
Metamorphic Relations via Relaxations:
An Approach to Obtain Oracles for Action-Policy Testing*

Hasan F. Eniser,1 Timo P. Gros,2 Valentin Wüstholz,3 Jörg Hoffmann,2,4 Maria Christakis1

1 MPI-SWS, Kaiserslautern and Saarbrücken, Germany
{hfeniser, maria}@mpi-sws.org

2 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
〈lastname〉@cs.uni-saarland.de

3 ConsenSys, Kaiserslautern, Germany
wuestholz@gmail.com

4 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

Abstract

Testing is a promising way to gain trust in a learned action
policy π, in particular if π is a neural network. A “bug” in this
context is undesirable or fatal policy behavior, e.g. satisfying
a failure condition. But how do we distinguish whether such
behavior is due to bad policy decisions, or is actually unavoid-
able under the given circumstances? This requires knowledge
about optimal solutions, which defeats the scalability of test-
ing. Related problems occur in software testing when the cor-
rect program output is not known. Metamorphic testing ad-
dresses this through metamorphic relations, specifying how a
given change to the input should affect the output, thus pro-
viding an oracle for the correct output. Yet how to obtain such
metamorphic relations for action policies? Here we show that
the well-explored concept of relaxations can serve that pur-
pose. If state s′ is a relaxation of state s, and π fails on s′ but
does not fail on s, then we know that π contains a bug mani-
fested on s′. We contribute an initial exploration of this idea,
in the context of failure testing of neural network policies π
learned by RL in simulated environments. We design fuzzing
strategies for test-case generation, and metamorphic oracles
leveraging simple manually designed relaxations. In experi-
ments on three single-agent games, our technology is able to
identify true bugs – avoidable failures of π – quite effectively.

1 Introduction
Action policies represented by neural networks (NN) are
highly successful in complex sequential decision making
problems, in particular in games (Mnih et al. 2015; Sil-
ver et al. 2016, 2018), and increasingly in AI Planning (Is-
sakkimuthu, Fern, and Tadepalli 2018; Groshev et al. 2018;
Garg, Bajpai, and Mausam 2019; Toyer et al. 2020; Karia
and Srivastava 2021). Once a policy π has been learned, it
can be used to make real-time decisions in dynamic environ-
ments, simply by calling π(s) on the current state s to obtain

*A slightly extended version of this paper will be published at
the ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA’22).
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the next action. This approach, however, comes with obvious
safety concerns due to potential policy bugs, i.e., undesirable
or fatal policy behavior. Testing is a natural paradigm, given
its scalability, to address this.

But what is a “bug” in this context? In many environ-
ments, undesirable or fatal behavior can be unavoidable –
e.g. traffic making it impossible to avoid a crash in au-
tonomous driving, or a state in which it is impossible for
a bipedal robot to keep its balance. Such situations are not
bugs in π, as the bad behavior is not actually due to bad pol-
icy decisions. In general, in order to know whether or not a
situation constitutes a bug in π, we need to know what the
optimal policies are. This defeats the scalability of testing.

Prior work on testing in sequential decision making does
not address this issue. This work considers a “system” that
takes decisions in an environment, and tries to find situations
where a failure condition φ is satisfied (e.g. (Dreossi et al.
2015; Akazaki et al. 2018; Koren et al. 2018; Ernst et al.
2019; Lee et al. 2020), see (Corso et al. 2021) for a recent
overview). This implicitly assumes that a correctly designed
system – in our case, a learned action policy – can avoid φ.

Steinmetz et al. (2021) recently pointed out this shortcom-
ing, and analyzed the possibility to identify sub-optimal pol-
icy behavior through upper- and lower-bounding techniques.
Here, we take inspiration from software testing instead, pro-
viding an alternative technique to identify avoidable failures.

Not knowing the optimal policies is akin to not knowing
the correct output of a program. Metamorphic testing (Chen,
Cheung, and Yiu 1998) addresses the latter by testing pro-
gram behavior on inputs chosen such that it is known how
the respective outputs should relate. That is, one specifies a
metamorphic relation, encompassing a relation RI over in-
puts together with a corresponding necessary relation RO

over outputs. If, for inputs i, i′ with RI(i, i′), the outputs
o, o′ do not satisfy RO(o, o′), then we know there is a bug.
Thus RO provides a test oracle for the correct output.

That oracle, however, still requires knowledge about cor-
rect outputs, in the form of RO. For example, action deci-
sions in autonomous driving can be tested using metamor-
phic relations derived from well-known human-designed

rules, such as “speed down by 25% if rainy” (Zhang et al.
2018; Tian et al. 2018; Deng et al. 2020). But how to come
by metamorphic relations in general planning?

Here we answer that question in terms of a relation RO
not over specific output actions a vs. a′ of a policy, but over
the space of solutions below states s vs. s′. Such relations are
very common and well explored in AI, namely in the form of
over-approximations obtained through relaxation. Assume s
and s′ are related in terms of a relaxation relation R(s, s′)
identifying that s′ is easier to solve than s. If π fails on s′
but not on s, then we know that π contains a bug manifested
on s′. This is our key insight: relaxations provide a means
to specify metamorphic relations and thus a test oracle in
general planning. Note that, furthermore, this approach cap-
tures sequential policy behavior, rather than merely immedi-
ate outputs as in all other works on metamorphic testing.

As indicated in our notation above, in this paper we focus
on state relaxations R, that modify only the state, not any
other aspects of the agent’s task. Such relaxations are of-
ten quite natural and easy to obtain. When obstacles need to
be avoided, states can be relaxed by removing obstacles; in
planning with resources, relaxations can increase resource
availability; in planning under time constraints, those con-
straints can be relaxed (e.g. postponing a deadline).

We do not yet investigate the automatic generation of
such relaxations. Instead, we run case studies in three 2D-
world single-agent games involving (fixed or moving) ob-
stacles, and manually design relaxation relations R(s, s′)
where s′ has easier-to-avoid obstacles. Importantly, while
this involves manual per-domain labor, it requires hardly any
domain knowledge (relaxing obstacles is trivial) – in contrast
to knowing the difference between the optimal solutions for
s and s′, which is the kind of knowledge we would need to
design a traditional metamorphic output relation RO.

Nevertheless, the automated design of relaxations for this
purpose, including ones going beyond state relaxations, re-
mains of course an important topic for future work. For this,
there is huge a potential to draw on the literature on relax-
ation design for heuristic functions (e.g. (Bonet and Geffner
2001; Edelkamp 2001; Helmert et al. 2014; Domshlak, Hoff-
mann, and Katz 2015)). This is non-trivial though, for a vari-
ety of reasons. In particular, rather than relaxing radically to
obtain an efficiently computable heuristic function, we need
to relax cautiously, in small steps, to be able to identify bugs.

Our testing framework addresses MDPs, of which we re-
quire access only to a simulator (given state s and action
a, output an outcome state s′). For test-state generation, we
take inspiration from fuzzing (Miller, Fredriksen, and So
1990), which mutates program inputs randomly with a bias
to maximize diversity. We transfer this idea to our setting
by taking input mutations to be random action applications,
and measuring test-state diversity in terms of Euclidean dis-
tance. We implemented all our techniques in a framework
we call π-fuzz. We evaluate π-fuzz on three single-agent
games, with policies learned by RL. Our experiments show
that fuzzing is effective in generating a diverse set of states,
and that our metamorphic oracles are able to identify thou-

sands of unique bugs even in well-trained policies.1

2 Context and Notations
Our methods address discrete-time Markov decision pro-
cesses, as follows. An MDP is a tuple M = (S,A, T, S0)
of states S; actions A; transition probability function
T : S×A 7→ D(S) whereD(S) denotes the set of probabil-
ity distributions over S; and initial states S0 ⊆ S (of which
one s0 ∈ S0 will be chosen randomly at execution time).

A policy, also agent, is a function π : S 7→ A which
chooses actions in S. We consider policies π represented
by neural networks (NN). The policy is typically trained to
maximize rewards associated with states or state transitions.
Our approach is agnostic to how this is done. A run of a
policy π on an (arbitrary) state s0 ∈ S is a state/action se-
quence σ = 〈s0, a0, s1, a1, . . . 〉 where, for all i, ai = π(si)
and µ(si+1) > 0 where µ = T (si, ai).

Note that this definition of policy is restricted in terms of
being memoryless and deterministic. Both restrictions can
be lifted in principle, but deterministic memoryless poli-
cies are relevant in their own right and form a natural start-
ing point for the investigation of metamorphic action-policy
testing. We assume that π is represented as an NN classi-
fier whose final layer can also be interpreted as a probability
distribution π̂(s) ∈ D(A) over actions. We make use of the
latter in fuzzing, by sampling π̂(s) in order to explore MDPs
in which random actions do not lead to interesting states.

We assume a given non-temporal failure condition φ that
should be avoided by the agent (exploring our approach for
temporal φ remains a topic for future work). We say that
a run σ fails if there exists si along σ such that si |= φ;
otherwise, we say that σ succeeds. We denote by Pφ(π, s)
the probability that the run of π on s fails, and by P ∗φ (s) the
minimal such probability achieved by any policy.

We do not assume that we have a declarative model of
M ; a simulator suffices to apply our methods. We merely as-
sume that the representation of states is state-variable based,
i.e., each s is uniquely identified by a value assignment to a
vector of state variables (v1, . . . , vn). The domains of the
state variables do not matter to our approach, so long as Eu-
clidean distance can be defined (needed in our coverage no-
tions). For simplicity, in this paper we assume that the state
variables are real-valued, i.e., states s map each vi to R.

We refer to the simulator as the environment, denoted E.
It provides the programmatic interfaces E.rndInit() which
returns a random initial state s0 ∈ S0; E.setState(s) which
sets the environment state to s ∈ S; and E.step(s, a) which,
given s ∈ S and a ∈ A, picks a state s′ according to the
distribution T (s, a), and outputs s′.

We furthermore assume that E has a parameter ρ – the
random seed – and an interface E.setSeed(r) setting ρ :=
r. We use that interface in part of our methodology to fix
specific environment behaviors and identify bugs pertaining
to those. Namely, whenever we check whether π contains
a bug manifested below a state s, directly before running π
on s we call E.setSeed(r), determinizing T as a function of

1The source code of π-fuzz and of all our experiments will be
made publicly available upon publication.

S1 S2 S3

S S’ X discard

add
Fuzzer Pool

Oracle

Random Walks

Bugs

π

π-fuzz Framework

S’

S

Policy

Environment

Diversity
Filter

Duplicate Filter

Figure 1: Overview of π-fuzz framework.

state, action, and run length so far. We denote the resulting
unique run of π on s given random seed r by Er.σ[π, s].

3 π-fuzz Policy Fuzzing Framework
Figure 1 provides a high-level overview of our π-fuzz
policy-testing framework. π-fuzz takes as input a policy un-
der test π and an environment E. The framework consists of
two main components: the fuzzer, which generates a diverse
pool of test states si; and the oracle, which identifies policy
bugs among these test states. The fuzzer uses random walks
to generate new states, which are then filtered by diversity
to obtain the pool. We will describe our fuzzing algorithm
in detail in Section 5. Our key contribution is the design of
the oracle, via metamorphic relations based on relaxations.
A duplicate filter at the end of this pipeline serves to provide
unique bugs as the output of π-fuzz.
π-fuzz is implemented as a generic policy tester, indepen-

dent of any specific environment (in particular, we use the
same π-fuzz implementation across our case studies in this
paper). The input interface for π-fuzz consists of the neu-
ral network representation of π, in the PyTorch format; the
aforementioned programmatic interface of E implementing
E.rndInit(), E.setState(s), E.step(s, a)and E.setSeed(r);
as well as a programmatic interface for metamorphic opera-
tions underlying the oracle, explained next.

4 Metamorphic Oracles via Relaxation
We define the notions of policy bug we use in our context.
We spell out the principle of relaxation-based metamorphic
oracles; then specify the oracle we use in our case studies;
then discuss how suitable relaxations may be obtained in
general, in particular considering the relaxation literature.

4.1 Policy Bugs: Definition
We consider two notions of “bugs”, one of which is specific
to a fixed environment behavior, while the other quantifies
over all possible such behaviors.

Definition 1 (Bug). Let M = (S,A, T) be an MDP, E a
simulator for M , π a policy, and s ∈ S a state.

(i) We say that s is a bug in π if Pφ(π, s) > P ∗φ (s).
(ii) Given a random seed ρ = r, we say that the run

Er.σ[π, s] is a seed-bug in π if Er.σ[π, s] fails, but
there exists a policy π′ s.t. Er.σ[π′, s] succeeds.

Bugs (i) arguably capture the canonical understanding of
policy bugs when testing failure-avoidance ability in a prob-
abilistic environment. Seed-bugs (ii) are an approximation
that allows to consider individual environment behaviors. If
π fails but π′ succeeds given the same fixed random seed,
then this indicates that π is faulty. This is, however, not nec-
essarily the case: (ii) does not in general imply (i), because
the decisions causing failure on r may be beneficial on other
environment behaviors. Hence (ii) merely is a pragmatical
proxy for (i). That said, on deterministic environments (i)
and (ii) coincide; and in our case studies, most states s with
seed-bugs found by our metamorphic oracle are in fact bugs.
Also, (ii) is much faster to evaluate than (i), which makes it
useful for practical debugging purposes.

Seed-bugs are best characterized by the actual run
Er.σ[π, s], rather than the state s alone, as there can be many
different environment behaviors below s and only some of
them may exhibit the observed failure.

4.2 Metamorphic Oracles: The Principle
Obviously, Definition 1 cannot be tested efficiently on large
state spaces. We adapt the idea of metamorphic testing to
solve this issue. The key element is a state relaxation:
Definition 2 (State Relaxation). Let M = (S,A, T) be an
MDP, and E a simulator for M . We say that t ∈ S relaxes
s ∈ S if for every policy πs there exists a policy πt such
that, for every random-seed ρ = r, whenever Er.σ[πs, s]
succeeds then Er.σ[πt, t] succeeds as well.

We say thatR ⊆ S×S is a (state) relaxation if, for every
(s, t) ∈ R, t relaxes s.

We will illustrate and discuss this definition below. In a
nutshell, a relaxed state t allows to adapt any policy for s
to achieve the same (or more) failure-avoidance ability. In
that sense, intuitively, “t is easier to solve than s”. Defini-
tion 2 captures the most general condition under which this
is the case, and where our metamorphic oracles hence work
as intended.

Namely, the idea is quite simple. If t is easier to solve than
s, but the policy π is worse on t than on s, then π’s behavior
on t must be wrong:
Proposition 3 (Metamorphic Oracle). Let M = (S,A, T)
be an MDP, E a simulator for M , and R a relaxation. Let
s, t ∈ S be states s.t. (s, t) ∈ R. We have:

(i) If Pφ(π, s) < Pφ(π, t), then t is a bug in π.
(ii) If Er.σ[π, s] succeeds but Er.σ[π, t] fails, then

Er.σ[π, t] is a seed-bug in π.

Proof. (i): We have P ∗φ (s) ≥ P ∗φ (t) by the definition of re-
laxations. Hence we get Pφ(π, t) > Pφ(π, s) ≥ P ∗φ (s) ≥
P ∗φ (t) which shows the claim.

(ii): As the run of π on s succeeds and (s, t) ∈ R, by the
definition of relaxations there exists a policy π′ for which
the run on t succeeds. As the latter is not the case for π,
Er.σ[π, t] is a seed-bug in π.

For illustration of the kind of relaxations we employ here,
let us briefly consider the case studies we contribute. We ex-
periment with stochastic games where an agent moves in a

2D-world and needs to reach a target position while avoid-
ing (fixed or moving) obstacles. Our relaxation relations R
modify the game landscape by removing obstacles, or mov-
ing them in a way that makes them easier to avoid.

state s relaxed state t
Figure 2: Illustration of relaxations as per Definition 2 in our
Highway case study.

Figure 2 illustrates this in our Highway case study, which
involves a car (red) navigating traffic (blue and green) on a
2-lane highway. Less traffic is easier to navigate. In the sense
of Definition 2, whenever πs manages to avoid crashing into
traffic when started from s, we can achieve the same when
starting from t simply by taking the same driving decisions;
i.e., the desired policy πt behaves like πs on the respective
corresponding states. If the policy π under test takes differ-
ent decisions on t, which crash more frequently, then π ex-
hibits a bug on t.

A remarkable special case of Definition 2 is that of deter-
ministic transitions, where the run of a policy from a state
is unique, and t relaxes s if and only if either t is solvable
(a succeeding policy exists), or s is unsolvable; in particu-
lar, all solvable states relax each other. This is very generous
from a definitorial point of view, but it still makes perfect
sense for bug detection: if s is solvable and R(s, t), then we
know that t is solvable. This is precisely the most general
condition under which we can detect avoidable failures by
comparing the behavior of π across states s, t: if R(s, t) and
π succeeds on s, then t is solvable, so failure of π on t con-
stitutes a bug. Practical relaxation methods will, of course,
instantiate the broad frame of Definition 2 with much more
restrictive relations over states, like the relaxations in our
case studies.

4.3 Metamorphic Oracles in our Case Studies
Proposition 3 provides a tool to detect bugs and seed bugs,
given a state relaxation R as per Definition 2. We turn this
into practical oracles for π-fuzz by samplingR a given num-
ber of times. Algorithm 1 specifies three different oracles
along these lines. Let’s consider these from top to bottom.

The BUGORACLE algorithm checks whether a given test-
pool state si generated by π-fuzz can be identified to be a
bug. It does so by comparing Pφ(π, si) with Pφ(π, ti) for
unrelaxed states ti, i.e., harder states where R(ti, si). By
Proposition 3, if the Boolean return value is 1 then si is a bug
in π. Evaluating Pφ here is a sub-problem, solving which
exactly is intractable in itself in large state spaces. In our
implementation, we approximate Pφ by sample runs.

The BASICSEEDBUGORACLE algorithm proceeds in a
similar manner, but checks for seed bugs instead. The ran-
dom seed r is an input to the oracle (set by the fuzzer, see
Section 5) as the oracles’s job is to identify bugs given a
fixed environment behavior. The oracle returns 1 if π fails on

Algorithm 1: Metamorphic Oracles
1 Function BUGORACLE(R, π, si):
2 evaluate Pφ(π, si);
3 repeat ORACLE BUDGET times
4 ti = RANDOMSTATE({ti | R(ti, si)});
5 evaluate Pφ(π, ti);
6 if Pφ(π, ti) < Pφ(π, si) then
7 return 1

8 return 0;
9 Function BASICSEEDBUGORACLE(R, π, si, r):

10 if Er.σ[π, si] fails then
11 repeat ORACLE BUDGET times
12 ti = RANDOMSTATE({ti | R(ti, si)});
13 if Er.σ[π, ti] succeeds then
14 return 1

15 return 0;
16 Function EXTSEEDBUGORACLE(R, π, si, r):
17 B = {};
18 if Er.σ[π, si] succeeds then
19 repeat ORACLE BUDGET times
20 ti = RANDOMSTATE({ti | R(si, ti)});
21 if Er.σ[π, ti] fails then
22 B = B ∪ {Er.σ[π, ti]};

23 return B;

the test state si but succeeds on one of the unrelaxed states
ti. By Proposition 3, Er.σ[π, si] is a seed-bug in this case.

EXTSEEDBUGORACLE, finally, is an extension that ap-
plies in case π succeeds on the test state si given r. In this
case, Er.σ[π, si] cannot be a seed-bug, but we may be able
to identify relaxed states ti as seed-bugs instead. The oracle
leverages this possibility in the obvious manner. In our case
studies, many additional seed-bugs are found in this way.2

To sample the relaxation relation R, our implementation
in π-fuzz assumes that R is given in the form of a set of
metamorphic operations: state-modification operators that
either relax the given state (e.g., by removing obstacles) or
unrelax it (e.g., by adding obstacles). The sampling then
simply consists in applying a randomly chosen metamorphic
operation, with randomly chosen parameters (e.g. which ob-
stacles to remove, where to add new obstacles).

Importantly, the magnitude of metamorphic operations af-
fects oracle efficacy. If π works well on si and ti is much
easier, it is unlikely that the policy is bad on ti, thus not lead-
ing to the detection of a bug. If π is bad on si and ti is much
harder than si, it is unlikely that the policy works well on
ti, again not leading to the detection of a bug. Therefore, in
both directions, metamorphic operations should be applied
cautiously, making small modifications only. Our operations
modifying individual state attributes naturally support this.

2One can define a similar extended version of BUGORACLE.
Such an oracle would be very slow however.

Also, for that reason, we do not chain over metamorphic op-
erations, always applying only a single such operation when
sampling R in Algorithm 1.

Section 6 outlines the metamorphic operations we use
in each of our case studies. The algorithm parameter
ORACLE BUDGET is set to 500 in all our experiments.

4.4 Discussion: How To Obtain Relaxations?
How can state relaxations for metamorphic oracles be ob-
tained? Arguably, relaxations as above – modifying individ-
ual state attributes – are easy to come by in many cases,
based on trivial domain-specific knowledge. Wherever ob-
stacle avoidance plays a role, the methods from our case
studies can be used. Other simple examples include re-
source consumption (increase availability), and deadlines
(postpone) or more generally time windows (broaden). In-
deed, the latter three kinds of relaxations can potentially be
automated in a domain-independent manner.

It remains of course an important question whether and
how we can tap into the potential of existing research on re-
laxations as underly the computation of heuristic functions
(e.g. (Bonet and Geffner 2001; Edelkamp 2001; Helmert
et al. 2014; Domshlak, Hoffmann, and Katz 2015)). In this
context, note the following differences between our method-
ology vs. commonly used relaxation methods:
(a) Relaxations normally modify the problem as a whole,

not only the state as in Definition 2.
(b) Practical oracles require cautious relaxation in small

steps, as outlined above.
In principle, neither of these differences is intrinsic in our
framework, i.e., standard relaxations could be plugged in di-
rectly. But both (a) and (b) are serious challenges, because
the design of heuristic functions has very different require-
ments. In contrast to (b), heuristic functions must be effi-
ciently computable, which entails strong problem simpli-
fications. Regarding (a), if the relaxation differs radically
from the original problem, then care needs to be taken that
the learned policy actually generalizes to the relaxed prob-
lem. These challenges are not insurmountable (e.g. many
known relaxations come with fine-grained refinement oper-
ations), but certainly constitute difficult research questions.

Another, perhaps more promising, source of state relax-
ations can be simulation relations (Milner 1971; Gentilini,
Piazza, and Policriti 2003), where R(s, t) holds – t sim-
ulates s – iff for every outgoing transition of s there is a
corresponding outgoing transition in t, leading to simulat-
ing outcome states R(s′, t′). Such relations can be extracted
automatically from standard planning models (Torralba and
Hoffmann 2015).

5 Fuzzing Algorithm
We now discuss the fuzzer component from Figure 1 in more
detail. The fuzzer builds up a pool of diverse states by rely-
ing on two sub-components, namely random walks and di-
versity analysis. Consider the pseudo-code in Algorithm 2.

First, the fuzzer adds a random initial state to the pool of
states P (line 3). Until the fuzzer is interrupted (e.g., via a
user-provided time limit), it tries to incrementally expand P .

Algorithm 2: Fuzzing procedure
1 Function FUZZER(Env E, Policy π):
2 P = [];
3 P = ADD(E.RNDINIT(), P);
4 while ¬INTERRUPTED() do
5 if RANDOMBOOLEAN(INC PROB) then
6 s = RANDOMSTATE(P);
7 else
8 s = E.RNDINIT();
9 s′ = RNDWALK(E, π, s);

10 if mint∈P d
Eucl(s′, t) > DIV THRESH then

11 P = ADD(s′, P);

12 for each si ∈ P do
13 Run oracle on si (picking r if needed);

14 Function RNDWALK(Env E, Policy π, State s):
15 E.SETSTATE(s);
16 k = RANDOMINTRANGE(0, WALK LENGTH);
17 if RANDOMBOOLEAN(POL PROB) then
18 repeat k times
19 a = RANDOMACTION(E.actions);
20 s = E.STEP(s, a);

21 else
22 repeat k times
23 a = RANDOMPOLICYACTION(π̂(s));
24 s = E.STEP(s, a);

25 return s;

To do so, it randomly decides (biased by a probability pro-
vided in parameter INC PROB on line 5) to either select a
random state from the pool (line 6) or select a new random
initial state (line 8). A random walk is then conducted on the
resulting state s to obtain a new candidate state s′ (line 9).
If s′ is sufficiently diverse, it is added to P (lines 10 – 11).
Here, dEucl(s, s′) is the Euclidean distance between s and
s′, and DIV THRESH sets a threshold for the minimum dis-
tance to the states already in the pool P .

Once the pool P is final, an oracle is called on each state
si ∈ P (lines 12 – 13). If the oracle requires a fixed random
seed – like the two seed-bug oracles from Algorithm 1 – then
the fuzzer chooses that seed here.3

The diversity filter serves (similarly as in software testing)
for higher confidence in π’s ability to avoid failure, based on
broad tests. Our criterion is inspired by recent work on test-
ing neural network classifiers, applying Euclidean distance
between activation vectors to a given network layer (Odena
et al. 2019). Here we apply this criterion to states – i.e., the
NN input vectors – instead.

The RNDWALK procedure conducts random walks in the
usual manner, with one noteworthy design decision. Rather

3To check for bugs on several different environment behaviors,
the oracle would need to be called with several different seeds. Here
we show that, in several interesting case studies, many seed-bugs
can be found even when trying only a single seed for each si.

than always choosing actions uniformly at random (line 19),
the algorithm sometimes samples the policy under test in-
stead (line 23; recall that π̂(s) ∈ D(A) interprets the fi-
nal layer of the NN policy as a probability distribution over
actions). The parameter POL PROB (line 17) controls the
trade-off between these two choices. Sampling the policy
makes sense when random actions do not tend to lead to
interesting states, e.g. because states quickly become un-
solvable. Indeed, as our empirical results show, this method
yields strong advantages in one of our case studies.

Regarding the parameters of Algorithm 2, in prelimi-
nary experiments we found that INC PROB = 0.8 tends
to work well across all of our case studies (for smaller
values, exploration is insufficient), so we fix that parame-
ter value. Similarly, we fix POL PROB = 0.2 (for larger
values, exploration is insufficient). For DIV THRESH and
WALK LENGTH, good values depend on domain-specific as-
pects: typical scale of state diversity, typical run length, typ-
ical level of risk incurred by long random walks. We hence
fix specific values for each domain, listed as part of our
case study descriptions in the next section. For POL PROB
and DIV THRESH, interesting algorithm performance dif-
ferences arise from setting these to 0 vs. > 0, so we evaluate
these settings in our experiments below.

6 Case Studies

We apply our π-fuzz framework to three case studies, called
Highway, LunarLander, and BipedalWalker. Illustrations of
their environments are shown in Figure 3. LunarLander and
BipedalWalker are popular Gym (Brockman et al. 2016) en-
vironments specialized for continuous control. We devel-
oped Highway as a new benchmark that simulates a simpli-
fied autonomous-driving task, navigating a highway through
speed changes and lane changes in a way that avoids colli-
sions with traffic. In all these case studies, the failure con-
dition φ is given in terms of a specific environment state in
which the agent ends up when it crashes into an obstacle. All
agents were trained on a Debian 10 machine with 768 GB of
memory, 32 CPUs (Intel(R) Xeon(R) Gold 6134M), and 2
GPUs (V100 Nvidia Tesla with 32 GB of memory).

(a) (b) (c)

Figure 3: Illustrations of domains used in our evaluation:
(a) Highway, (b) LunarLander, (c) BipedalWalker.

We next describe each case study, including the domain
itself, the algorithms and parameteres we used for learn-
ing the policy π, the metamorphic operations for the ora-
cle, and the domain-specific settings of DIV THRESH and
WALK LENGTH.

6.1 Highway
The Highway domain consists of a two-lane, finite-length
street. The left lane is for speed maniacs, who are relatively
fast, and the right lane is for safety freaks, who are slow.
Neither of these actors may change lanes, and their speed is
constant. The agent appears at the beginning of the street,
and the task is to reach the end without crashing into other
cars. There are five discrete actions: switch lane to right or
left, speed up, slow down, noop. Other cars may enter or
leave the highway stochastically while the agent is moving.
In case of a crash, the game ends immediately with a reward
of −100 points. Reaching the end of the street is rewarded
with +100 points. The discount factor is γ = 0.95, incen-
tivizing the agent to drive fast. Given the road length, the
best-case achievable reward is ca. 30.

Policy training. We train our agent using our own imple-
mentation of DQN (Mnih et al. 2015). Our agent is well
trained, and achieves an average reward of 21 points (after
20000 training episodes).

Metamorphic operations. Relaxed states are generated
by removing a random car ahead of the agent, thus reduc-
ing the chance of crashing. Conversely, unrelaxed states are
generated by adding a car at a safe distance from the agent
(not leading to unavoidable crashes).

DIV THRESH and WALK LENGTH. We set DIV THRESH
to 3.6 to capture the typical scale of diversity in this domain,
which we gauged by inspecting the visual differences be-
tween states. We set WALK LENGTH to 3 to balance the typ-
ical risk of random walks, which quickly lead to crashes in
this domain.

6.2 LunarLander
The LunarLander domain consists of an uneven lunar sur-
face and a lander with two legs. The lander appears at the top
of the environment with a random velocity vector, and the
task is to land it on its legs – if the body touches the surface,
the lander crashes. There are four discrete actions: firing the
bottom engine, the left-hand side engine, the right-hand side
engine, noop. The effect of firing an engine is stochastic,
following a probability distribution over the force yielded.
Touching a leg to the ground yields reward +100, touch-
ing the body to the ground yields reward −100. There is no
discount factor (runs are finite, indeed short, in this game
anyway), so the best-case reward is 200.

Policy training. We train our agent using the PPO algo-
rithm (Schulman et al. 2017) implemented in the SB3 li-
brary (Raffin et al. 2019). Our agent is well trained, and
achieves an average reward of 175 points (after 1 million
training episodes).

Metamorphic operations. Relaxed states are generated
by decreasing the height of the surface, giving the lander
more time to land. Conversely, we generate unrelaxed states
by increasing the surface height up to a safe distance.

DIV THRESH and WALK LENGTH. We set DIV THRESH
to 0.6 and WALK LENGTH to 25.

6.3 BipedalWalker
In the BipedalWalker domain, a bipedal robot moves along a
finite-length terrain that has a rough surface. The robot’s task
is to move forward until the end of the terrain. The action
space is continuous, with actions being defined by a 4-tuple
of numbers xi ∈ [0.0, 1.0]. Each xi specifies the force ap-
plied to one of the joints of the robot. The actions are deter-
ministic; the only stochastic element in this domain are the
terrain (surface) shape and the initial forces in the robot’s
joints. The best-case achievable reward is +300 collected
when reaching the end of the terrain, plus small positive re-
wards that can be collected beforehand. If the robot falls, it
receives−100 points, and the game ends immediately. There
is no discount factor (as, again, game runs are short).

Policy training. We use the PPO algorithm from SB3 for
training. Our agent achieves an average reward of 302 points
(after 1 million training episodes).

Metamorphic operations. As smooth surfaces are easier
to navigate for the walker, relaxed states are generated by
making the terrain smoother, whereas unrelaxed states are
generated by making the terrain rougher.

DIV THRESH and WALK LENGTH. We set DIV THRESH
to 2.0 and WALK LENGTH to 25.

7 Experiments
Our primary evaluation concerns bug-finding capability,
i.e., the number of (seed-)bugs correctly identified by dif-
ferent oracles. We furthermore analyze the impact of the
POL PROB and DIV THRESH algorithm parameters. In
what follows, we first introduce the oracles we compare,
then focus on these evaluations in turn.

We run each experiment 8 times and report statistics over
these 8 runs below. Each run was done on a Debian 10 ma-
chine with a time limit of 24 hours, 1.5 TB of memory, and
48 CPUs (Intel(R) Xeon(R) CPU E7-8857 v2).

7.1 Competing Oracles
To provide a comprehensive evaluation, we consider not
only our metamorphic oracles, but eight oracles in total:
MMBug, MMSeedBugBasic, MMSeedBugExt The ora-

cles from Algorithm 1.
FailureSeedBug This oracle simply flags si as a bug iff
Er.σ[π, si] fails.
This is a trivial baseline that does not check avoidability.

RuleSeedBug Prior work on testing of autonomous driving
decisions (Zhang et al. 2018; Tian et al. 2018; Deng et al.
2020) suggests a rule-based approach, leveraging readily
available human knowledge in the form of driving rules.
While such knowledge is not available in our general set-
ting here, to provide at least some comparison to rule-
based approaches, the RuleSeedBug oracle explores a
simple “don’t change decision” rule. It reports pool state
si as a seed-bug if there is an unrelaxed state ti,R(ti, si),
such thatEr.σ[π, ti] succeeds and π(si) 6= π(ti). The ra-
tionale is that what works for ti also works for si so the
policy should not change.

As π(si) = π(ti) is possible but not necessary, this ora-
cle may incorrectly classify si as a seed-bug. Here we re-
port only the true positives, measuring the oracle’s ability
to identify true bugs (which as we shall see is lacking).

PerfectBug, PerfectSeedBug These oracles provide exact
measuring lines. Computing them is feasible only for
Highway, so we report data only in that case study.

MMSeedBug2Bug Calls MMSeedBugBasic first. If that
flags si as a bug due to unrelaxed state ti, checks whether
Pφ(π, ti) < Pφ(π, si) and flags si as a bug if that is so.
Such seed-bug filtering speeds up bug-finding as we will
see. Further, this oracle evaluates how many seed-bugs
found by MMSeedBugBasic correspond to bugs.

In MMBug and MMSeedBug2Bug, we evaluate Pφ by run-
ning the policy 50 times. (Based on limited experiments, this
is reasonable in our use cases; using statistical methods to
compute Pφ up to a confidence bound is future work.)

Prior to considering the empirical data for these oracles,
note the following guaranteed relations between the sets of
states (or state/seed pairs) they identify as bugs:

RuleSeedBug ⊆MMSeedBugBasic The true positives of
RuleSeedBug are dominated by those of MMSeedBug-
Basic, because ifR(ti, si) andEr.σ[π, ti] succeeds, then
si is a bug iff Er.σ[π, si] fails – which is precisely what
MMSeedBugBasic is checking.

MMSeedBugBasic ⊆ PerfectSeedBug, MMBug ⊆ Per-
fectBug By Proposition 3.

PerfectSeedBug ⊆ FailureSeedBug FailureSeedBug
catches all seed-bugs but may incorrectly flag non-bugs.

MMSeedBug2Bug ⊆MMSeedBugBasic,
MMSeedBug2Bug ⊆MMBug By construction.

MMSeedBug2Bug = MMSeedBugBasic = MMBug on
deterministic domains where policy runs are unique.

The MMSeedBugExt oracle is incomparable to the others as
it is the only one that attempts to find additional (seed-)bugs,
beyond the pool states si.

7.2 Results: Oracle Capability
Figure 4 shows our evaluation of oracle bug-finding capabil-
ity. We fix the default version of the fuzzer here (using the
parameter settings as previously specified).

Consider first Figure 4 (a) Highway, where exact mea-
suring lines by perfect oracles are availabe. These measur-
ing lines attest to the strength of our metamorphic oracles in
this domain: MMBug is close to PerfectBug, and MMSeed-
BugBasic is close to PerfectSeedBug. The average numbers
of (seed-)bugs identified at the end of testing are 553.2 for
MMBug, 588.7 for PerfectBug, 71.2 for MMSeedBugBasic,
and 79.8 for PerfectSeedBug. Among the seed-bug oracles,
FailureSeedBug reports many false positives, RuleSeedBug
lags behind MMSeedBugBasic (40.3 at the end), and MM-
SeedBugExt finds a large number of additional bugs.

The gap between the seed-bug vs. bug oracles is large
here because the latter identify many bugs among those pool
states solved by the policy under the one seed chosen by
the fuzzer (these pool states are ignored by the seed-bug

0 200 400 600 800 1000
Pool Size

10
1

100

101

102

103

104

Bu
gs

PerfectBug
MMBug
MMSeedBug2Bug

MMSeedBugExt
FailureSeedBug
PerfectSeedBug
MMSeedBugBasic
RuleSeedBug

(a) Highway

0 200 400 600 800 1000 1200
Pool Size

10
2

10
1

100

101

102

103

104

Bu

gs

MMBug
MMSeedBug2Bug

MMSeedBugExt
FailureSeedBug
MMSeedBugBasic
RuleSeedBug

(b) LunarLander

0 200 400 600
Pool Size

10
1

100

101

102

103

Bu

gs

MMSeedBugExt
FailureSeedBug
MMSeedBugBasic
RuleSeedBug

(c) BipedalWalker

Figure 4: Evaluation of oracles: number of (unique) bugs as function of pool size as the testing process progresses. MMSeed-
Bug2Bug and MMBug not included in BipedalWalker as this is deterministic so these oracles coincide with MMSeedBugBasic.

DOMAIN

SETTING DIV THRESH>0 DIV THRESH=0
POL PROB=0.2 POL PROB=0 POL PROB=0.2 POL PROB=0

Bugs Avg. Dist. (L2) # Bugs Avg. Dist. (L2) # Bugs Avg. Dist. (L2) # Bugs Avg. Dist. (L2)
Min Max Avg Min Max Avg Min Max Avg Min Max Avg

Highway 71.2 3.6 62.8 12.1 66.5 3.6 62.3 13.8 96.2 0.9 51.9 12.8 98.0 0.6 49.8 11.3
LunarLander 59.1 0.6 5.0 1.8 22.5 0.6 2.98 1.4 336.2 0> 2.9 1.1 198.7 0> 2.9 1.1
BipedalWalker 13.3 2.0 5.9 3.7 13.8 2.1 6.1 3.7 12.8 1.0 4.0 2.7 19.1 1.0 4.2 2.6

Table 1: Evaluation of fuzzer settings: number and diversity of bugs at end of testing process, using MMSeedBugBasic.

oracles). Accordingly, while MMSeedBug2Bug is close to
MMSeedBugBasic showing that most seed-bugs we identify
are bugs, MMSeedBug2Bug lags far behind MMBug.

Consider now LunarLander and BipedalWalker in Fig-
ure 4 (b) and (c). MMSeedBugBasic vastly outperforms
RuleSeedBug. FailureSeedBug is far above that, but at least
in LunarLander this is again due to false positives: using
search on the test-pool states where the policy fails, we
found that at least 50% of these failures are unavoidable.
MMSeedBugExt finds many additional bugs as before.

In LunarLander, MMBug is only slightly above MMSeed-
BugBasic (in difference to Highway); MMSeedBug2Bug
and MMSeedBugBasic are so close to each other that the
two plots cannot be distinguished (98% of the seed-bugs
reported by MMSeedBugBasic are bugs here). In Bipedal-
Walker, the three plots necessarily coincide.

Overall, the results show that metamorphic oracles are
superior to the rule-based and failure-based alternatives we
evaluate; in the one domain where we are able to check, the
oracles are close to perfect. Seed-bug detection is a practi-
cal proxy for bug detection in the sense that most seed-bugs
detected by MMSeedBugBasic are bugs.

7.3 Results: Fuzzer Configurations
For our evaluation of fuzzer configurations – specifically the
POL PROB and DIV THRESH algorithm parameters, which
are most interesting as discussed – see Table 1.

Consider first the impact of POL PROB, controlling
whether or not the policy under test is used to (partially)
inform the random walks in the fuzzer. This is intended
to improve bug-finding capability in domains where purely
random walks incur too many unavoidable failures. In our
three case studies, this effect is indeed visible in LunarLan-
der, where non-zero POL PROB results in finding more than

twice as many bugs for each setting of DIV THRESH.
Non-zero DIV THRESH, on the other hand, reduces the

number of bugs found in LunarLander by up to an order of
magnitude, with minor reductions in Highway and Bipedal-
Walker. This is because more time is needed to fill the pool.
The desired effect of increasing bug diversity is achieved
though, with all min/max/average values being higher for
non-zero vs. zero with the single exception of the average
with POL PROB=0.2 in Highway. An interesting synergy
between non-zero DIV THRESH and POL PROB is man-
ifested in LunarLander, where the larger number of bugs
thanks to POL PROB also results in higher diversity with
(but not without) non-zero DIV THRESH.

8 Conclusion
To test action policies for avoidable failures, oracles are re-
quired that can effectively identify sub-optimal behavior. We
have shown that such oracles can be obtained from relax-
ations, by adapting ideas from metamorphic testing. Our ex-
periments confirm the potential of this approach.

This works opens up an entire universe of exciting re-
search on relaxation-based metamorphic oracles. Possibil-
ities include the automated design of state relaxations and
thus metamorphic oracles; intelligent methods to explore en-
vironment behaviors in a search for seed-bugs; fault local-
ization trying to identify specific combinations of policy de-
cisions leading to failures; as well as closing the loop with
re-training by feeding bug states back into RL, until testing
yields sufficient confidence in the policy.

9 Acknowledgments
This work was funded by DFG Grant 389792660 as part of
TRR 248 (CPEC, https://perspicuous-computing.science).

References
Akazaki, T.; Liu, S.; Yamagata, Y.; Duan, Y.; and Hao, J.
2018. Falsification of Cyber-Physical Systems Using Deep
Reinforcement Learning. In FM.
Bonet, B.; and Geffner, H. 2001. Planning as Heuristic
Search. AIJ, 129: 5–33.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. CoRR, abs/1606.01540.
Chen, T. Y.; Cheung, S. C.; and Yiu, S. 1998. Metamorphic
Testing: A New Approach for Generating Next Test Cases.
Technical Report HKUST–CS98–01, HKUST.
Corso, A.; Moss, R.; Lee, R.; and Kochenderfer, M. J. 2021.
A Survey of Algorithms for Black-Box Safety Validation of
Cyber-Physical Systems. JAIR, 72: 377–428.
Deng, Y.; Zheng, X.; Zhang, T.; Lou, G.; liu, H.; and Kim,
M. 2020. RMT: Rule-based Metamorphic Testing for Au-
tonomous Driving Models. CoRR, abs/2012.10672.
Domshlak, C.; Hoffmann, J.; and Katz, M. 2015. Red-Black
Planning: A New Systematic Approach to Partial Delete Re-
laxation. AIJ, 221: 73–114.
Dreossi, T.; Dang, T.; Donzé, A.; Kapinski, J.; Jin, X.; and
Deshmukh, J. V. 2015. Efficient Guiding Strategies for Test-
ing of Temporal Properties of Hybrid Systems. In NFM.
Edelkamp, S. 2001. Planning with Pattern Databases. In
ECP, 13–24. AAAI.
Ernst, G.; Sedwards, S.; Zhang, Z.; and Hasuo, I. 2019.
Fast Falsification of Hybrid Systems Using Probabilistically
Adaptive Input. In QEST.
Garg, S.; Bajpai, A.; and Mausam. 2019. Size Independent
Neural Transfer for RDDL Planning. In ICAPS.
Gentilini, R.; Piazza, C.; and Policriti, A. 2003. From Bisim-
ulation to Simulation: Coarsest Partition Problems. J. Au-
tom. Reason., 31: 73–103.
Groshev, E.; Goldstein, M.; Tamar, A.; Srivastava, S.; and
Abbeel, P. 2018. Learning Generalized Reactive Policies
Using Deep Neural Networks. In ICAPS.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. JACM, 61: 16:1–
16:63.
Issakkimuthu, M.; Fern, A.; and Tadepalli, P. 2018. Training
Deep Reactive Policies for Probabilistic Planning Problems.
In ICAPS, 422–430. AAAI.
Karia, R.; and Srivastava, S. 2021. Learning Generalized Re-
lational Heuristic Networks for Model-Agnostic Planning.
In AAAI, 8064–8073. AAAI.
Koren, M.; Alsaif, S.; Lee, R.; and Kochenderfer, M. J. 2018.
Adaptive Stress Testing for Autonomous Vehicles. In IV.
Lee, R.; Mengshoel, O. J.; Saksena, A.; Gardner, R. W.;
Genin, D.; Silbermann, J.; Owen, M. P.; and Kochenderfer,
M. J. 2020. Adaptive Stress Testing: Finding Likely Failure
Events with Reinforcement Learning. JAIR, 69: 1165–1201.

Miller, B. P.; Fredriksen, L.; and So, B. 1990. An Empirical
Study of the Reliability of UNIX Utilities. CACM, 33: 32–
44.
Milner, R. 1971. An Algebraic Definition of Simulation Be-
tween Programs. In IJCAI, 481–489.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, 518(7540): 529–533.
Odena, A.; Olsson, C.; Andersen, D.; and Goodfellow,
I. J. 2019. TensorFuzz: Debugging Neural Networks with
Coverage-Guided Fuzzing. In ICML.
Raffin, A.; Hill, A.; Ernestus, M.; Gleave, A.; Kanervisto,
A.; and Dormann, N. 2019. Stable Baselines3. https:
//github.com/DLR-RM/stable-baselines3.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
CoRR, abs/1707.06347.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the Game of Go with Deep Neural Net-
works and Tree Search. Nature, 529: 484–489.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Grae-
pel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018.
A General Reinforcement Learning Algorithm that Masters
Chess, Shogi, and Go Through Self-Play. Science, 362:
1140–1144.
Steinmetz, M.; Gros, T.; Heim, P.; Höller, D.; and Hoffmann,
J. 2021. Debugging a Policy: A Framework for Automatic
Action Policy Testing. In ICAPS Workshop PRL.
Tian, Y.; Pei, K.; Jana, S.; and Ray, B. 2018. DeepTest:
Automated Testing of Deep-Neural-Network-Driven Au-
tonomous Cars. In Intl Conf Software Enginering.
Torralba, Á.; and Hoffmann, J. 2015. Simulation-Based Ad-
missible Dominance Pruning. In IJCAI.
Toyer, S.; Thiébaux, S.; Trevizan, F. W.; and Xie, L. 2020.
ASNets: Deep Learning for Generalised Planning. JAIR, 68:
1–68.
Zhang, M.; Zhang, Y.; Zhang, L.; Liu, C.; and Khurshid,
S. 2018. DeepRoad: GAN-Based Metamorphic Testing and
Input Validation Framework for Autonomous Driving Sys-
tems. In Intl Conf Automated Software Engineering.

