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Abstract

Recent years have seen an increasing number of applications
that have a natural language interface, either in the form of
chatbots or via personal assistants such as Alexa (Amazon),
Google Assistant, Siri (Apple), and Cortana (Microsoft). To
use these applications, a basic dialog between the robot and
the human is required.
While this kind of dialog exists today mainly within ”static”
robots that do not make any movement in the household
space, the challenge of reasoning about the information con-
veyed by the environment increases significantly when deal-
ing with robots that can move and manipulate objects in our
home environment.
In this paper, we focus on cognitive robots (Levesque and
Lakemeyer 2008), which have some knowledge-based mod-
els of the world and operate by reasoning and planning with
this model. Thus, when the robot and the human commu-
nicate, there is already some formalism they can use – the
robot’s knowledge representation formalism.
Our goal in this research is to translate natural language utter-
ances into this robot’s formalism, allowing much more com-
plicated household tasks to be completed. We do so by com-
bining off-the-shelf SOTA language models, planning tools,
and the robot’s knowledge-base for better communication. In
addition, we analyze different directive types and illustrate
the contribution of the world’s context to the translation pro-
cess.

Introduction
As time goes by, we see a significant increase in the use of
virtual assistants such as Amazon’s Alexa, Google Assistant,
Apple’s Siri, and many more. Although these virtual assis-
tants are able to perform basic household tasks using online
communication with smart home products, there are many
more tasks that remain unsatisfied.

The next generation of these assistants are robots that
operate in our houses, follow instructions given by us and
perform much more complicated tasks. To make this dream
come true, a robot must have the ability to plan a series of
actions from an initial state until the required task is com-
pleted. Such a planning process could be accomplished via
the PDDL formalism (McDermott et al. 1998).

Another basic requirement for household robots is the
ability to reason about information that comes from the en-
vironment. This information can be visual, textual, audio,

etc. As for the language reasoning part, in 2017, the Trans-
former neural network architecture appeared (Vaswani et al.
2017), reaching a great breakthrough in machine translation.
Later on, transformer architectures evolved, solving a larger
range of NLP tasks. Yet, training an agent to perform com-
plicated actions in the real world is still hard, expensive, and
time-consuming. Therefore, a lot of recent work has been
dedicated to the development of realistic virtual simulators
that mimic the behavior of the real world.

AI2-Thor (Kolve et al. 2017) is an example of this kind
of simulator. The AI2-Thor simulator demonstrates realistic
constraints from our real world. A good example of a real-
world constraint is an irreversible state in which some ac-
tions change the world in a way that cannot be reversed (for
example: the only tomato in the scene was sliced). In 2020,
Shridhar et al. introduced the ALFRED (Action Learning
from Realistic Environments and Directives) dataset, which
is based on the AI2-Thor simulator. ALFRED consists of
multi-modal data. It has a long sequence of instructions to
achieve high-level tasks such as ”Put a slice of tomato in the
fridge.” Those step-by-step instructions are combined with
the egocentric vision of the robot at each time step (see 1 for
example).

Our goal in this paper is to develop a system that incorpo-
rates natural language processing and planning to enable an
agent to accomplish a real-world task given in natural lan-
guage. By doing so, we are able to show how changes in the
language input affect the agent’s capability to accomplish
the task.

In this work, we assume that the agent has some back-
ground knowledge about the environment it operates in
(which is essential for any cognitive robot regardless of its
natural language processing capabilities), such as the types
of objects in the world, and their features and the possible
relations between them, as well as the basic robot behaviors
(modeled as actions with preconditions and effects). More-
over, we assume that at the beginning of every episode, the
agent acquires complete scene information, including all the
objects and their locations, using its vision tools. The last
piece of the agent’s input is a directive, in which a human
asks the agent to perform a specific task in natural language.
By combining all this information, our agent should gener-
ate a sequence of actions (in the robot’s formalism) that will
achieve the desired outcome of the human task. To do so,



Figure 1: An example from the ALFRED dataset. The green text box contains the high level task and the blue text box contains
the high level instructions needed for accomplishing that task. The images represent the egocentric vision input of the agent at
each time step.

we have developed a system which combines large language
models and PDDL planning. We evaluate this system on the
textual part of the ALFRED dataset. We show how various
inputs affect the outcome of the model and suggest that the
context of the environment is vital for the agent’s ability to
succeed as well.

Our main contributions are as follows:
• We developed a novel translation approach that combines

natural language and planning formalism for operating
agents.

• We show that integrating the scene context (the world’s
semantic information) into the model’s input leads to a
significant improvement in the translation process, which
indicates that the context of the world is vital for an op-
erating agent.

• We imply that both the Transformer’s encoder and the
Transformer’s decoder are essential for this translation
task.

Background
In this section, we review some relevant background on lan-
guage models and PDDL formalism.

Language Models
Nowadays, there are many Transformer-based natural lan-
guage models. Among them are OpenAI’s GPT, Google’s
BERT, and T5. In this work, we focus on the GPT-2 and T5
models.

Transformers Transformers were introduced in 2017 by a
team at Google Brain (Vaswani et al. 2017) and are usually
the model of choice for NLP problems. Transformers are de-
signed to handle sequential input data, however, they do not
necessarily process the data in order. That is, transformers
allow parallelization and therefore reduce training time. The
encoder and decoder are the basic components of the orig-
inal Transformer’s architecture. The encoder processes the
input, while the decoder consists of decoding the encoder’s
output. The key component in the transformer architecture

is the attention mechanism. In general, the attention mech-
anism focuses on certain parts of the input sequence when
predicting a certain part of the output sequence. In other
words, when generating the output, the attention unit will
dynamically highlight relevant features of the input data and
generate each output token according to its relative attention
weights. The transformers had great success in natural lan-
guage processing (NLP) tasks, and most of the latest NLP
models are based on this neural network architecture.

GPT-2 The GPT-2 model was created by OpenAI in
February 2019 (Radford et al. 2019). Unlike other trans-
former models, GPT-2 is a decoder-only transformer model,
consists of 1.5 billion parameters and was trained on a
dataset of 8 million web pages. GPT-2’s goal is similar
to other language models, which is to predict the next
word, given all the words generated so far. Since GPT-2
was not trained on a specific task, it is a general-purpose
learner, able to answer questions, translate sequences and
summarize text. When published, the model achieved state-
of-the-art results on 7 out of 8 tested language model-
ing datasets in a zero-shot setting. During its training pro-
cess, GPT-2 was given different text sequences, separated
by the <|endoftext|> token. In this work, we also use a
<|startoftext|> token that indicates the beginning of the sen-
tence.

T5 T5 was introduced by Google in 2019 (Raffel et al.
2019). Unlike the GPT architecture, T5 uses both the trans-
former’s encoder and decoder. The idea behind the T5 model
is to convert every language problem into a text-to-text for-
mat. This approach enables using the same model, objec-
tive, training procedure, and decoding process for differ-
ent tasks, such as machine translation, sentiment analysis,
summarization, and question answering. By using transfer
learning techniques and training on a large corpus of web-
scraped data, T5 achieves state-of-the-art results on a num-
ber of NLP tasks. Each training input consists of a prefix,
source, and target. The prefix is task-specific and is paired
with every input. For example, ”translate English to Ger-



man: text”. Adding such a prefix enabled the model to tune
its weights for a particular task, which helps to produce the
expected output for that task alone by narrowing its scope of
generation.

PDDL
The Planning Domain Definition Language (PDDL) (Mc-
Dermott et al. 1998) is a language family that allows us
to define a planning problem. Nowadays, there are many
versions of PDDL. PDDL is an action-centred language,
inspired by the well-known STRIPS formulations of plan-
ning problems (Fikes and Nilsson 1971). Mathematically, a
STRIPS instance is a quadruple ⟨F,A, I,G⟩, in which each
component has the following meaning:

• F – a set of facts describing the possible states of the
world, 2F .

• A – a set of actions. Each action a ∈ A consists of a set
of preconditions pre(a), add effects add(a), and delete
effects del(a). Applying a is possible in a state s where
pre(a) ⊆ s, and results in the state s[⟨a⟩] = (s\del(a))∪
add(a).

• I ⊆ F is the initial state of the world.
• G – the goal of the problem. The goal G is a set of facts
G ∈ F . A state s satisfies a goal if G ⊆ s.

A plan π is a sequence of actions. π = ⟨a0, a1, . . . , an⟩
is applicable from state s0 if a0 is applicable at s0 and
⟨a1, . . . , an⟩ is applicable from s1 := s0[⟨a0⟩]. We denote
the state reached by following plan π from state s by s[π],
and say that a plan π achieves a goal G if G ⊆ s[π]. The
PDDL language generalizes the STRIPS setting into domain
description and problem description.

The domain description contains the definitions of object
types, predicates, as well as the actions’ preconditions and
effects. These elements are the aspects that do not change
regardless of what specific situation we are trying to solve.
On the other hand, the PDDL problem description is more
specific and defines exactly what objects exist in the scene,
what their current states are, and what the goal is.

For example, let us assume that the world contains apples,
tomatoes, cucumbers, knives, and tables in three different
colors: blue, yellow, and green. The actions that could be
conducted on an object are: pickup, put, and slice. A prob-
lem file can be described as follows: The current scene con-
tains two apples, three tomatoes, two knives, a yellow table,
and a blue table. In the initial state, all the objects (besides
the blue table) are on the yellow table. The goal is to put a
slice of an apple on the blue table.

Many PDDL tools have been developed over the years.
One major part is PDDL planners, which read PDDL files
(domain and problem) and use them to find a sequence of
actions that solves the problem. Another tool is a plan val-
idator (Howey, Long, and Fox 2004), which checks if a given
plan solves a specific PDDL problem.

Related work
Home service robots must have the ability to plan a sequence
of actions to achieve their goals in the real world. This skill

requires sophisticated reasoning at each time step, includ-
ing interpreting multi-modal input types such as vision, lan-
guage, and other sensor-type information. Thanks to envi-
ronments like AI2-THOR(Kolve et al. 2017), Matterport 3D
(Anderson et al. 2018), AI Habitat (Savva et al. 2019), and
TDW(Gan et al. 2020), a dramatic improvement has been
made in various real-world tasks. One of these is visual se-
mantic planning (Zhu et al. 2017), which is the task of pre-
dicting a sequence of high-level actions from visual observa-
tions. The purpose of those actions, conducted by the agent,
is to reach a goal state from an initial state. When address-
ing this kind of task, a robot operating in a human house-
hold space may need to overcome some challenges. For ex-
ample, partially observable space or long-horizon tasks in
which the decision-making at any step can depend on obser-
vations received far in the past. Hence, being able to prop-
erly memorize and utilize long-term history is crucial (Fang
et al. 2019). In 2020, Shridhar et al. introduced the AL-
FRED dataset, which is based on the AI2-Thor simulator.
ALFRED combines both egocentric vision and language di-
rectives to achieve everyday household tasks. Currently, the
best model completed 39% of ALFRED’s tasks, which still
leaves a long way to go.

Recent papers have chosen to break this problem down
into separate modalities instead of solving this difficult
multi-modal problem. (Jansen 2020) explored this task on
the ALFRED dataset, by using the GPT-2 language model to
generate these plans from high-level task descriptions, with-
out visual cues. In his work, Jansen showed that the GPT-2
model outperforms a baseline RNN model on this task, pre-
dicting successfully of 22.2% actions sequences, and 53.4%
of the plans when ignoring the first action prediction in the
sequence. Later on, (Wang et al. 2021) integrated a general
domain knowledge graph of indoor environments with the
BERT model (Devlin et al. 2018) to create better predictions,
generating successfully 31.4% of the plans. While these pre-
vious works focused on language directive translation, they
do not incorporate practical planning, and therefore are not
sufficient for real-world intelligent agents.

On the other hand, (Wang, Tian, and Shao 2020) inte-
grated Hierarchical Task Network and Probabilistic Infer-
ence to generate action sequences using multiple context
types, but without natural language directives. These papers
indicate that models can achieve surprising performances
using information from only a single modality. In addition, a
recent study (Thomason, Gordon, and Bisk 2018) has found
that models using input from a single modality (either vision
or language) often perform nearly as well as or even better
than their multi-modal counterparts.

Methods
As described before, we assume that our agent already has
background knowledge about the available actions, objects,
and predicates in the world. Another assumption is the agent
has complete scene information (typically acquired using
vision). Additionally, the agent is given a language direc-
tive by a human, which instructs it to perform a particular
task. The agent’s goal is to output a sequence of actions that
achieves the desired objective.



Figure 2: Our model architecture.

In general, a human can give language commands to a
robot in multiple ways. The first option is to provide the
agent with high-level task description, such as ”put a slice
of tomato in the fridge”. On the other hand, more detailed
instructions could be given also, for example, ”go to the
kitchen, pick up the knife from the table, go to the tomato
that is on the counter, slice the tomato, etc.”. While both of
these types exist in each sample of the ALFRED dataset, we
choose to focus on the high-level task description. Moreover,
in this paper we incorporate the spatial relations between the
objects in the scene, which reflects the semantic context of
the environment. We term the high-level task description as
”task”, and the additional context as ”relations”.

Furthermore, we use the task and relations to train our
model to produce two outputs: goal predicates and plan tem-
plates. The goal predicates represent the desired outcome of
a given task description. In other words, the goal predicates
are the main objects’ state at the end of the plan execution
(”sliced tomato, tomato on counter”). On the other hand, the
plan template is the general structure of the robot’s plan,
which specify a sequence of actions and objects types that
form the plan (”go to table, pickup knife table, go to tomato,
slice tomato”).

By combining these outputs together, we are able to
achieve our goal, which is to translate natural language into
a valid robot-language plan. A valid plan is a sequence of
actions in a robot’s language that can be performed by a
household agent to achieve given tasks.

In this work, we assume that the robot’s language is the
Planning Domain Definition Language (PDDL). As men-
tioned above, we assume that the agent has some back-
ground knowledge about the environment. We encode this
knowledge in the PDDL domain, which include the objects
in the world and the actions’ definitions (preconditions and
effects). Unlike the domain file, which is predetermined, the
problem file varies between each task we are trying to solve.
The main components of the problem file are the task’s goal

predicates and the current world state, which includes the
objects in the scene and their predicates.

By adding predicates to the action’s parameters and the
world state, we restrain the problem, allowing the PDDL
planner to terminate much faster. In our research, we add
three types of constraints:

• Length - we add two predicates to the domain -
(next ?si ?sj) and (current step ?si). Each action in
the domain gets the current step, si, and increases it to
sj , where sj is the next step number in the (next si sj)
predicate. By initializing the problem with the predicates:
– (current step s0) = True

– (next si si+1) = True ∀i : 0 ≤ i < T

and adding the predicate (current step sT ) to the goal,
we force the PDDL planner to generate only plans of
length T .

• Action allowance - for each time step i ≥ 0, we add the
predicate (allowed action si), where action is some ac-
tion type from the domain, making the planner to create
only plans that their i’th action type is allowed.

• Objects allowance - This predicate is similar to the pre-
vious one. The predicate is (allowed objectj obj si).
Which indicates if the i’th action in the plan,
(action type obj1 . . . objk), may contain the object type
obj at location j.

The combination of these constraints forces the PDDL
planner to create a very specific PDDL plan. Therefore,
these constraints reduce the search space, hence accelerat-
ing the process of finding a plan, if one exists.

An illustration of our model’s architecture is available in
Figure 2. The first component is the translation unit, which
is responsible for translating a natural language directive
into PDDL goal and plan template. The second part of the
model will combine these elements into a PDDL problem
and check for a PDDL plan that solves this problem. If such



a plan is not found, the model will generate another PDDL
plan template and re-check for a solution. Ultimately, this
process ends when a valid plan is found or the number of
plans generated exceeds a constant B. We now drill down
into further details of each component.

Language-PDDL translation This unit consists of two
translation channels. Both channels take the same natu-
ral language directive as input. The first channel and the
primary meeting point between the language part and the
PDDL part is the plan templates. A plan template (or visual
semantic plan as in (Jansen 2020)) is a sequence of actions
that achieve a general goal. Each action consists of an ac-
tion type and parameter types. These actions are not object-
specific, meaning that they cannot be used together as a plan
for the PDDL problem and therefore not sufficient for an op-
erating agent either. For instance, a plan template could be
”go to dining table, pick up apple dining table, go to fridge,
put apple fridge”. Since there might be multiple apples and
tables in our scene, the robot will not know which objects
it should integrate with. In other words, a valid PDDL plan
must contain the objects’ unique ids as well as their types.

Even though the plan templates alone are not enough to
solve each problem, they are still useful. In our method, we
convert these plan templates into the PDDL constraints we
defined above. To demonstrate this, consider the following
plan template: ”go to table, pick up apple table”.

The constraint predicates that derive from this plan tem-
plate are:

• Length - since the length of the plan is 2, we add the
predicates (next s0 s1), (next s1 s2), (current step s0)
to the initial world state and (current step s2) to the
goal predicates.

• Action allowance - for each element in the predicted
sequence, we add the action allowance predicate of the
element’s action type and index - (allowed goto s0),
(allowed pickup s1).

• Objects allowance - as in the previous case, we
add the object allowance predicate for each object
in the sequence. Each predicate consists of the ob-
ject type, its location in the action, and its action’s
location in the sequence. - (allowed arg1 table s0),
(allowed arg1 apple s1), (allowed arg2 table s1).

By integrating these constraints into the original PDDL
problem, we force the planner to produce a plan that matches
our template. This restriction significantly decreases the
search space, thus accelerating the search process overall.

The second translation channel is the goal predicates unit.
The goal predicates capture the user’s desired outcome of a
task. These predicates describe the world’s state at the end
of the plan’s execution (”sliced tomato”, ”cold tomato”). In
contrast to the PDDL plan, which should include specific ob-
jects, the goal predicates may be formulated in a more gen-
eral way. In this paper, we use this general goal formalism
rather than focusing on specific object ids. In other words,
when the task’s goal includes some predicates of a specific
object, we accept any plan that reaches the same predicates
on any instance of this object type. This is done due to the

fact that there are many instances of each object type in our
world, and we do not want to pick only one instance when
we formulate the goal. We implement this attribute using the
exists PDDL operator.

To illustrate this, assume the PDDL goal ”sliced tomato,
on tomato countertop”. This goal will be formulated as:
”(exists (?tomato0 - tomato ?countertop0 - countertop) (and
(sliced ?toamto0) (on ?tomato0 ?countertop0)))”

This encoding allows us to accept any plan that achieves
a final world state in which there exists a sliced tomato on
any countertop.

After generating these two PDDL elements, we combine
them with the original PDDL problem, creating a new and
more restricted problem to solve. As in earlier work, we
model this translation process as a sequence-to-sequence
task. Moreover, in our research, we focused on two language
models, GPT-2 and T5. We have trained separate GPT-2
models for goal predicates prediction and for plan template
prediction. However, since training a new task on T5 re-
quires only changing the prefix of the input, we fine-tuned a
single T5 model for both tasks.

PDDL consistency checking Once a new PDDL prob-
lem has been generated from the predicted goal and the
constraint predicates, we will input both the domain of our
world and the problem file into a PDDL planner. The plan-
ner will look for a valid plan that achieves our goal under the
given constraints.

When the planner does find a solution, we count the plan
template predictions as valid. On the contrary, when the
planner does not find a solution, we will go back to our lan-
guage model and ”ask” it to generate another plan template.
After a new template was generated, we convert it to PDDL
constraints, update the PDDL problem, and check for a valid
plan that fits the new template. This re-generation of the plan
template is done by taking the next prediction in the model’s
beam search output. We repeat this procedure until a valid
template is found or the number of templates generated ex-
ceeds a given number B.

Various Input types When a human approaches everyday
tasks, he may have some preliminary knowledge about the
world he operates in. We term this knowledge the ”context
of the environment” which includes, among other things, the
objects in the scene, their spatial relations, and action-object
pairs that commonly appear together. When providing only
a task description to a robot that does not have this context
knowledge, it may struggle to generate a successful plan.

In this paper, we suggest that adding the context of the en-
vironment to the task description as the input for the model
(rather than using the task description alone), improves the
quality of the model’s output. We check this hypothesis by
providing our model with various input types and tracking
the changes in its performance.

Concretely, we perform multiple experiments, each hav-
ing its own language input. The directives that were tested
are the concatenation of the high-level task (”put two bowls
on the dining table”) with the relations between the objects
in the scene (”on tomato table, on bowl countertop, etc.”). In
addition, to isolate the effect of each input type, we also an-



alyze the performance of the model when the input contains
only one type.

Evaluation
We evaluate our model on the language part of the ALFRED
dataset and show that our model is able to achieve state-of-
the-art results on the visual semantic plan generation task
and valid robot-plan generation task.

Dataset
The ALFRED dataset consists of 8,055 visual samples, com-
posed of an agent’s egocentric visual observations of the en-
vironment. Each one corresponds to multiple language di-
rectives, annotated by mechanical turkers, adding up to a to-
tal number of 25,743 directives. ALFRED has 7 different
task types parameterized by 84 object classes in 120 scenes.
The tasks are Pick & Place, Stack & Place, Pick Two &
Place, Clean & Place, Heat & Place, Cool & Place and Ex-
amine in Light. ALFRED is based on the AI2-Thor simu-
lator, in which some actions may change the object’s state
in an irreversible way (a sliced potato will never be whole
again). The evaluation data in ALFRED is divided into vali-
dation and test datasets. Each one is split also into seen and
unseen environments. The purpose of the second split is to
examine how well a model generalizes to entirely unseen
new spaces with novel object class variations.

Pre-Processing In our work, we redivide the original AL-
FRED’s training data into train, val, and test. Furthermore,
we combine ALFRED’s seen type validation set with our
validation set and test our model both on our test data and
ALFRED’s validation unseen data. Since in our task we ig-
nore the vision part of the data, we might encounter some
duplicates between our datasets. Hence, we perform a clean-
ing process that deletes duplicate samples from the training
and validation data with the same language directive as in
our test datasets.

In the ALFRED dataset, there are several ac-
tions that the agent can execute. These actions are:
pickup, put, slice, heat, cool, clean, toggle and
goto. By performing a single action or a sequence of
actions, the agent may change the state of some objects.
To track these changes, we model the state of each
object by using the PDDL predicates formalism. The
predicates that reflect the outcomes of these actions are
robot has obj, on, sliced, hot, cold, cleaned, toggled
and can reach. In addition, we added the predicate
two task which is an indicator for the ”pick two” task.

In our work, we train language models to predict both
the goal predicates, which express the desired final state of
each object as derived from the language directive, and the
plan template, A.K.A the visual semantic plan. To create the
targets for the language models, we focused on the PDDL
parameters and the high-level actions provided by the AL-
FRED samples. Each action in the plan template is in the
form - (action, arg1) if action ∈ {goto, toggle}, and
(action, arg1, arg2), otherwise. In the same way, each
goal predicate is in the form - (predicate, arg1, arg2),
if predicate = on, and (predicate, arg1), otherwise.

Models input format Since we use two different language
models in our evaluation, GPT-2 and T5, we have to adjust
the input to the correct form that these models accept. We
fine-tune GPT-2 on the natural language directives and gold
targets using the GPT’s sos and eos tokens:

”<|startoftext|> directive Task Type: target <|endoftext|>”

Where Task Type is either ”Goal” or ”Actions” ac-
cording to the prediction task we are performing. During
evaluation and testing, we feed the model with the input
”<|startoftext|> directive Task Type:”, and let it generate
tokens until a <|endoftext|> token is generated.

On the other hand, the T5 fine-tuning process on a new
task is done by providing a unique prefix before the di-
rective. In our work, the goal-predicates task’s prefix is
”translate task to goal” and the plan-template task’s prefix is
”translate plan to actions”. Since T5 is an encoder-decoder
model, at every training step we feed the model with source
and target sequences. The source phrase is the prefix with the
directive, and the target phrase is either the goal predicates
or the plan template.

Data Validation A data sample will be considered valid
for training if its original action sequence solves the sam-
ple’s problem. To check if a given solution does solve a
given task, we need a PDDL domain file and a PDDL prob-
lem file. Thus, we have created a PDDL domain file using
our knowledge of the objects and actions in the ALFRED
world and a PDDL problem file for each sample. The AL-
FRED domain file consists of the rules of the ALFRED
world and its object types. While the same domain file is
used across all samples, the problem file is different between
samples. Moreover, creating a PDDL problem file requires
knowing the world’s current state, meaning, all the objects in
our scene and their spatial relations. Although the ALFRED
dataset samples provide some of the objects in the scene, it
neither reveals all of the objects nor their spatial relations,
but only their explicit coordinates in the space. To find the
objects’ relations, we used the initial location of each object
and the scene type, taken from the ALFRED dataset, and
loaded them into the AI2-Thor simulator. By doing so, we
achieved the metadata of the scene, which provides more
information about objects and their spatial relations. Con-
cretely, we create relations in the form on obj1 obj2, where
obj1 is on top of obj2 or inside it. Lastly, the goal predicates
for each problem were generated from the ”PDDL parame-
ters” field of every data sample.

After creating the domain and problem files, we extracted
the PDDL action sequence from the ”high level plan” of
each sample (which specifies the objects’ ids) and used the
VAL plan validator (Howey, Long, and Fox 2004) to check
if this plan did solve the PDDL problem of this sample.
Samples whose gold PDDL action sequence did not achieve
the goal of the problem were marked as invalid samples and
were removed from the data. Eventually, the train, val, test,
and test unseen datasets had 13893, 1650, 1010, and 682
samples, respectively. This division reflects an 80-10-10
(%) train-val-test partition.



Scoring Type Model Input Predicate Arg1 Arg2 F Predicate F Seq

Strict

Task 0.80 0.77 0.79 0.76 0.66
GPT-2 Relations 0.02 0.01 0.02 0.02 0.01

Task + Relations 0.73 0.71 0.81 0.70 0.74

Task 0.89 0.86 0.84 0.85 0.78
T5 Relations 0.09 0.08 0.05 0.08 0.04

Task + Relations 0.92 0.89 0.88 0.89 0.85

Permissive

Task 0.80 0.81 0.89 0.80 0.72
GPT-2 Relations 0.02 0.01 0.02 0.02 0.01

Task + Relations 0.73 0.74 0.83 0.73 0.77

Task 0.89 0.89 0.85 0.89 0.84
T5 Relations 0.09 0.09 0.05 0.09 0.04

Task + Relations 0.92 0.92 0.89 0.92 0.88

Table 1: Goal Predicates Precision accuracy scores.

Metrics In our research, we implement both the evaluation
measures used in (Jansen 2020) and some additional accu-
racy measures. Moreover, we extend these measures to the
goal predicate task. We also use the same notation of per-
missive scoring, which accepts predictions of objects that
are similar to the original ones. (”lamp - floor lamp”, ”knife
- butter knife”). Both tasks have per-element accuracy mea-
sures (predicate\command, arg1, arg2), permissive ar-
guments (p arg1, p arg2), full triples and full sequence ac-
curacy measures as defined in (Jansen 2020).

Notice, however, that while in the visual semantic plan
task the order of the generated text does matter (”go to table,
pick up tomato table” is not the same as ”pick up tomato
table, go to table”), in the goal predicate task we ignore
the order of the generated predicates and measure the accu-
racy accordingly (”sliced tomato, cold tomato” is the same
as ”cold tomato, sliced tomato”). In the goal predicate task,
we also look at permissive scoring in the full predicate and
sequence level. The f predicate sim and f seq sim mea-
sures indicate if a predicate or a sentence is wrong only in
permissive objects (”cold butter knife, hot apple” and ”cold
knife, hot apple” are the same). We implemented two accu-
racy measures for the valid robot-plan task. The first mea-
sure is the V alid P lans O measure, which indicates the ra-
tio of samples that a valid PDDL plan (achieves the original
goal predicates) was found, while following the plan tem-
plate constraints. The second measure is similar to the first,
except that it counts plans that achieve the predicted goal
predicates. We term the second measure V alid P lans P .

Results
Goal Predicates In this section, we will analyze the re-
sults on both tasks, tested on two language models and three
directive types. The accuracy measures in this section were
calculated using the precision definition and were evaluated
on the ALFERD’s val unseen dataset.

The models’ accuracy scores on the goal predicate task
are shown in Table 1. We have trained and tested the models
on various inputs. While in the T5 model the accuracy scores

were the highest on the task + relations input, in the GPT-
2 model the task + relations input was better than the task
input only on the full sequence measure. In addition, T5 out-
perform GPT-2 on every input type, reaching almost 90% ac-
curacy across all measures and predicting correctly 85% of
exact full sequences. These results suggest that an encoder-
decoder architecture might be more suitable for goal predi-
cate prediction. Moreover, the additional information about
the environment was captured better by the T5 model than
by the GPT-2 model. Further examples of the goal prediction
of our T5 model on new and unique examples are shown in
4. These directives are different from the common tasks of
ALFRED, and their intention is to check the robustness of
the model. In the second sample, we add the phrase ”avoid
using lettuce”, and the model changes its original prediction
to a potato instead of lettuce. Moreover, the model seems
to recognize general types such as vegetables, cutlery, and
baking tools as well.

Plan Template Table 2 contains the models’ scores on the
plan template task. In contrast to the goal predicate task re-
sults, both models achieve the highest score on the Task +
Relations input. On the Task-only input, GPT-2 predicts cor-
rectly 32% of full original action sequences, which is bet-
ter result from previous work (22%), but might be due to
the training dataset changes. Furthermore, when adding the
scene context to the model’s input, T5 outperforms GPT-
2 across almost all measures, predicting correctly 57% of
the target plans in comparison to GPT’s 46%. These results
outperform recent work on visual semantic plan generation
from natural language directives, which was also trained and
evaluated on the ALFRED dataset.

Valid Robot Plan The models’ scores on the valid robot
plan task are also presented in Table 2. As shown in the ta-
ble, T5 model generates valid plans for 91% of the samples,
where 57% of them are the exact target plans. That is, 34%
of the plan templates that T5 predicted were not the same as
the original plans, but eventually solved the given task.

In addition, when the input is non-informative of the re-



Model Input Command Arg1 Arg2 F Action F Seq Valid Plans O Valid Plans P

Task 0.93 0.75 0.67 0.63 0.32 0.78 0.69
GPT-2 Relations 0.54 0.14 0.16 0.10 0.00 0.00 0.00

Task + Relations 0.93 0.78 0.74 0.69 0.46 0.89 0.83

Task 0.91 0.73 0.63 0.60 0.29 0.72 0.77
T5 Relations 0.68 0.22 0.26 0.18 0.04 0.13 0.59

Task + Relations 0.92 0.82 0.76 0.75 0.57 0.91 0.97

Table 2: Plan Template and Valid Plans Precision accuracy scores.
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GPTT 68 40 68 85 82 78 39 75 67
T5T 66 36 66 79 83 74 47 77 66
GPTTR 75 56 67 78 80 75 55 75 70
T5TR 79 65 72 83 84 78 55 97 77

Table 3: Full actions triples accuracy (percentages), broken
down to 8 actions types in ALFRED. The subscript stands
for Task only input (T) or Task + Relations input (TR).

quired task, such as the objects’ relations alone, GPT-2 is
not able to generate any valid plan. On the other hand, T5
generated valid plans for 59% of the samples with respect
to the predicted goal, but only 13% plans with respect to
the original goal predicates. These results suggest that T5
might generate easier goal predicates when the input is non-
informative rather than succeeding to predict valid plans.

Lastly, GPT-2 achieve better results on the original goals,
in contrast to T5 which succeed more on the predicted goal
predicates. This difference might be due to the fact that T5
succeed more on the goal predicate task than GPT-2.

Few shot learning In our setting, creating data samples
for training is time-consuming and expensive. Hence, the
ability of a model to perform successful few-shot learning is
crucial. To evaluate this capability, we have created multiple
training sets by downsampling the original data into smaller
fractions and trained different T5 models on each set. As
shown in figure 3, we see that with only 5% of the training
data, our models are able to predict actions sequences and
goal predicates nearly as well as models that were trained
on the full dataset. These results suggest that our model is
able to perform successful few-shot learning. We are plan-
ning to test this assumption in other domains in future work.

Conclusions and Future Work
In this work, we have developed a novel approach for
plan generation that solves everyday household tasks. When
given a natural language high-level task description together
with the world’s context, our model predicts precisely 57%
of the ALFRED dataset plans, and generates valid plans

Figure 3: Few-shot accuracy scores.

for another 34% of the samples. Reaching a total number
of valid plans for 91% of unseen environments tasks. Our
approach combines both language models and PDDL tools,
working together as a whole to generate a valid PDDL plan
that will achieve the language directive goal.

Looking forward, there are some future directions we
would like to investigate. One of them is generating valid
PDDL plans for object-specific goals. This task is more chal-
lenging since its goal state requires particular objects’ pred-
icates to be changed rather than any object of this type (for
example, warming a green cup instead of any cup). Another



Input Text Goal Predicates

Task: put either tomato or potato or lettuce on the counter. on lettuce countertop, cold lettuce

Task: put either tomato or potato on the counter, avoid using lettuce. on potato countertop, cold potato

Task: put a baking tool on the counter. on spatula pan, on pan countertop

Task: place two vegetables in the drawer. on potato drawer, two task

Task: put any type of cutlery on the counter. sliced spoon, on spoon cup, on cup countertop

Task: put some element in the fridge. sliced potato, on potato fridge, cleaned potato

Table 4: Goal prediction examples of our T5 model, which was trained on the Task + Relations input. In the left column are the
new task inputs for the model. Each task was paired with the objects’ relations in the scene. These directives are different from
the common tasks of ALFRED, and their intention is to check the robustness of the model.

challenge is defining a more conservative PDDL problem
and domain that avoids changing basic attributes of objects
(for example, put a whole tomato on the table). In addition,
we would like to improve our zero-shot predictions on new
and unseen object types.
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