FF heuristic (Hoffmann
and Nebel 2001), one of the most popular heuristics for sat-
isficing planning due to its ability for guiding the search
towards the goal in a broad class of domains (Hoffmann
2005). Note that our hypothesis is that ML-based meth-
ods can be improved by computing some relaxation-based
heuristic over a partial model. Therefore, our conclusions
are not specifically tied to this heuristic and other planning
heuristics might be more convenient for other domains.

4.2 ML-based baseline
We found it convenient to use HGN (Shen, Trevizan, and
Thiébaux 2020), a method that can produce a high-quality
heuristic for specific domains and generalizes well to in-
stances of different size. HGN provides an estimate of the
distance to the goal as a real, floating-point number. As Fast
Downward uses only integers, we take only 3 decimals of
precision, by multiplying the result by 103 and rounding to
the nearest integer. We trained the heuristic using a 5-fold
cross-validation with their default hyperparameters, i.e. hid-
den size = 32, bins=4 and learning rate = 0.001. We denote
this heuristic as hhgn.

We also consider using HGN as a “policy”, by considering
that the policy recommends to take successors with lowest
heuristic value. As mentioned above, we can handle this by
using discrepancy, so that the evaluation of a node depends
on the difference in heuristic value with other siblings. We
denote this heuristic as πhgn.

In order to analyze how partial declarative models can be
useful on scenarios where the NN-based heuristics and/or
policies are used in an out-of-distribution scenario, we train
HGN on different datasets. In all cases, our datasets consist
of 100 instances, which are different from the instances used
in our evaluation. The datasets do differ on the way instances
are generated. The default variant of our heuristics, hhgn and
πhgn, are trained on instances generated by the same gener-
ator used for obtaining the test set. The training instances
are typically smaller than the test instances, as is common
practice in learning approaches for planning. Other heuris-
tics, which we will denote, hdataset or πdataset, use a “biased”
training set, where we vary the distribution of initial states
and/or goals. In Section 5, we describe the different variants
chosen for each domain.

4.3 Metrics
In our analysis, we focus on comparing the performance of
all algorithms in terms of number of expansions and do not
focus on running time. This is desirable for several reasons.
First of all, in our experiments the time spent on the succes-
sor generation and/or on computing the model-based heuris-
tics such as FF is negligible to that of evaluating NN-based
heuristics such as HGN. Therefore, in terms of runtime it
is sometimes desirable not to use the NN-based heuristics.
However, we are interested in a setting where using a ML-
based heuristic or policy is desirable, e.g., because it is able
to capture large parts of the model that are subsymbolic and
cannot be considered. Furthermore, runtime measures could
be influenced by a number of factors. In practice, differ-
ent NN-based heuristics might have different computational
cost, or specific hardware can accelerate their computation.
Besides, whenever the black-box simulator is based on NN
predictions (e.g. as in model-based reinforcement learning),
the overhead of the successor generation will increase sig-
nificantly, heavily limiting the amount of nodes that can be
expanded within a given time limit.

Therefore, we analyze how both sources of information,
hhgn and hFF, can be combined in order to reduce the search
effort in terms of node expansions. Focusing on the num-
ber of expansions enables a meaningful comparison when



we evaluate not using the NN-based heuristics, so we can
assess the power of the partial STRIPS model isolated. And
all the conclusions obtained regarding the cases where us-
ing partial models can improve the performance in terms of
node expansions can be easily extrapolated to runtime, as
the computational effort of these heuristics is far from being
a bottleneck.

5 Benchmark Domains
We consider three domains from the International Planning
Competition (McDermott 2000). We selected domains that
are non-homogeneous, meaning that they have objects of
different types so that it is natural to model only part of the
domain in a declarative fashion by specifying only a sub-set
of the actions, predicates and/or object types in PDDL.

5.1 Logistics
Our first domain is the IPC-00 version of Logistics. The
task consists of delivering packages from their initial loca-
tion to their destination on a map that consists of locations
grouped in different cities. Across cities, packages must be
transported by airplanes, which are only allowed to move in
between special locations where there is an airport. Within
each city, packages are transported via trucks.

Our partial model, called air, only considers transporta-
tion by airplane. In air, objects represent packages, cities,
and airplanes, but there are no trucks and/or locations within
the cities. The goal is to have each package in the correct
city. Mapping states from the original task to the partial
model is straightforward, by mapping the current location
of each package and/or airplane into the corresponding city.
This models a scenario where the exact location of each ob-
ject is hard to determine in a symbolic manner, but it is pos-
sible to determine a broad area where the object is located.

For training the HGN heuristic, the default dataset (hgn)
contains 100 instances with 2 to 4 packages, 2 to 5 cities, 2
to 4 airplanes and 2 to 5 locations in each city. We also gen-
erate a biased dataset, called hgn-one, where instances have
the same size but all packages are placed in the same city in
the initial state and goal, so it is never necessary to transport
them by airplane. The resulting heuristic is expected to ap-
proximate the cost of moving trucks, but ignore all actions
that involve the airplanes.

The test set contains 50 instances with 3 to 4 packages, 5
to 7 cities, 4 to 5 airplanes and 4 to 6 locations in each city.

5.2 Grid
In the IPC-00 grid domain, a robot can move along a grid
transporting keys. The robot can hold one key at a time. If a
tile is locked, the robot has to carry a key of the correspond-
ing shape to unlock it. There are actions that move the robot,
pick up or leave keys at a given location, and unlock cells.
The goal is to place certain keys at specific locations. For
this domain, we consider these two partial domains:

1. robot: We model only the position and movement of the
robot, but no information regarding the keys is modelled,

except which keys have already been dropped at their tar-
get. In this case, the planning heuristic estimates the dis-
tance the robot should traverse to visit all target locations
where keys should be dropped, without having any infor-
mation regarding the position of the keys. This could be
the case in scenarios where a model of the environment
of the robot is available but the position of the keys is not
available in the symbolic model.

2. keys: We only model the position of the keys, but we do
not model the position and/or movement of the robot.
Therefore, each key can be grabbed and/or left at any po-
sition at any time. The heuristic guides the search towards
states where more keys have been dropped at their des-
tination. This kind of model could be useful in settings
where the movement of the robot is complex to describe
in a symbolic manner accurately.

For training, we generate 100 instances of the following
datasets, included two biased ones:
1. default (hgn): a grid size between 4x4 to 6x6, 1 to 2 locks

and 1 to 3 keys.
2. hgn-gridsize: similar to default, but all instances have

only two positions (grid size of 2x1 tiles) and one is
locked. In the instances exists different keys. The robot
has to move to the other location trying the correct key.
In this case, the trained heuristic can learn that locked
positions require to be unlocked by using keys.

3. hgn-onelock: similar to default, but all instances have a
single locked position, even though they may exist mul-
tiple keys. Trained heuristics with this data might be sen-
sitive respect to the kind of grid where the robot moves.

Finally, the test set contains 50 instances with grid size be-
tween 7x6 to 8x6, 2 to 3 locks and 2 to 4 keys.

5.3 Woodworking with Pickup and Delivery
This is a variation of the IPC-11 domain Woodworking.
The domain simulates the work in a woodworking workshop
where some wooden pieces are prepared by cutting boards
and varnishing, polishing or coloring the resulting pieces,
using different tools, such as a grinder, saw, glazer or spray.
In our variant of this domain (henceforth Woodworking-
PD), there is additionally a road map. All tools are in a lo-
cation (representing the workshop), but the pieces of wood
are scattered across multiple locations and they should be
picked up, brought to the workshop, and the prepared pieces
should be delivered afterwards. Thus, the domain includes
trucks to move the pieces of board. The original version of
this domain has action costs, but we consider a unit-cost ver-
sion, as action costs are not supported by the HGN heuristic.
In our formulation, we only include one truck. For this do-
main, we consider multiple partial models:
1. wood: This is the original woodworking model, which

ignores the pickup and delivery part.
2. logistics: This partial model ignores the woodworking

part and considers that all objects are finished but in dif-
ferent places, locating each unfinished object at the work-
shop. The tasks consists only of moving objects from one
location to another.



none hFF
A hFF

none - 0 50

hhgn-one 5 17 50
hhgn 44 50 50

πhgn-one 3 3 50
πhgn 50 50 50

(a) Logistics

none hFF
R hFF

K hFF

none - 34 50 50

hhgn-gridsize 17 34 50 50
hhgn-onelock 49 49 50 50
hhgn 50 50 50 50

πhgn-gridsize 33 49 50 50
πhgn-onelock 50 50 50 50
πhgn 50 50 50 50

(b) Grid

none hFF
L hFF

W hFF

none - 2 19 50

hhgn-move 14 24 24 50
hhgn 16 11 36 50
hhgn-oneloc 26 33 40 50

πhgn 10 11 14 49
πhgn-oneloc 12 24 10 50
πhgn-move 17 23 18 49

(c) Woodworking-PD

Table 1: Coverage of GBFS combining variations of hhgn and hFF with the double-queue algorithm. The top segment is coverage
using only STRIPS models. The left segment is coverage using only HGN. For comparison, the right segment is coverage using
a complete STRIPS model. The middle segments are using HGN as a heuristic. The bottom ones are coverage using HGN as
a policy. Variations of hhgn and πhgn indicate the data used for training. Variations of hFF indicate the partial STRIPS model.
Cells in bold indicate those cases where the combination outperforms both FF and HGN in isolation. We highlight in red those
cases where using a partial STRIPS model is detrimental.

For training, we generate 100 instances of the following
datasets, which included two biased ones that consider just
the woodworking part or the pickup and delivery part.

1. default (hgn): the instances have 1 to 2 pieces, 2 to 6
locations, 3 to 5 machines and a wood factor (amount of
wood with respect to the minimum needed) of 1.4 to 1.0.

2. hgn-oneloc: similar to default, but with only one location,
and all pieces and machines are in there. For that reason,
the goal can be achieved without moving the truck, simi-
lar to the original woodworking domain.

3. hgn-move: similar to default, but for achieving the goal, it
is necessary to move the corresponding pieces to a loca-
tion and not consider processing the pieces (such as paint,
varnish, polish, etc). Thus, the goal can be achieved by
just moving the truck.

Finally, for testing, we generated a dataset with 50 in-
stances with 2 to 3 parts, 3 to 8 locations, and a wood factor
of 1.4 to 1.0.

6 Evaluation
We report experiments on how partial STRIPS models im-
prove over ML baselines. All experiments were run with a
time limit of 120 minutes, a memory limit of 9GB, and were
executed on a cluster with Intel Xeon Gold 6126 CPU with
hyper-threading enabled and around 30 tasks in parallel us-
ing Downward lab (Seipp et al. 2017). All our code, bench-
marks and data are publicly available (Greco et al. 2022b).

For the evaluation, we use 50 instances in each domain,
all different from those used for training the heuristics. In all
our experiments, we limit the number of expansions by all
configurations to 10 000, the number of expansions that all
configurations could complete under our time limit.

6.1 Guiding Search with Partial STRIPS Models
Table 1 reports the coverage when using different kinds of
HGN heuristics (trained with the original dataset or with bi-

ased ones), and FF heuristics (using either the full or partial
STRIPS models).

The top segment of each table is the coverage when using
only the planning heuristic over partial STRIPS models. As
a reference for comparison, we include full STRIPS model
combined with the FF heuristics (hFF). Without having ac-
cess to any learned heuristic, it solves all instances under
10 000 expansions. That offers an upper bound on how par-
tial STRIPS model can help on domains that are not modeled
completely.

The results support our hypothesis that partial STRIPS
model can be useful to enhance the guidance of weak ML-
based heuristics and policies. In particular, coverage often
increases compared to the variant that uses only the HGN
heuristics. There are only two cases, marked in red, where
there is a slight decrease in coverage.

Nevertheless, as expected, the quality of the guidance of
a partial model heavily depends on the part of the problem
that has been modelled. In some cases guidance is as good as
with the perfect model. For example, in Grid-keys, by mod-
elling only the position of the keys and ignoring the robots,
the search is guided towards relevant sub-goals (picking-up
necessary keys and/or dropping them down at their loca-
tions). In other cases, however, guidance is more limited.
For example, the partial model Logistics-air, ignores com-
pletely all locations within a city so it assigns a heuristic
value of 0 to all states where the packages are in the right
city, regardless of whether the goal has been fulfilled. This
causes huge heuristic plateaus and hence the coverage is 0
when used alone. The great news is that, even in such cases,
the heuristic can be a good complement for other ML-based
heuristics. As shown in the results from Table 1, coverage
increases with respect to using only hhgn. A likely reason is
that hFF

A helps to guide the search until having all packages
in the right city, and then πhgn/πhgn-one can help to achieve
the goal from there.

Figure 1 shows a more detailed view on the comparison
on search effort in terms of expansions of only using HGN



100 101 102 103 104
100

101

102

103

104

u
n
s.

uns.

Only hhgn

h
h
g
n
+

h
F
F

Logistics

hhgn hhgn
O

hFF
air

hFF

100 101 102 103 104
100

101

102

103

104

u
n
s.

uns.

Only hhgn

h
h
g
n
+

h
F
F

Grid

hhgn hhgn
GS hhgn

1L

hFF
R

hFF
K

hFF

100 101 102 103 104
100

101

102

103

104

u
n
s.

uns.

Only hhgn

h
h
g
n
+

h
F
F

Woodworking

hhgn hhgn
1L hhgn

M

hFF
W

hFF
L

hFF

100 101 102 103 104
100

101

102

103

104

u
n
s.

uns.

Only πhgn

π
h
g
n
+
h
F
F

100 101 102 103 104
100

101

102

103

104

u
n
s.

uns.

Only πhgn

π
h
g
n
+
h
F
F

100 101 102 103 104
100

101

102

103

104

u
n
s.

uns.

Only πhgn

π
h
g
n
+
h
F
F

Figure 1: Expansions of only HGN against using both HGN and hFF with different partial models. In the top row, HGN is used
as heuristic (e.g. hhgn) and in the bottom row, it is used as a policy (e.g. πhgn). We distinguish different variants of HGN trained
with different datasets with shapes, and different partial STRIPS models with colors.

with respect to combining HGN and FF under different par-
tial models. In general, combining HGN and partial STRIPS
leads to more points under the diagonal, validating our hy-
pothesis. This is partially due to the way heuristics are com-
bined, by having two separate open lists one for each heuris-
tic, which keeps the overhead small even when the heuris-
tic provided by the partial model is not accurate (e.g. in
Grid when using the robot partial model, hFF

R , and the HGN
trained on a non-biased dataset). On the other hand, partial
models can reduce search effort significantly by several or-
ders of magnitude, whenever they model a part of the do-
main that was not correctly captured by the HGN heuristic.
We remark again that, the computation of the FF heuristic
does not have a huge overhead with respect to HGN, and
hence the advantages in terms of expanded nodes also carry
to search time.

Regarding the cost of the plans found by the different
approaches, we observe that there is not a very high vari-
ance. As shown in Figure 2, even when using the best HGN
variant, plan costs are slightly better when using the partial-
model heuristics (finding better plans in 47 tasks compared
to 24). When excluding the full model configurations (hFF),
this is tied (improving in 19 tasks compared to 18), and if the
biased HGN variants are considered the advantage is clearer

(132 tasks compared to 55). Overall, results regarding plan
cost seem to correlate with tasks solved, so that more infor-
mative heuristics also find (slightly) better plans.

6.2 Other ways of combining heuristics
Table 1 focuses exclusively on the performance using the
double-queue algorithm. In general, this was the most suit-
able way for combining both heuristics. However, it is not
always the best. Table 2 shows the cases where the tie-
breaking combination mentioned in section 3.3 performed
better in the Woodworking-PD domain. We observe that, es-
pecially with πhgn, the double-queue algorithm can be out-
performed by tie-breaking. Typically, it is better to choose as
primary heuristic the one that performs best in isolation, so
in this case we used hFF as primary heuristic, breaking ties
with hhgn.

Figure 3 shows the cumulative coverage by expanded
nodes of the different algorithms. Each plot presents a spe-
cific configuration: (a) and (c) shows the performance of
hhgn; (b) and (d) of πhgn. Subfigure 3(a) shows that, combin-
ing with the partial model, Woodworking-PD logistics out-
performs all other configurations and dramatically increases
the number of solved instances. On the other hand, (b) shows
that FF tiebreaking with πhgn outperforms a double-queue
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none hFF
L hFF

W hFF

none 2 19 50

hhgn-move 14 24+3 24+5 50
hhgn 16 11+4 36+3 50
hhgn-oneloc 26 33+1 40 50

πhgn 10 11+1 14+21 49
πhgn-oneloc 12 24 10+22 50
πhgn-move 17 23 18+5 49+1

Table 2: Woodworking-PD. Additional coverage by using
an alternative algorithm vs table 1c. See legend in that ta-
ble. Bold numbers show using using an alternative algorithm
lead to a new case where the combination outperforms both
HGN and STRIPS models in isolation.

algorithm. In both, using some form of a combination of
heuristics is better than using the only one. In the Grid do-
main, we observe that using hhgn and πhgn, the three config-
urations that combine the heuristics outperform the use of
only one and work similarly.

However, as shown in table 1 and Figure 1, there are sit-
uations where the algorithms we considered did not manage
to improve over the HGN baseline.

7 Related work
Planning as heuristic search approaches (Bonet and Geffner
2001) use the STRIPS model to relax or transform the state
space and guide the search, either by estimating the dis-
tance from each state to the goal, or by computing prefer-
ences over which actions or state to explore first (Richter and
Helmert 2009). These last two ideas are related to the no-
tions used in RL we mention in Section 3.3: value-estimation
and action-selection (Silver et al. 2016).

Beyond RL, ML sequence and structured prediction aims
to produce sequences with high likelihood. They can be seen
as policy estimations as the likelihoods are calculating us-
ing an internal state, the past decisions and classifying over

the next possible tokens in the sequence or structure. For
instance, (Scholak, Schucher, and Bahdanau 2021) reports
using a pre-trained language model to map natural language
questions into syntactically correct SQL queries. Typically,
beam search is used to find for a sequence with high aggre-
gated likelihood. This case includes the widely used large
language models (Vaswani et al. 2017).

There has been work on comparing learned heuristics
with classical planning heuristics (Ferber, Helmert, and
Hoffmann 2020). It is known that declarative models enable
efficient computation of heuristics that are informative and
time-efficient (Geffner and Bonet 2013). As such, when a
full model is available those heuristics can typically outper-
form NN heuristics even when training in a fixed task (Fer-
ber, Helmert, and Hoffmann 2020). However, when a full
model is not available, it is not clear if and how relaxation-
based heuristics can be used.

Previous work has used symbolic information to improve
the behaviour of RL algorithms. For instance, Alshiekh et al.
(2018) enforce LTL formulas during training and inference
so the actions taken are safe. Both De Giacomo et al. (2019)
and Toro-Icarte et al. (2022) use LTL for specifying RL re-
wards, and Illanes et al. (2020) use a symbolic specification
of the task to improve the learning stage. Planning mod-
els can be used for generating data for training ML mod-
els (Katz and Sohrabi 2020). On the planning side, there has
been work on obtaining or improving planning heuristics us-
ing ML (Yoon, Fern, and Givan 2006; Virseda, Borrajo, and
Alcázar 2013; Karia and Srivastava 2021; Ferber et al. 2021;
Toyer et al. 2018). Some others have worked on using DRL
for generalized planning for solving planning instances in a
given domain (Rivlin, Hazan, and Karpas 2020). In contrast
with these directions, our work emphasizes modifying the
behaviour after the ML model has been trained, amortizing
the training cost. Moreover, our contributions suggest new
ways for faster adaptation to new specific domains as far as
part of the high level structure can be expressed as a (partial)
STRIPS model.

Modelling planning problems is studied in knowledge en-
gineering (Vaquero et al. 2013). Recent efforts have looked
at obtaining planning models from source code using anno-
tations (Katz, Moshkovich, and Karpas 2018).

Model-lite planning approaches (Kambhampati 2007;
Weber and Bryce 2011; Zhuo and Kambhampati 2017) have
considered incomplete planning models in the past, e.g., for
the generation of robust plans. Instead, we explore how to
use them to enhance existing ML-based systems.

8 Discussion
Pure RL methods can generalize well when the training data
covers well-enough the distribution of trajectories (Sutton
and Barto 2018). On the other hand, it is common to find
that RL models show weak generalization when they rely
on passively collected data. In this case, the most common
next steps are tuning the ML algorithm or collecting more
data based on insights of error analysis. In this work we
explored a complementary direction: improve the scalabil-
ity by turning such insights into a symbolic model, exploit-
ing classical planners which naturally deal well with gen-
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Figure 3: Cumulative coverage by the number of expanded nodes under different variants of hFF, hhgn and πhgn.

eralization. We showed that, even when a full model is not
available, classical planning heuristics can complement well
ML-based heuristics. Typically, more accurate models lead
to better search guidance. But even models that disregard
large parts of the problem can be very beneficial.

In general, the actions returned by a classical planner can
be executed safely and reach the goal as far as the model
correctly represents the real state space. However, classical
planners are also used in cases where this not the case. For
instance, simple classes of full-observable non-deterministic
planning can be tackled by assuming a deterministic prob-
lem and replanning when the execution fails (Yoon, Fern,
and Givan 2007). While this work is about black-box plan-
ning, it can also be seen as using planners while associating
planning states with external states. Complementing ML-
based methods with model-based heuristics could improve
the impact of planning research, and lead to a deeper under-
standing of the relationship between learning and reasoning.
For instance, one could start with a trained policy where
states are partially symbolic, and associate that part of the
state to an STRIPS model. In turn, this combination could
offer an stronger baseline for further research on DRL.

As future work, there are many directions worth pursuing.
We would like to test our methods using other ML models
and in other domains. For instance, our approach would be
directly applicable on domains where the dynamics of the
black-box simulator cannot be expressed in STRIPS, e.g.,
with non-symbolic states or continuous variables.

Another question is what are good partial STRIPS mod-
els. In some cases, the ML models and the partial STRIPS
model might be focusing on different aspects of the problem,
which could be in contradiction. For instance, as training
ML aims to minimize the expected cost, we might want to
use a STRIPS model to avoid taking actions leading to unde-
sirable states, leading the search towards more secure zones.
In principle, this would make the plans more reliable but we
have not explored the overall behaviour of our algorithms in
such cases. One way to study this issue is to consider ML
models trained on data about less risky scenarios, while the
partial STRIPS model focus on safety issues.

Finally, our tie-breaking configurations commit exclu-
sively into the preferences of the first heuristic. Hence, it
would interesting to explore other ways of balancing both
heuristics, such as focal-search based algorithms (Greco and
Baier 2021; Greco, Araneda, and Baier 2022; Greco et al.
2022a).
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