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Abstract

One of the main goals of AI is the construction of intelligent
agents such as an opponent in a computer game or an un-
manned aerial vehicle delivering a parcel to a customer. In
this paper we propose an adversarial planner capable of ge-
ometric state progression and reasoning. A planning domain
definition language extension is planned and theoretical anal-
yses should study feasibility, correctness and performance of
a unique and joint state representation as well as properties of
convergence. The framework should be implemented on top
of existing planners and a framework for double-oracle.

Introduction
One of the main goals of AI is the construction of intelli-
gent agents such as an opponent in a computer game or an
unmanned aerial vehicle delivering a parcel to a customer.
These intelligent agents perceive and act in various environ-
ments to achieve their goals. For example, in case of a com-
puter game, the goal is to defeat the player. In case of parcel
delivery drone, the goal is to deliver the parcel in time to the
customer.

The agent perceives the state of an environment and needs
to decide what to do next. One possible approach is re-
inforcement learning [36], where an agent learns from the
interactions with the environment. This approach was suc-
cessful for several domains, and achieved superhuman per-
formance in Go [60], Starcraft [66], or Atari games [41].
Another approach how an agent could act in an environment
is to create a plan of actions in advance. For a given goal
the agent computes a sequence of actions that leads to it.
Automated planning has been successful in many areas, as
in the Deep Space 1 [4] or in the Mars rover mission [1].
One drawback of automated planning is that when an envi-
ronment is unexpectedly changed, the agent usually cannot
longer proceed to the goal. This happens either randomly
or by actions of other adversary agents. To explicitly reason
about other agents and find a robust plan, game-theoretic
methods [59] like double-oracle (DO, see Fig.1) have to be
used. There are several successful applications of game-
theoretic algorithms in practice, e.g., in domains of physical
security [64] or protecting wildlife [19]. Further cases we
are concerned about are combat situations, like defending a
nuclear plant with drones against aggressors.

Figure 1: Adversarial planning, resource allocation, double-
oracle algorithm, geometric navigation (left to right).

The main goal of this work is to advance algorithms for
automated adversarial planning by enhancing geometric rea-
soning. Although the planning domain definition language
(PDDL) [39] is an expressive modelling tool, a significant
limitation is imposed on the structure of actions: the param-
eters of actions are restricted to values from finite (in fact,
explicitly enumerated) domains. A motivation for this lim-
itation is that it ensures that the set of grounded actions is
finite and, ignoring duration, the branching factor of action
choices at a state is therefore finite. Although duration pa-
rameters can make this choice infinite, very few planners
support this possibility, but restrict themselves to fixed du-
rations. Problems like a jeep crossing a desert of unknown
width cannot be solved [32].

We propose extensions to PDDL to enrich actions with
geometry. We implement planners capable to lift reasoning
to spatial domains and apply them in adversarial settings.
We illustrate that these approaches scale to solve interesting
problems and apply this work to a task and motion plan-
ning scenarios (Fig. 2) to show that our work has a great
potential of re-inventing the way task planners are used in



Figure 2: Geometric task-motion planning: loop, linear ap-
proximations, motion planning for inspection (left to right).

robotics. Geometry is effective even without adversaries,
but the planners are called many times for best-responses in
the DO algorithm, so as a multiplier we have that if the ad-
versarial planning domains were geometric, solubility and
scaling would become much better.

State-of-the-Art
Classical domain-independent planning is among the key ar-
eas of artificial intelligence. The focus of research is often
on plan generation methods that allow scaling up and solv-
ing real-world problems [65].

Many classical planners use heuristics to guide the search
through the state space of the planning problem [42]. One
of the very successful heuristics is potential heuristic [51].
This heuristic, for a given planning problem, solves a linear
program that assigns real values to the facts of the problem.
That creates an embedding of states into the real space. This
can be viewed as a geometric representation of the planning
problem. Another type of potential heuristic [50] assigns
real values to the tuples of facts creating high-dimensional
embedding of the states.

In this project we would like to leverage our experience
with geometric representations of combinatorial structures.
In Rytı́ř [54, 53, 38] we showed that every linear code can be
represented as a two-dimensional simplicial complex. We
say that a linear code C over a field F is triangular repre-
sentable if there exists a two dimensional simplicial complex
∆ such that C is a punctured code of the kernel ker∆ of the
incidence matrix of ∆ over F and there is a linear mapping
between C and ker∆ which is a bijection and maps minimal
codewords to minimal codewords. We showed that the lin-
ear codes over rationals and over GF(p), where p is a prime,
are triangular representable. In the case of finite fields, we
showed that this representation determines the weight enu-
merator of C.

Geometric Planning
Over the last decade, significant progress in ensuring the
geometric feasibility of symbolic plans in highly confined
workspaces has been made by various researchers [63, 34].
Among the other pioneering approaches, aSyMov [6] is a
highly recognized task-motion planner (TAMP) that inte-
grates the Metric-FF task planner [24] with a motion plan-
ner. It extends Metric-FF to check, whether the symbolic
action to be applied results in a geometrically feasible state
(based on the feedback from motion planner). Although
Metric-FF is a domain-independent planner, extending it to
check the state geometric reachability makes the approach
domain-specific.

A parallel research line to this approach has been recently
studied by Garrett, Lozano-Perez and Kaebeling [20, 21],
and their system is called FFRob. In their work, they iden-
tify that aSyMov suffers from the lack of heuristic guidance,
thus they propose an extension to the RPG heuristic in the FF
planner that takes geometric information into account, Erdo-
gan and Stilman [18, 17] encode geometrical constraints in
action descriptions (in PDDL-like representation) and prop-
agate the constraints while finding a symbolic plan for a
structural design problem. Although the approach reasons
with action level constraints, the task planner is not domain-
independent. Erdem et al. [16], similar to the approach of
Dornhege et al. [14, 15], use a fully symbolic task plan-
ner. In their approach, the task and motion planner guides
each other in case any of these planners deem unsolvabil-
ity. For instance, in case the task planner cannot find a sym-
bolic plan, the motion planner updates the problem file for
re-planning. If the motion planner fails finding a trajectory,
the task planner suggests a new symbolic route to the motion
planner.

We compute symbolic plans that are aware of the geomet-
rical constraints encoded in a domain-independent PDDL
environment, so that any domain-independent task planner
that can reason with the full semantics of the PDDL2.1
language and our proposed language extension can be
used. Unlike aSymov and FFRob, the geometric constraints,
which model the locations as continuous regions, are di-
rectly encoded in the action schemas.

One domain-independent planner that can deal with geo-
metric reasoning is Popcorn [57]. While the control parame-
ters allow for inequalities on numerical fluents in general, it
has been applied in geometric planning as found in his PhD
Temporal-Numeric Planning with Control Parameters [58]
in chapter 5 Case Study: Spatial Reasoning in Task Plan-
ning with Control Parameters. No subsequent work on this
planner aspect was found. A related approach of general-
purpose planning with control parameters has been followed
in the context of reasoning of key performance indicators in
a multi-agent setting [45].

Adversarial Planning
Many of the domains where planning algorithms can be ap-
plied are not single-agent. Examples include planning de-
fense measures, information collection in an adversarial en-
vironment or planning a robust mission where nature acts as
the other agent.



Using a plan that ignores the presence of other agents can
have severe consequences and the actual quality of the plan
can be arbitrarily worse compared to the expectations com-
puted by the planning algorithm. In order to explicit rea-
son about other agents and calculate a provably robust plan,
game-theoretic methods have to be used.

The concept of planning in adversarial environment is not
new [2]. Succinct symbolic representations of state sets
helped generating optimistic and strong cyclic adversarial
plans [26, 11], a setting conceptually related to FOND plan-
ning [31]. Such a setting, however, has to explore most if not
all alternatives (in analogy to traditional game-tree methods
such as minimax). Monte-Carlo Tree Search (MCTS) and
Online Evolutionary Planning have been applied in adver-
sarial environments such as the Hero Academy game [27],
or Starcraft [28]. Deep Reinforcement Learning (DRL) has
shown impressive results in Starcraft [66] and other (ad-
versarial) domains such as the games of Chess or Go [61].
MCTS and DRL approaches work “online”: they select the
most promising action (or move) in the current state of the
environment and they continue to do so until the terminal
state is reached.

From the planning side, Speicher et al. [62] used the
game-theoretic framework of Stackelberg games for gen-
erating robust plans against actions of the adversary. In a
similar spirit, Plan Interdiction Games have been proposed
to describe the problem of attackers and defenders, where
the former plans to intrude a computer network, while the
latter tries to prohibit attackers’ actions [35, 67]. A recent
work about counter-planning goes in a similar direction as
one agent tries to invalidate landmarks required by the op-
posite agent [52]. Planning-based techniques work offline,
i.e., they generate plans upfront, which are then executed (as
they are).

In many scenarios, one agent must randomize between
actions to reach the best expected reward. By randomiz-
ing between different plans or actions, the other agents are
uncertain about the plan and, thus, it can be impossible for
them to exploit such strategy. Current planning algorithms,
however, are not able to find such randomized plans. In re-
cent years, many new game-theoretic algorithms have been
proposed and the scalability improved, s.t. real-world appli-
cations are getting into scope.

One of the best-known game-theoretic algorithms is
the incremental strategy generation method called double-
oracle [40]. The algorithm tackles one common problem of
games – the exponential number of possibilities to choose
from. The number of plans needed to achieve certain goals
is usually exponential with respect to the number of agent’s
actions (while omitting plans with loops, i.e., during the plan
execution none of the states is visited more than once). Re-
cently, an effort to combine domain-independent planning
and double-oracle has been made [55]. In particular, the
(best) response in double oracle is encoded as a planning
task in which “critical actions” are associated with cost such
that the cost reflects probability of applying these actions
before those of the adversary.

There are similar approaches that uses reinforcement
learning as best-response oracle [33, 43, 68].

Methodology
We develop new adversarial planning algorithms for large-
scale so-called spatial domains in order to improve security
and efficiency. The size of the domain is measured by the
number of agents and the number goals that an agent wants
to achieve, and by the map complexity. As objectives we
have

• Identification of suitable benchmarks and domains.
We could use for example UAV and Taxi domains
from [9], and the benchmarks like the Squirrl domain
from [58]. We also expect to extract problem do-
mains from the framework of Erion Plaku [47], and
from virtual robotics competitions like SubT (https:
//subtchallenge.world). In case of grid worlds,
we will take the Grid competition problems from Nathan
Sturtevant’s Moving AI Lab (https://movingai.
com/benchmarks/grids.html) that include game
maps like Baldurs’ game and Starcraft, and from the CIG
PTSP problem suite [46]. We will compare our planners
also on standard and extended benchmarks from the in-
ternational planning competition [65], or against our re-
sults in [55, 10].

• Developing an efficient representation of large-scale do-
mains. Depending on the granularity of discretization the
grounded PDDL representation of even simpler domains
models like mazes, usually exceeds several MBs or even
GBs of memory. Therefore, we will resort to a repre-
sentation of states as meshes and unions of polytopes, by
exploiting CGAL (https://www.cgal.org/). In
case of complex regions like circles and spheres, we ap-
proximate them linearly with bounding boxes and kd-
trees [12], or with sphere-trees [44].

• Applying state-space factorization alias decomposition
methods that have been shown to be effective in the
discrete setting (current conference submission Effective
Planning in Resource-Competition Problems by Task De-
composition), should induce better scaling also for plan-
ning in a more compact world of geometric objects.

• Calling new oracles for iterative algorithms (best re-
sponses for the double-oracle algorithm), e.g., by includ-
ing
– waypoint-based inspection algorithms, with waypoints

generated from the opponent mixed strategy.
– sampling-based motion planning algorithms like RRT

or RRT* together with planning heuristics.
– swarm-intelligence oracles, where the opponent mixed

strategy is encoded into the risk function.

We aim to develop a framework to create and test
various geometric representations of planning and game-
playing problems. These geometric representations will
be embeddings of states into a metric space. The frame-
work will connect the existing classical planning frame-
work fast-downward [22], the probabilistic Monte-Carlo
tree-searching framework PROST [29], the motion-planning
framework by Plaku et al. [48, 49], and our own frame-
work as used in [55, 10] that combines the double-oracle
algorithm and domain-independent planners. The combined

https://subtchallenge.world
https://subtchallenge.world
https://movingai.com/benchmarks/grids.html
https://movingai.com/benchmarks/grids.html
https://www.cgal.org/


framework will facilitate easy experimentation with various
planning engines, geometric representations, and heuristics.
For a given planning or game-playing problem, the frame-
work will create a geometric representation leveraging ei-
ther linear programming, global optimization methods (e.g.,
simulated annealing [30]), or unsupervised learning (e.g., k-
means clustering [37]). The created geometric representa-
tion will be used for the computation of a heuristics that ex-
ploits the geometric properties of the representation, such as
the distance between the current and the goal state in some
metric space. As shortest paths define a metric, we expect
handling obstacles. The goals are

• to develop a framework for efficient testing of geometric
representations in planning and game playing domains.

• to construct geometric representations of planning prob-
lems or game problems from textual descriptions.

• to develop novel planning algorithms that exploit the spa-
tial representations using geometry-based heuristics.

• to investigate theoretical properties of the geometric rep-
resentations in terms of scalability in time and space.

Geometric Adversarial Planning Framework
Towards the workbench of geometric adversarial planning
we see the following steps.

Formalization and Transformation into Various
Geometric Representations
We generally assume that the world is known in the initial
state and the conditions to hold in the goal state. This may
change dynamically, due to the application of actions in the
real space. For each geometric representation we will pro-
vide an algorithm that takes a planning or game problem in
this representation as the input. The output will be a state
space embedding into a particular metric space. Each ap-
proach will be specific to the given kind of geometric rep-
resentation, e.g., there is an inspiring related canonical rep-
resentation for Presburger arithmetics [5], where state sets,
operators and goal are represented as minimized automata.

Modeling 2D and 3D Environments Path finding and in-
spection in a polygonial world (2D) or in meshes (3D) has
been a topic for a long time in computational geometry [13],
with different computational results, wrt. the structure of the
environment model. In the case of a grid or voxel repre-
sentation, specialized discretizations apply. In a first step,
point clouds may have to be moved into bounding boxes
and matched with other sensor information. Starting with
the work of Savas [58] we will set up benchmarks in a
PDDL2.1-type language with the feature of specifying a ge-
ometric environment and actions that consist of geometric
precondition and effects.

From Linear Programming to Priced Timed Automata
In order to construct geometric representations, we will
leverage the following methods: (a) linear programming (b)
global optimization methods (e.g. simulated annealing [30])
(c) unsupervised learning (e.g. k-means clustering [37]).
(d) reinforcement learning [36]. There is an additional link

of geometric planning to (priced) timed automata like in
UPAAL (Tiga) [8] that reasons about reachability in poly-
topes, with symbolic states. Shortest-path reduction canon-
icalize the symbolic state representation as simple temporal
networks, also used in Optic [3]. In terms of adversaries
in input models we think of a network of timed game au-
tomata, where edges are marked either controllable or un-
controllable. This defines a two-player game with on one
side the controller (mastering the controllable edges) and
on the other side the environment (mastering the uncontrol-
lable edges). Winning conditions of the game are specified
through temporal formulae.

Geometric Planning Heuristics Inspired by potential
heuristics [51, 50] and our experience from developing ge-
ometric representation [54, 54, 38], we will develop var-
ious geometric representation of planning heuristics. The
key idea is abstraction on the geometric objects which cor-
responds to coarsen the representation accuracy. We expect
to be able to unify the heuristic parts from different part of
the state representation, logic (proposition) as in FF [25],
numerical (fluents) as in Metric-FF [24] with geometry ab-
stractions.

Framework Implementation
In this work package we will design and implement our
planning software framework GeoPlanBench that will act as
the workhorse, and connect the existing planning framework
fast-downward [22], the metric framework Optic [3], and the
control parameter extension in Popcorn [58, 57], probabilis-
tic Monte Carlo Tree search planning framework PROST
[29], and the framework used in [55, 10] that combines the
double-oracle algorithm with domain-independent planners.
The planning framework will consist of multiple parts, and
should align with the unified planning framework currently
proposed in AIPlan4EU.

Preprocessing and Partial Grounding
This part takes the planning or game problem described us-
ing either PDDL [39] language or RDDL [56]. Then, it
will extract a geometric (symbolic state) representation, and
combine it into a mixed logical, numerical and geometric
representation of the problem. Alternatively we use lifted
geometric inputs in the problem description, which are ei-
ther fully or partially grounded.

Heuristic Search Algorithms. This part will be closely
integrated within a planner. The heuristic search algorithms
like A*, IDA*, enforced-hill climbing and friends, will need
to be provided a heuristic value of a given state using the ge-
ometric properties of the mixed logical, numerical and geo-
metric representation of the problem. We will separate the
heuristics from these planning heuristic search algorithms as
done in the fast-downward planner.

Benchmarks and Simulation.
We will execute experiments with IPC benchmarks, slighly
modified adversarial versions, and automatically generated
simulation problems.



Tests in IPC Domains and related Benchmarks
Each candidate for a good geometric representation will be
evaluated in the experiment management framework on IPC
domains [65] against state-of-the-art planners (e.g., as found
in the fast-downward repository such as planning with ab-
stractions or potential heuristics [51, 50]).

Tests on Adversarial Planning Domains
We will also test it on zero-sum game domains (e.g., un-
manned aerial vehicle domain, taxi company competition
domain from [55, 10]). We will write a specialized GUI for
displaying the algorithms. In this part, we will aim towards
multi-goal task-motion planning with multiple agents.

Test within Motion-Planning Framework
We will test the framework implementation in a simulated
world of polygons and polytopes as provided in the frame-
work of Erion Plaku [47], where the environment is specified
in a textual input, the robot model as a generic simulated
model and intersection via physics-based engines, prepro-
cessed and some multi-step and possibly multi-goal plans
are found and shown in a GUI.

Theoretical Studies
In this work package we will study theoretical properties of
geometric representations that performed well in our empir-
ical evaluations. For example, we will identify the critical
geometric features, that contributes to the reduction of the
computation time of the planners.

Correctness Considerations As with planning with
mixed logical and geometrical representation, we are effec-
tively dealing with infinite state spaces, so there always is
the need to align the representation with correctness and
convergence considerations. As with automata and canon-
ical representation we are quickly entering language theory,
one important question is: What basic operation like union,
negation and intersection of geometric objects are closed in
which formalism? What abstraction mechanism preserves
admissibility?

Time Complexity Analyses Planning with atomic propo-
sitions is PSPACE-hard, with numbers even undecidable. It
is also known from real-time model checking that stopwatch
automata are undecidable, while rectangular and regular au-
tomata are not (see Tom Henzinger et al.’s paper: What is
decidable about hybrid automata? [23]).

Space Complexity Analyses The research with state set
representations in BDD representation has shown, that the
amount of memory taken by the exploration is even more
important than time. We assume that the geometric repre-
sentations are succinct and save computational time, so the
compression ratios are of interest.

Field Experiments
While most of the efforts included in developing algorithms
is done in the simulation environment, in this WP we will
execute plans on real robots. Our group has continuously

growing experience in planning for robots. While ROS-
Plan [7] includes many expressive plan formalisms, there
are first work on robot planning in a motion planning frame-
work. CTU have a fleet of robots, which are adequate for this
research. In this WP we will look at some further robots and
do some feasibility study towards a complete integration.

Digital-Twin Experiments Before we operate in real
world, we require interfaces as in ROS-Plan for virtual en-
vironments. In this task we will work on robot-simulation
software like Gazebo or, our current favorite, Unity, a game
playing design studio that supports complex 2D and 3D
models, collision detection, visibility considerations, as well
as the automated generation of environnment models and the
inclusion of rigid-body dynamics.

Experiments on Quadcopters For this task we will use
the 30 quadcopters that we want to buy for conducting a
nuclear plant mixed in- and outdoor combat scenario, with
15 attackers and 15 defenders on each side maybe teamed
up with some ground robots. Beside geometric setting im-
posed by the building to defend, limits in perception as well
as safety and energy consumption are additional side con-
straints to be considered.

Figure 3: Robotic Lab robots (top) and UAVs to be bought (bot-
tom, e.g., DJI Mavic mini) for the experimental validation of the
proposed solutions.

Experiments on Lab Robots Last, but not least we will
execute field studies on real robots available to us via the
robotics labs in larger geometric environments like subter-
ranean or logistics scenarios. If we get an opportunity, we
like to work with one of the robotic dogs Spot the robotics
lab has bought from Boston Dynamics, but we will also be
happy with the wheeled or legged robots that we have access
to in our labs.

Our team has access to the FEE’s computing infrastruc-
ture and the national computing infrastructure. CTU are
experienced with complex robotic systems with the current
highlight of the CTU-CRAS team in the DARPA SubT Chal-
lenge. (http://robotics.fel.cvut.cz/cras/
darpa-subt)

For the adversarial planning field study, we will experi-
ment with a fleet of 30 (mini-sized) quadcopters.

http://robotics.fel.cvut.cz/cras/darpa-subt
http://robotics.fel.cvut.cz/cras/darpa-subt


Conclusion

Integrated geometrical and task planning reasoning is es-
sential for robotics, as robot motion planning alone does
not serve long-term goals, and task planning alone cannot
deal with the intrinsic challenges of robot geometry and mo-
tion. Motion planning is inherently geometrical, e.g., free-
space decomposition methods like triangulations or trape-
zoidal maps, Minkowski sums, nearest neighbor search, ran-
domized road maps, RRT-type and rubber-band algorithms,
visibility polygons, sweep-lines algorithms for segment in-
tersections, kd-trees for localization, or Voronoi diagrams.
Moreover, the world is going to be populated with robots,
and our solutions will have a tremendous impact on their
abilities to plan. While modeling an adversarial is always a
daunting aspect of competing resources, it got an unfortu-
nate relevance with respect to recent changes to the political
and military powers.

Adversarial geometric planning is important not only for
AI and robotics, but can prove highly influential in the other
billion-dollar industry of computer games by modeling non-
playing characters. While some combat situations as in Star-
craft and similar real-time strategy games might be better
dealt with domain-dependent and deep learning approaches,
the generality, potential, relevance, and impact of domain-
independent symbolic planning joint up with geometric con-
straints should not be underestimated. It is essential for pro-
totypes and reducing time to-market.

The scientific contribution of geometric planning aims to
provide optimized solution of spatial routing problems with
continuous model-free robotic applications. The primary
motivation is planning, where the current solutions rely on
sampling continuous domains into a finite set of values being
addressed as variants of geometric route planning. Solving
inspection and observation and delivery problems are holy
grail in robotics applications like cleaning up a room in a
cluttered environment, in warehousing, or finding oil leak-
ages in underwater pipes. The ultimate motivation, how-
ever, is to lift the software towards the next generation of au-
tonomous robots, and contribute surplus towards long-term
autonomy in exploration and routing, but also logistics ap-
plications.

The optimal solution of the discretized problem does not
guarantee an optimal solution to the original problem. Fur-
thermore, heuristics usually provide better solutions, how-
ever, without any solution quality estimates. We aim to
develop the fundamental blocks to assess the solution and
provide quality guarantee. The model-free solvers should
be general enough to open a wide range of possible appli-
cations. The established algorithmics will support further
research in challenging optimization problems, and novel
computational techniques will improve scalability of nowa-
days and future algorithms to solve large instances. The
proposed research will fertilize the deployments of robotic
systems in various fields. Finally, stability analysis, iden-
tifying stability regions, and finding robust solutions under
perturbations are important steps towards applications with
dynamic and on-demand changes.
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Hoffmann, and Robert Künnemann. Stackelberg planning:
Towards effective leader-follower state space search. In

Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

[63] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan
Chitnis, Stuart J. Russell, and Pieter Abbeel. Combined
task and motion planning through an extensible planner-
independent interface layer. In ICRA, pages 639–646. IEEE,
2014.

[64] Milind Tambe. Security and Game Theory: Algorithms, De-
ployed Systems, Lessons Learned. Cambridge University
Press, 2011.

[65] Mauro Vallati, Lukás Chrpa, and Thomas Leo McCluskey.
What you always wanted to know about the deterministic
part of the international planning competition (IPC) 2014 (but
were too afraid to ask). Knowledge Eng. Review, 33:e3, 2018.

[66] Oriol Vinyals, Igor Babuschkin, Wojciech Czarnecki,
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