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Abstract

Social Autonomous Robotics aims to deploy robots in scenar-
ios characterized by an intensive and continuous interaction
with humans. The use of Automated Planning (AP) within a
control architecture has been proposed to specify the behav-
ior of robotic platforms in such environments. However, the
design of AP models is a time consuming task developed by
domain experts and engineers. It involves a large knowledge
acquisition process, where the use case description has to be
properly defined by specifying the different tasks the robot
can perform. In this paper we contribute a system to graphi-
cally design the use case and to configure the robot platform
adapted to the desired execution. Through state transition di-
agrams, users can define the different tasks the robot can per-
form, which are automatically translated to the standard Plan-
ning Domain Definition Language (PDDL). It also permits an
easy generation of the configuration files to setup the robotic
platform. The proposed framework has been tested in a real
environment in a retirement home.

Introduction
In recent years, there is a growing interest in robots that
operate in public environments. Much of research in this
field is focused on Social Autonomous Robotics (SAR)
(Breazeal, Dautenhahn, and Kanda 2016), which must act
according to the data collected from sensors and show flex-
ible capabilities and robust behaviours, useful in dynamic
and changing environments (Ingrand and Ghallab 2017).
Automated Planning (AP) (Ghallab, Nau, and Traverso
2004) has been previously used to achieve this autonomous
behaviour (Bandera et al. 2016; Cashmore et al. 2015; Chen,
Yang, and Chen 2016; González, Pulido, and Fernández
2017; Mohseni-Kabir, Veloso, and Likhachev 2020; Rajan
and Py 2012; Tran et al. 2017) by using a problem solver
and a control architecture: the problem solver creates a plan
of actions to be performed and the control architecture deals
with execution and monitoring.

Despite these examples, developing such systems to work
autonomously in Human-Robot Interaction (HRI) scenarios
is still a challenging task (Tapus, Mataric, and Scassellati
2007). The models used have to be represented explicitly
and declaratively, so that they can be processed by specific
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Figure 1: Proposed development process using the graphical
interface

reasoning engines (Korf 1985). It requires both knowledge
on the application field and expertise in robot programming,
in the frame of a time-consuming knowledge engineering
process (Kambhampati 2007) between the domain experts
and software developers. This difficulty is applicable to any
other control technique, not only AP, and becomes a bot-
tleneck for developers and an entry barrier for novice users
to deploy Social Robotics use cases, creating a growing de-
mand for frameworks helping users to program their robots
in a seamless manner (Kramer and Scheutz 2007).

In this paper we present our work to alleviate the devel-
opment of SAR use cases. Given AP as a paradigm to de-
scribe the use case and a control architecture implementing
its model, we contribute with a novel tool to represent the ex-
pected behaviour of the robot and, in addition, to set the con-
trol architecture ready to be connected with the robotic plat-
form (Figure 1). Such models are automatically translated
into the Planning Domain Definition Language (PDDL) for-
malization (McDermott et al. 1998), along with the configu-
ration files to be injected into an AP-based control architec-
ture. This process is based on AP concepts but also suitable
for users with limited expertise. We tested our implementa-
tion through two use cases drawn from the needs encoun-
tered in a retirement home. They were implemented from
scratch and exposed to execution with a robot interacting
with senior adults in a real environment, aimed to be the
first steps towards a long term adherence and acceptability
in HRI (Iglesias et al. 2020).



In the remainder of the paper we present the motivation
of this work, introducing two use cases we have deployed in
a retirement home, followed by the background on AP and
control architectures. After that, we detail the main concepts
to generate models based on AP, whose development is sup-
ported by the novel interface we present. The formal models
are automatically extracted from the tool, which have to be
injected into the control architecture as explained. The re-
sults obtained in the execution on the retirement home are
shown. Finally, we discuss the conclusions and future lines.

Motivation
In this work we captured two real use cases, both arising
from the need to optimize the time of healthcare profession-
als on their daily tasks on a retirement home. Activities such
as informing patients about the meals of the day or helping
residents to talk to their relatives require staff members and
a precise schedule, which is sometimes difficult to reconcile.
Their needs have been captured in the use cases below.

Announcer The residence has a pre-established monthly
lunch and dinner menu with different options depending on
the required diet. The proposal is to have a robot in charge
of announcing the menu when lunchtime or dinnertime ap-
proaches. This is the most simple scenario, in which the
robot is waiting in the charging base until the selected time
when the menu has to be announced. Then, it goes to the
main room and plays a sound to notify its arrival. The menu
is stated by the robot twice. After that, it goes back to the
charging base.

Videocall In many cases, relatives of patients in a retire-
ment home do not visit them as much as they would like due
to lack of time or geographical distance, which was exacer-
bated by the COVID-19 restrictions. To alleviate that, it is
desired to establish a video call system in which relatives of
residents can choose a time slot to make a video call. This
process can be automatized by using a robot with a tablet
instead of relying on a staff member. When the call time
approaches, the robot leaves its charging base and goes to
the different halls where the person who has the videocall
could be, calling them and telling them to follow the robot.
Once announced, it will go to the point defined to have the
call. When the call is ended, the robot leaves and goes back
to the base. A similar use case was deployed in a hospital,
where, due to COVID restrictions, the robot also needs to be
disinfected after each call. It was implemented though the
state machine shown in Figure 2. The interface of the video-
call system was previously implemented for this purpose,
but the use case in the retirement home had not yet been im-
plemented because of the complexity of developing a new
state machine to control the robot.

These use cases were initially proposed to be teleoperated
or implement though state machines. The first option was
discarded as it still needs staff to control the robot manu-
ally, defeating the purpose of alleviating their work. State
machines seemed to be a better option, but they are tough to
implement and update, being also difficult to be understood
by general users, requiring expertise in programming. By

Figure 2: State machine implementing a videocall use case
in a hospital, needing disinfection.

contrast, a proposal based on AP with a control architecture
provides an easier and more flexible implementation. Main
concepts are explained in next section.

Background
The implementation of Social Robotic systems based on AP
relies on a formal model and a control architecture, breaking
it into two different levels: the high level allows a declarative
definition of the use case, whereas the low level deals with
monitoring and execution.

A Classical Planning (Ghallab, Nau, and Traverso 2004)
task consists of driving a system from a given initial state
into a state where the goals are achieved, by applying ac-
tions whose effects are deterministic and known (Geffner
and Bonet 2013). Formally, a classical planning task can be
defined as a tuple Π = ⟨S,A, I,G⟩, where S is the set of
states, A is the set of actions, I ⊆ S defines the initial state
and G ⊆ S specifies the goal to achieve. Actions a ∈ A are
tuples {prea, adda, dela}. For ai to be applicable in a state
si ∈ S, pre(ai) ⊆ si and si+1 = si ∪ add(a) \ del(a). A
plan π = {a1, a2, . . . , an} is a solution of Π if it is applica-
ble in I and results in a state sn such as G ⊆ sn. Classical
planning assumes that an action’s effects are deterministic
and known, without external events interrupting the plan.
However, in real environments actions may fail and other
agents can change the state of the world. Although there are
AP paradigms that consider such non-determinism, a com-
mon approach is to tackle the inherent world uncertainty
by replanning; if the state changes and the remaining plan
cannot be applied, a new plan is created from the current
state (Yoon, Fern, and Givan 2007; Geffner and Bonet 2013).

A planning approach with replanning upon failure re-
quires monitoring and execution control architectures. Ex-
amples of them are PELEA (Alcázar et al. 2010) and ROS-
PLAN (Cashmore et al. 2015), both using Classical Plan-
ning (Ghallab, Nau, and Traverso 2004). They typically in-
volve a planner and a formal planning model to generate the



Figure 3: Architecture of PELEA

sequence of actions to be performed, while checking the cor-
rect execution of the initial plan. Each action is sent to the
robotic platform, assuming that no events will interrupt the
execution. To verify whether the plan goes as expected, ex-
ternal information of the environment is obtained from sen-
sors. If divergences are found between the expected value of
the state and its observed value, the current plan may not be
longer valid, triggering a replanning process to replace it by
a new plan to manage the current situation. Even if this ap-
proach seems rather simplistic it has been used in real HRI
environments with good results (Bandera et al. 2016; Cash-
more et al. 2015; Chen, Yang, and Chen 2016; González,
Pulido, and Fernández 2017; Mohseni-Kabir, Veloso, and
Likhachev 2020; Rajan and Py 2012; Tran et al. 2017).

MLARAS (Multi-layered Architecture for Autonomous
Systems), a similar architecture to the ones mentioned,
based on Automated Planning, was developed in the con-
text of the NAOTHERAPIST project (González, Pulido, and
Fernández 2017). This architecture integrates planning, exe-
cution, monitoring, replanning and learning in different lay-
ers of abstraction, with a translation between layers. Nor-
mally a high-level layer for deliberation and a low-level
layer for the information that the robot can directly work
with are used. To perform the high-level deliberation and
the translation between layers, MLARAS uses PELEA as
a sub-architecture. The general process is shown in Fig-
ure 3, where the high level planner returns the desired plan
π = {a1, a2, . . . , an}. Each ai ∈ π is translated into low-
level commands that the robot can execute and sent to the
robotic platform. The information from the sensors of the
robot is translated into high-level predicates for monitoring
purposes. Even if it was implemented for a specific project,
MLARAS was developed to be a generic architecture, so that
it can be integrated in any robot and with any use case easily
by means of a few configuration files. This architecture was
used to integrate the use case definitions of the announcer
and videocall with any robotic platform.

High Level
Users have to identify and specify the concepts that shape
the SAR model following the formalism of a planning task.
In this section we show some examples of the information
needed for the proposed use cases as formalized in PDDL.

Types are abstract representations of the kind of objects
which are involved in the execution: places, people, items,
etc. Object-type hierarchies can be created to define gener-
alizations and specializations. For the use cases considered,
only the types patient, to identify different residents, and
point, useful to define the main locations, were required.

Predicates are mostly used to create relations between
objects to build information useful during the execution.
Using predicates logic, a declaration like (room-number
patient01 room01) represents the relation between
patients and their room number. It is the job of the knowl-
edge engineer to recognize this information and specify it as
part of the knowledge of the use case.

States are sets of facts that represent the current informa-
tion the agent must reason with. Interpreted as a conjunctive
formula, a state is any subset of relevant predicates that must
be true to consider if the platform is in such state. In most
cases it is not necessary for the states to be fully defined: rea-
soning usually involves just some of the facts present in the
state, so a partial state definition is enough to reason about
it. Figure 4 shows an example state in which the robot is
looking for a patient to make the videocall.

(robot-location hall01)
(current-patient patient01)
(in-hall patient01 hall01)

Figure 4: Example of a partial state definition when search-
ing for a patient.

Actions are seen as the high level operators to be carried
out by the robot. They are applied to make changes in the
environment according to a desired purpose. Through their
use facts are added, removed or modified, giving rise to new
situations that have to be managed again by the robot. A
simple way to elicit actions is to ask the expert what char-
acteristics the scenario must hold to carry out the action and
how it changes after its execution.

Goals must be defined to specify the real purpose of the
robot. They may be a simple predicate or to be composed
by a set of facts that the agent must meet. All the decision-
making process is guided to accomplish them.

The specification of these components shapes an agent-
based model which, injected into a cognitive architecture,
has the ability to reason about the behaviour it should per-
form to act as an autonomous system.

Supporting Users in High Level Development
Creating complete models based on the previous abstrac-
tions is a not straightforward task. It is usually carried out by
engineers with AP background and guided by experts in the
domain where the robot will operate. To relieve the develop-
ment process we propose workflows as a visual knowledge
representation of the use case. Figure 5 shows the video-
call use case as modelled in the proposed interface, where
blue boxes are partial states composed by the facts that the
scenario must hold to execute the action, and actions are the
edges connecting them, representing the expected transitions
between states.



Figure 5: Social Robotics use case modelled in the graphical tool

In most cases the sequence of actions to solve the problem
is unknown or tough to represent using approaches as state
machines, which require a full specification of the states and
all possible transitions, as shown in Figure 2. By contrast,
in our proposed workflow representation states and transi-
tions do not need to be fully specified. Instead, partial defi-
nitions with some of the facts can be enough to reason about
the state and are also easier to define by the user. Let Sπ

be the set of all totally specified states that can be reached
while the robot is operating and Ps the set of partial states
defined by the user, the nominal behaviour of the use case
is depicted as a directed graph composed by partial states
an actions ⟨Ps, A⟩ in such a way that applying a ∈ A in
pst ∈ Ps results in pst+1. The directed graph ⟨Ps, A⟩ can
be design using the concept of options (Sutton, Precup, and
Singh 1999):

Definition 1 An option is a tuple o = ⟨I, πo, β⟩ where
I ⊆ Ps is an initiation set, πo a partial policy and β the
termination condition .

An option is applicable only if the state pst ∈ I. If the
option is taken the next action at is selected, making a tran-
sition to state pst+1. If the action at+1 is not applicable in
such state, it reaches the termination condition and has the
opportunity to select any other option. In contrast to macro-
actions (Korf 1985), which specify a sequence of actions that
has to be executed as a whole, options can be partially exe-
cuted and resumed from any point. If it is desired to go back
to the option, it does not have to be taken from the begin-
ning, but can be taken at any point. Options assume that all
states where an option might continue are also states where

the option may be taken (Sutton, Precup, and Singh 1999).
Similar to partial order plans (Weld 1994), options are

graphically specified by depicting the causal links between
actions ai

p−→ an, in which p is both an effect of ai and a pre-
condition of an, establishing an order constraint ai < an.

However, neither transitions between options nor termi-
nation conditions are explicitly stated, and order restrictions
are only used to easily depict and understand the current use
case, they are not taken into account during the planning pro-
cess. Users only have to define them as a reasonable outline
of the different use case tasks, and it is the task of the rea-
soning engine to choose the most promising options choice
to solve the use case.

Considering the exemplified use case in Figure 5, after
calling a patient there exist options to move to another hall
to call them again or to go to the videocall room to start the
videocall. In addition, options can be interrupted by other
options thanks to the replanning process. Let us consider a
robot identifying the person who is going to have a call, but
in this moment the request is cancelled. Such option is no
longer valid, and the replanning process will include the call
cancelled option instead. The tool also presents features to
handle exogenous events breaking the nominal behaviour of
the use case. Interruptions such as the person leaving during
the call, if the robot is stuck, etc., could be considered, along
with checkpoint states from which the plan is desired to be
recovered in such cases, instead of the point where the ex-
ogenous event took place. Although this feature is not used
in our current use cases, it is interesting to take it into ac-
count for future larger scenarios.



Automated Planning Compilation
Once the model has been graphically created by defining
the possible options of the use case, it can be translated to
the AP standard language PDDL 2.1 to obtain its formal de-
scription. Although many versions of PDDL (Haslum et al.
2019) with different levels of expressiveness exist, all of
them separate the model definition into a domain, contain-
ing the object types, the predicates and functions, as well
as the set of available actions, and the problem, specify-
ing the initial state and the goals to achieve. Following the
PDDL approach, an action is defined as a deterministic op-
erator composed by parameters, preconditions and effects.
Action’s preconditions are set as the predicates of the state
where the action starts, since they represent the relevant in-
formation needed to execute the action. Effects are taken
from the user specification of which predicates change after
the action execution. Parameters are taken from the object’s
types involved in the action. Figure 5 shows the PDDL for-
malization for the detect-patient action (in Figure 5). Since
the model does not contain exogenous events or checkpoint
states defined, it shows the most simple translation. If ex-
ogenous events had been defined, they will be automatically
added to each domain action as negative precondition, since
actions can only be executed in case of nominal behaviour.
The checkpoint recovery is managed through special actions
which remove all intermediate effects added between two
different checkpoints, which forces to restart the nominal
flow from the last checkpoint visited.

(:action detect-patient

:parameters(?pat - patient ?p - point)

:precondition (and (current-patient ?pat)

(current-location ?p)

(videocallroom ?p))

:effect (and (detected-patient ?pat)

(videocall-process)))the

Figure 6: PDDL code of the detect-patient action

From High to Low Level and Vice-Versa
When using deliberation architectures such as the aforemen-
tioned MLARAS, knowledge is generally divided in two lev-
els of abstraction. The external information that comes from
the sensors of the robot is low-level, and should be translated
into a higher level of abstraction so that the planner system
integrated in the architecture can reason with it. In the case
of PELEA, which uses planners based on PDDL, the low-
level information would be translated into high-level PDDL
predicates, which represent the state of the system.

In the other direction, high-level actions defined with
PDDL should be translated into the low-level instructions
that a robot can immediately execute, which are considered
low-level actions. For example, in a robot with color-coded
eyes, when saying a speech the high-level action say could
be decomposed into changing the eyes to an appropriate
color and then saying the actual speech.

These translations are generally hard-coded directly into
the architecture by technical experts, which makes it difficult

to change. To alleviate this problem, a declarative language
was proposed in (González et al. 2018). This declarative lan-
guage eases the translation, but it is still necessary to under-
stand the Extended Backus–Naur Form (EBNF) description
of the grammar for both translations (Figure 7, Figure 8).

High: SAY(speech)

Lows: play_sound()

show_subtitles(?speech)

say(?speech)

Figure 7: High to Low declaration.

To make the translation from high to low level and vice-
versa even easier, it has been integrated in the graphical user
interface used to model use cases, so that when the high-
level behaviour of the use case is specified with sequences of
actions, the translation of these actions can be defined too.
In the same way, the values of the low-level variables that
come from the sensors of the robot will be translated into
high-level predicates. These translations are done by means
of if/then statements, depending on the value of a low-level
variable, predicates can be added or deleted from the state of
the problem. The interface takes such conditions input by the
user and converts them into the high-to-low and low-to-high
translation files as described in (González et al. 2018). This
way the output of the interface can be directly integrated into
the architecture of the robot, as detailed in the next section.
Different catalogues describing what the robot can do are
also provided by its designers as input. These catalogues are
in comma separated values (csv) format and divided in:
• LowActions: Includes all the low level instructions that

the robot can execute. Each line includes the name of
the action and the required parameters separated by com-
mas. The user will then be able to choose between these
actions to detail the decomposition of the high-level op-
erators.

• Variables: Includes all the low level variables that the
robot perceives from its sensors. In the graphical inter-
face the user will have to specify all the effects that would
happen depending on the values of these variables as a
series of conditions. The effects could be to add a PDDL
predicate to the current state, to delete it, or to change the
value of the numerical predicates (functions) of the state.

• Speech: Optional catalogue to specify the possible utter-
ances that the robot can say when speaking. For each line,
the id of the speech, its type and the actual text is speci-
fied. There can be different speeches that share the same
type. This catalogue is only necessary if the robot has the
ability to speak and a low-level action to do so, where
one of the parameters is the type of speech to say.

• Animations: Optional catalogue to define the names of
the animations implemented in the robot. These anima-

If: $call_cancelled is true

add(call_cancelled $patient, state_pddl)

Figure 8: Low to High declaration.



tions will be used as parameter of a low level action to
execute the animations.

These catalogues will be associated to a type of robot, so
that when a user designs a use case with the interface they
will be able to choose among several available robots.

Integration in an AP Control Architecture
The main objective of the graphical user interface is that
the designers of a use case can do so directly in the tool,
where the output of the interface can be directly integrated
in an autonomous robot. For the demonstration, the cog-
nitive architecture MLARAS and the two use cases pre-
viously stated have been implemented in a social robot
developed for geriatric assessment in the context of the
CLARC project (Martı́nez et al. 2018). This robot works by
means of the ROBOCOMP framework (Manso et al. 2010), a
component-oriented robotic architecture whose main aim is
to ease the development of robotic frameworks. This middle-
ware automates the communication among different com-
ponents through TCP/IP using Ice (Internet Communication
Engine) interfaces. The components also share a common
world view through the CORTEX architecture, which uses a
Deep State Representation (DSR) graph with symbolic and
geometric information (Bustos et al. 2015)

The planning architecture MLARAS is integrated as a
component of this framework, together with an agent, an-
other component that can read and modify the DSR. The
agent will receive the low level actions of the planner and
write them into the DSR, so that the other components of
the robot will read the information and react accordingly,
executing the instructions. In the same way, the agent will
read the low-level information written in the DSR and com-
municate it to the planner, by means of the low-level vari-
ables. As ROBOCOMP takes care of the implementation of
the communication, to integrate the planner in the robot’s ar-
chitecture the main task is to define the interfaces between
the planner and its agent, one from the planner to the agent
and vice-versa.

The full architecture of MLARAS in the CLARC robot is
shown in Figure 9. A high level layer is used to define the
use case by means of the graphical user interface as pro-
posed in this paper. From the interface, the PDDL domain
and problem definition is obtained, as well as the transla-
tion from high to low level and vice-versa as explained in
the previous section. This output is received by the medium
layer, which is the deliberation layer of the architecture. The
Execution component centralises all operations, performing
the translation between high and low levels. This deliber-
ation layer uses PELEA as a sub-architecture. The Exe-
cution component communicates directly with the ROBO-
COMP agent, getting access to the world view of the DSR,
as discussed.

Field Trials
The present system has been fully tested on a CLARC
robot (Voilmy et al. 2017), previously used in Compre-
hensive Geriatric Assesment procedures, helping healthcare
professional in their daily tasks. The proposed use cases

Figure 9: Architecture of the deliberative module of the
CLARC robot

have been designed in the graphical interface and tested on
a retirement home with real users, exposing the generated
plans to execution in a real environment.

The high level design and implementation of the use cases
were carried out during one week at the Vitalia Teatinos
Residence (Málaga, Spain) in collaboration with Universi-
dad de Málaga. The generated files from the graphical inter-
face were injected into the control architecture, where High
Level planning is performed via the Metric-FF (Hoffmann
2003) PDDL2.1 compliant planner. During the use cases the
robot interacted with 5 people with no experience in activ-
ities with robots, in addition to the residents located in the
corridors and halls. In all executions the robot was totally au-
tonomous, including navigation. Although initially some ex-
ecutions failed and required a manual restart of the platform,
by the third day all interactions were correctly executed as
described below.

Announcer
It was the simplest use case and the first one implemented.
Its design contains two main points where the robot can
be, the charging base and the hall where the menu has to
be announced. Given the generated domain and problem,
the planner returns as solution the grounded sequence of
actions shown in Figure 10. They represent the high level
actions taken by the robot, which are sent in commands to
the robotic platform. Such decomposition is detailed in Fig-
ure 11. It represents a good example about how the same
high level action may implement different behaviours in its
corresponding low level, depending on the current situation.
In this case, the movement has a particularity if the point to



which it is directed is the charging base, where the robot will
also introduce a speech called “rest” which warns about the
end of the use case, and that the robot is going to charge.

0: (MOVE CHARGING_BASE HALL_ANNOUNCE)

1: (PLAY_SOUND HALL_ANNOUNCE)

2: (SAY_MENU HALL_ANNOUNCE)

3: (MOVE HALL_ANNOUNCE CHARGING_BASE)

Figure 10: Resulting plan for the announcer use case

High: move(point1, point2)

Lows: print("MOVE TO " + $point2)

move($point2)

High: move(point1, point2), $point2 is charging_base

Lows: print("MOVE TO " + $point2)

say("rest")

move($point2)

High: say_menu(point)

Lows: print("SAY_MENU " + $point)

say("menu")

High: play_sound(point1)

Lows: print("PLAY_SOUND")

playSound()

Figure 11: High to low level decomposition for the an-
nouncer use case

Videocall
For this demonstration, we establish various halls where the
videocall has to be announced. Residents of the retirement
home spend the day at different places according to their
level of dependency. This information is an input to build
the initial state, so when receiving a call with a patient it is
already known where they could be. The other location pre-
viously established is the hall where the call will be held,
which is given by the retirement home. The initial plan gen-
erated is shown in Figure 12, where the call is assumed to
be executed normally. But in this use case it was also tested
an example of a change in the expected state of the world: if
the call is cancelled, the robot receives the current new state
and replan according to that, stopping the use case and going
back to the charging base.

Although from an AP point of view the generated plans
are simple (low number of actions), for more complex sce-
narios our approach also would provide shorter deployment

0: (MOVE CHARGING_BASE HALL_ANNOUNCE)

1: (CALL_PATIENT HALL_ANOUNCE PATIENT01)

2: (MOVE HALL_ANOUNCE HALL_CALL)

3: (DETECT_PATIENT PATIENT01 HALL_CALL)

4: (IDENTIFY_PATIENT PATIENT01)

5: (START_VIDEOCALL PATIENT01)

6: (FINISH_VIDEOCALL PATIENT01)

7: (SAY_BYE PATIENT01)

8: (MOVE HALL_CALL CHARGING_BASE)

Figure 12: Resulting plan for the videocall use case

Figure 13: CLARC robot during the use case testing at the
retirement home.

times compared to other techniques. In just one week we
were able to design two prototypes, integrate the control ar-
chitecture on the robotic platform and test both uses cases
in a real environment. Once all the components are work-
ing and MLARAS is integrated in the robotic platform, this
time may be reduced for future developments, as it is only
necessary to change the PDDL domain and problem defini-
tion, and the high to low decomposition of the new actions
defined. Those actions are sent in commands by consulting
the given high to low and low to high translation files. In
addition, these models are easier to generate and understand
compared, for instance, to the Finite State Machine shown
in Figure 2.

Related Work
In this work we propose a link between the graphical
workflows and the PDDL formalism through the defini-
tion of partial options. The concept of option is borrowed
from (Sutton, Precup, and Singh 1999) and is based on
macro-operators (Fikes, Hart, and Nilsson 1972): sets of
actions that are usually applied sequentially in a plan. But
macro-operators focus on the actions applied, abstracting
out the partial states traversed, while in our approach both
actions and states are equally important and must be speci-
fied by the user. Partial options have some similarities with
timelines (Jonsson et al. 2000) and partial plans (Minton,
Bresina, and Drummond 1994). A timeline is a temporal
description of the different values a state variable takes. In
timeline-based planning the use case is modeled in terms
of a series of state variables and temporal constrains among
their values. For example, variable A can only take value ai,
after variable B has taken value bj . Initial state and goals are
expressed as current and future values of some of the vari-
ables, respectively. The planner has then to fill the gaps in
the timelines to reach the desired values. In a similar way,
our planner has to fill the gaps in the partial options inter-
leaving other options. The main difference is that there is
no concept of action in timeline-based planning, while in
our approach actions are a crucial element. Partial options
can also be seen as totally ordered partial plans, as actions



in each partial option must appear in the plan one after the
other, and there can be some other actions in between. But
partial plans do not make any assumption about the states
the plan traverses, while our partial options force the plan to
reach the states included in them.

Related to the knowledge engineering process behind the
development of AP models for Social Robotics systems, var-
ious tools have been introduced to support the implementa-
tion of such planning domains. In addition to some num-
ber of PDDL editors1 which require deep knowledge about
the specification language, we can find in literature sys-
tems characterized by automatically translating the resulting
visual model into its PDDL formalization (Vaquero et al.
2013; Simpson, Kitchin, and McCluskey 2007; Hatzi et al.
2010). Although all of these systems use different graphical
representations to specify planning domains, they focus on
users with a deep knowledge on software engineering and
become unmanageable for large domains.

Instead, the design and implementation of robotic plat-
forms are usually covered by specific toolkits (Pot et al.
2009; Touretzky and Tira-Thompson 2011; Kim and Jeon
2007; Jackson 2007). Some of them provide visual program-
ming utilities for novice users, but they are restricted to hard-
ware configurations, not being able to build general models.
So a major missing feature in current robotic development
tools is the possibility to have both visual programming
and general model generators, in addition to mechanisms
to properly manage the human-robot interaction. These are
some of the highlighted features of the interface we propose.

Conclusions and Future Work
Automated Planning has been already reported in the liter-
ature as a general approach to SAR development. However,
it is not extensively used due to the bottleneck of model de-
velopment, where an extensive knowledge engineering pro-
cess is required beforehand. In this paper we propose a tool
where non-experts can participate in the design of complex
real world use cases by the definition of the possible options
to execute by the robotic platform. It depicts the expected
behavior of the robotic platform through simple conducts
which can be interleaved to create more sophisticated and
robust behaviors. The representation of these options pro-
vides a simpler and a more general approach against other
techniques such as FSM’s, particularly in complex use cases
or where there is no fixed sequence of actions to solve the
use case. In addition, we include the generation of files to
set up the control architecture embedded in the robotic plat-
form, without the need of hard-coding components which
have to be changed for each different use case.

As they have been implemented, the use cases described
are launched manually, having to decide which one of them
the robot must perform at any time. As future lines, we pro-
pose implementing another layer of deliberation that uses
AP to determine the use case, checking for opportunities to
perform small tasks in between execution.

1http://editor.planning.domains/
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