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Abstract

The COVID-19 pandemic has motivated research on mobile
robot-based disinfection methods to help contain the spread
of the virus, including ultraviolet (UV) germicidal inacti-
vation. Recent approaches have focused on formulating au-
tonomous disinfection as a coverage problem. However, the
focus so far has been on maximising coverage, rather than
scaling solutions to large-scale environments or making solu-
tions robust to environmental uncertainty. Since the intensity
of UV light is strongly coupled with the distance to the tar-
get surface, localisation errors should be included in the de-
cision making process to synthesise meaningful irradiation
durations. Therefore, in this paper we solve a linked path
and dosage planning problem, explicitly considering local-
isation uncertainty in the model. Our model is formulated
as a Markov decision process (MDP) which maps localisa-
tion uncertainty to dose delivery distributions given radiation
and localisation models. We solve this (MDP) over a finite
horizon using prioritised value iteration to maximise dose de-
livery within specified time bounds. Simulation experiments
performed on real-world data show successful disinfection,
outperforming a rule-based baseline.

INTRODUCTION
Demand for large-scale disinfection solutions has increased
drastically with the COVID-19 pandemic. Among them, Ul-
traviolet (UV) disinfection has received significant interest,
due to its strong antimicrobial properties in the UVC (200-
280nm) spectrum. Autonomous mobile disinfection robots,
such as UVC lamp carriers, eliminate the need for human in-
terference in the disinfection process and reduce the risk of
infecting or irradiating cleaning staff. Moreover, as the ef-
fectiveness of UVC correlates with the distance and line-of-
sight to the target surface, stationary disinfection fixtures are
impractical and not suitable for large-scale environments.
Current commercial disinfection robots either do not have
autonomous navigation capabilities or require human super-
vision and intervention. Therefore, in this paper we develop
solutions for fully autonomous disinfection robots which do
not require human supervision.

Autonomous mobile robot UV disinfection is a planning
problem that involves both navigation, i.e. a motion plan,
and UV dose delivery. This problem has been tackled pre-
viously in environments such as a food bank (Pierson et al.

Figure 1: The library environment with a topological map
overlaid. The red arrows around the robot represent uncer-
tainties from the particle cloud.

2021) and a hospital (Correia Marques et al. 2021). In gen-
eral the robot is given a set of locations where it can perform
a disinfection action to clean a surface. The robot should
aim to reach a given percentage of inactivation of microbial
concentrations on each surface (Chick 1908; Pierson et al.
2021). The nature of the disinfection action is specific to
the hardware and method chosen, but could correspond to
irradiating the surface from a stationary vantage point (Cor-
reia Marques et al. 2021), or the creation and execution of a
coverage path (Pierson et al. 2021). In this paper we assume
the former, but our methods generalise to any disinfection
process that can be triggered as a discrete action.

We are motivated by the task of disinfecting surfaces in a
public library (see Fig. 1). In this setting the robot can only
operate outside the library’s opening hours, which enforces a
natural time bound. We define the UV disinfection problem
as a mission planning problem, rather than a coverage path
planning problem, with the assumption that individual dis-
infection actions provide the necessary coverage of the tar-



get surface. Moreover, public environments such as a library
naturally contain many sources of uncertainty, such as visi-
tors moving books, chairs and shelves throughout the day. In
addition, robot localisation uncertainty affects the UV doses
delivered to the surfaces as its effectiveness is directly cou-
pled to the distance to the target surface. Consequently, the
duration of disinfection actions, and their associated rate of
in microbial inactivation, cannot be known with certainty at
planning time. Therefore, we formulate the time-bounded
autonomous mobile robot UV disinfection task as a finite-
horizon Markov decision process (MDP) (Puterman 1994).
Commonly used for robot planning, an MDP is a mathemat-
ically principled framework for sequential decision making
under uncertainty problems (Budd et al. 2021; Lacerda et al.
2019; Tomy et al. 2020).
Contributions The main contributions of this paper are: i)
a formulation of the autonomous mobile robot disinfection
problem as a finite-horizon MDP and ii) a model of the
impact of localisation uncertainty on the disinfection per-
formance which maps confidence levels in robot location
to a distribution over durations to reach microbial inacti-
vation thresholds. The MDP can be solved using standard
solvers, such as value iteration (Bellman 1966). The uncer-
tainty model is generated from real-world empirical robot
data. The overall approach is demonstrated on a simulated
library environment involving 70 locations (Fig. 1) and vary-
ing time bounds, proving its applicability to large-scale en-
vironments under uncertainty.

Related Work

UV disinfection applications Most approaches formulate
the UV disinfection problem as a coverage path planning
problem, where the task is to cover all target points with
UV radiation. This problem has two steps: decomposing the
free space into sub-components; and visiting each compo-
nent using a path planning algorithm. For example, Pier-
son et al. (Pierson et al. 2021) decompose cells in a grid
space into regions using a Voronoi tessellation and then
identify a path connecting all regions using the A∗ algo-
rithm. Similarly, (Kurniawan and Adiprawita 2021) uses a
Spanning Tree Coverage algorithm on a discretised grid and
plans a collision-free path on top of that using a sampling-
based path planner. Another approach, taken by Tiseni et
al. (Tiseni et al. 2021) is to model the environment us-
ing 3D discrete surfaces which generate an attractive poten-
tial field (APF) modelling the radiance-distance correlation.
These APFs are then used as constraints in a genetic algo-
rithm motion planner. In contrast, Perminov et al. (Perminov
et al. 2021) treat the task as a pure path planning problem.
Most similar to our approach is the work of Marques et al.
(Correia Marques et al. 2021) who discretise the disinfec-
tion task into a set of dwelling locations, build up a radi-
ation model using tools from computer graphics and then,
given a time bound, aim to minimise the dwell times in each
location while reaching some minimum dosage thresholds.
The sequence of points to be visited is obtained by solving
a Traveling Salesperson Problem (TSP), whereas the allo-
cation of dwell times to each location is solved as a linear

program.
However, all of the above solutions assume a determinis-

tic environment, where a disinfection action of a given du-
ration achieves a deterministic change in cleanliness for the
target surface. This is a strong assumption which restricts the
system’s ability to guarantee a minimum performance. UV
radiation strongly depends on the distance to the target sur-
face. In a robotic setting, any uncertainty in the robot pose
will therefore affect dosages.

Planning under uncertainty In this subsection we sum-
marise approaches which could be applied to the UV dis-
infection problem under uncertainty.

The work of (Nardi and Stachniss 2019) demonstrates
how uncertainty in a robot’s location can be included in the
state of an MDP. It assumes during planning that location
uncertainty can be approximated by a Gaussian distribution
with isotropic variance. A distribution over the location vari-
ance is then discretised and used as a state factor in an MDP
to represent different degrees of uncertainty. This creates an
Augmented MDP, as initially formulated by Roy et al. (Roy
and Thrun 2000), which approximates a Partially Observ-
able MDP (POMDP) by modeling uncertainty as part of the
state. We apply this approach to model the effect of localisa-
tion uncertainty on the UV planning problem. We also build
on the work of (Lacerda, Parker, and Hawes 2017), using a
timed MDP to explicitly model the distribution over discrete
action durations.

In (Duckworth, Lacerda, and Hawes 2020) uncertain-
ties in a time-bounded mission planning scenarios are ap-
proached by extending an MDP model with a Gaussian Pro-
cess (GP) belief about the a priori uncertain dynamics. They
solve this problem using a sampling-based approach, avoid-
ing the need for the aforementioned discretisation. However
it is unclear how well the assumptions of a GP would trans-
fer to modelling the spatiotemporal variation of localisation
uncertainty.

Finally, a problem from operations research literature re-
lated to our UV planning problem is the Orienteering Prob-
lem (OP). Different from a TSP it associates a profit with
each node, but does not required every node to be visited.
Instead, the goal is to find a feasible tour which maximises
profit, where the total cost of the tour satisfies a capacity
constraint. Recently, OPs have been extended to include un-
certainty (Gunawan, Lau, and Vansteenwegen 2016), e.g.
with stochastic profits (Ilhan, Iravani, and Daskin 2008) or
stochastic waiting times in the nodes, stochastic travel times
(Angelelli et al. 2017) or stochastic weights on the prof-
its (Evers et al. 2014). However, often these problem in-
stances can only be solved with approximate algorithms.
Moreover, their applicability is usually restricted to small
environments, not scaling to larger ones.

PRELIMINARIES
Markov Models

We model the time-bounded mission planning problem un-
der uncertainty using a finite-horizon Markov decision pro-
cess (MDP).



Definition 1. A finite-horizon MDP (Puterman 1994) is a
tuple M = ⟨S, s̄, A, T ,R, H⟩, with S being a finite set of
states; s̄ ∈ S the initial state; A a finite set of actions; R :
S×A→ R being a reward structure; T : S×A×S → [0, 1]
a probabilistic transition function returning the probability
of arriving at state s′ after having taken action a in state s;
and H ∈ N a time horizon.

An MDP represents all possible evolutions of a system’s
state, depending on the choice of actions at each state,
visiting successor state s′ according to T (s, a, s′). A path
through an MDP of length H is a sequence x = s0

a0−→
s1

a1−→ ...
aH−1−−−→ sH , with T (si, ai, si+1) > 0 ∀i < H .

Finite Horizon Optimisation

The aim of this work is to find a deterministic Marko-
vian policy, i.e. a mapping π : S × {1, ...,H} → A.
In the given setting, it should maximise the expected cu-
mulative reward within the time horizon H , i.e. π∗ =
argmaxπEπ

M,s

[∑H
i=0 R(si, ai)

]
.

Topological Map

We represent the environment using a topological map with
locations the robot can visit and edges along which it can
navigate (Lacerda et al. 2019).

Definition 2. A topological map is defined by a tuple T =
⟨L,E, ξ⟩ . Here, L = {l1, . . . , ln} is a set of relevant loca-
tions in the environment, represented by robot poses of the
form (x, y, θ) on a global frame; E ⊆ V × V encodes a set
of directed edges the robot can traverse and ξ : E → R≥0

is a function which maps from edges to travel times.

PROBLEM SETTING
We approach the UV disinfection problem as a mission plan-
ning problem on a topological map with a location placed
at every point where the robot must start a cleaning action
(e.g. irradiating a surface, or creating then executing a cov-
erage plan). We refer to the length of time the robot spends
at each location as the dwell time. We assume that the robot
can observe its current topological location and can quan-
tify its metric localisation uncertainty. The decision to be
taken at each location is the choice of what cleanliness level
should be achieved, where a cleanliness level is a guaran-
teed log-reduction in microbial activation. The correspond-
ing planning problem is to synthesise a robot policy which
maximises the cleanliness level across all locations given a
fixed time bound.

For the remainder of this paper we assume the robot hard-
ware in Fig. 2. This robot carries a panel of UVC LED strips,
with each strip providing an array of point light sources.
Our target environment is the library shown in Fig. 1, which
includes a manually constructed topological map. Despite
these specialisations, the method and MDP structure pre-
sented below can generalise to other robot and environment
combinations. For example, with an appropriate model link-
ing dwell time to change in cleanliness level, the same gen-
eral approach could be used to build a policy for disinfecting

a collection of hospital wards as in (Correia Marques et al.
2021), where each topological location would correspond to
a ward.

METHOD
This section introduces the components needed for the final
MDP formulation: a navigation component for path plan-
ning; an irradiation model; and a model for localisation un-
certainty .

Path Planning

In our approach, we decouple navigation from the disinfec-
tion problem. Given the total time budget T and an initial
location, path planning is performed by solving a TSP over
the topological graph. This generates a tour visiting all lo-
cations in the topological map. Given the average speed of
the robot and the total distance of the tour from the TSP,
we compute its travel time TTSP . The remaining budget
for the allocation of dwell times in each location is then
TMDP = T − TTSP . Note that the quality of the TSP so-
lution influences the initial time budget. The transition be-
tween locations is the only deterministic component in this
model. We define ΛTSP : Sl → Sl as the mapping from a
location to the next location in the TSP tour.

Irradiation Model

We next define an irradiation model to relate the time the
robot spends in one location to the UV dose delivered to the
associated surface.

Preliminaries on UV Disinfection The total UV dosage re-
ceived at a point on a surface is defined by D = I ·∆t (ex-
pressed in J/m2 = (W · s)/m2), where I measures the inten-
sity of the UVC light the point receives and ∆t corresponds
to the time duration of exposure. The intensity at a point is
proportional to the inverse square distance to the robot (Pier-
son et al. 2021; Arguelles 2020). When treating the source
of radiation as a point light source, I can be expressed as
Eqn. 1, where PUV C corresponds to the power rating of the
UVC light, η ≤ 1 defines an attenuation factor and r repre-
sents the distance from the light source to the sample point.
For our model, we use a conservative estimate of η ≈ 0.1,
as proposed by (Arguelles 2020); and PUV C is 8W per light
source according to our hardware specifications.

I =
PUV C

Aexposed
=

ηP

4πr2
(1)

Model & Setup We assume that at each location in the topo-
logical map the robot only has to disinfect one surface, i.e.
the shelf it is directly parked in front of, and approximate
the surface of a shelving unit as a plane in 3D space. Using
the physical model above, we therefore derive an irradiation
model that can deal with any plane in 3D space. We calcu-
late the dose received on this plane by discretising it into a
grid of surface patches. Per grid cell of the shelf surface grid,
we (i) iterate over all UV point light sources of the robot, (ii)
compute whether the cell’s centre point is in the field of view
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Figure 2: Left: Outline of the robot setup and how uncertain-
ties in robot position and orientation are projected onto the
shelf pose. Right: CAD model of the robot setup chosen af-
ter considering the given radiation model.
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Figure 3: Example of normalized radiation values for each
grid cell of a discretised shelf surface (red rectangle) radi-
ated by the robot (blue) at a distance of 1.5 meters. The black
circles correspond to the fields of view at the intersection of
the shelf plane for the green array of point sources (crosses).

(corresponding to a 45 degree cone) and if so (iii) calculate
the dosage D received from that source. Finally, the dosage
value associated to a grid cell is the sum of dosage values
received from all point light sources.

In order to analyse the effects of uncertainty in the robot’s
pose, we rotate, shift and translate the shelf relative to the
robot, as shown in Fig. 2. In order to quantify dosages re-
ceived on a shelf surface with just a single value, we use the
first quartile of all dosage values along all grid cells. This
gives a conservative estimate of the entire dosage. Fig. 3
shows a heatmap of the normalised dosage values of the dis-
cretised shelf surface when the robot radiates at a distance
of 1.5m without any rotation or translation from the target
pose. Analysing the effects of varying the robot pose in x, y
and θ in more detail, we find that nodes in the topological
map should ideally be placed at locations with a distance
d = 0.31m from each shelf in order to achieve the high-
est possible radiation performance. However, this is hard to
achieve in practice. Therefore, nodes in the current hand-
constructed topological map were placed at an average dis-
tance of d = 1.4m to each shelf.

Cleanliness Levels

We model the dosage delivered in each location using dis-
crete cleanliness levels corresponding to percentage inac-
tivations of microbial concentrations. Since disinfection is
usually modeled with log-linear models, cleanliness lev-
els are linked to the required log-reductions (Pierson et al.
2021). A 1-log reduction corresponds to 90% inactivation
and D90 represents the dosage needed to achieve this log-
reduction. Since UVC disinfection is log-linear with respect
to time, reaching a 99% inactivation rate takes twice the ex-
posure time, i.e. D99 = 2 · D90. Recently, multiple studies
have attempted to determine dosage thresholds for inactiva-
tion of SARS-CoV-2. However, since this is still ongoing re-
search, values are not consistent across studies. Tab. 1 sum-
marises the dosage values associated to log-reductions used
in the field. As they are collected across different sources,
they do not follow the log-linear property described above.
Therefore, in our model, we only use the 1-log reduction
threshold and compute values for the 2- and 3-log reduction
(see Tab. 1).

Transition Functions

In our disinfection MDP the robot’s actions correspond to
a choice of which cleanliness level i to reach at the current
location. The time remaining after this action is stochastic,
with the duration distribution tcleani

conditioned on the un-
certainty in the robot’s localisation. Below we describe how
this probabilistic evolution of state is encoded in the MDP’s
transition function T (s, a, s′).

State space We model the MDP using a factored state space
Suv =

{
(l, c, t) ∈ Sl×Sc×{0, ..., TMDP }

}
where Sl is the

set of topological locations, Sc = {0, ..., n} a set of discrete
localisation confidence levels, and t is the time remaining.
Note, that with this formulation actions which may exceed
the remaining time bound t in the state can be pruned from
the MDP. In the remainder of this work, we will use sl, sc, st
to refer to the values of the individual state factor l, t and c,
respectively.

Transition function for c The duration required to dis-
infect a location depends on the confidence with which
the robot is localised. Following the Augmented MDP ap-
proach (Nardi and Stachniss 2019; Roy and Thrun 2000) we
represent the robot’s confidence in its location using confi-
dence levels Sc. We construct these levels by learning from
a dataset D = {(σx, σy, σθ)}mi=1 containing m samples of
pose standard deviations (see Experimental Evaluation for
more details about the dataset). We cluster the standard de-
viations using a Gaussian Mixture Model (GMM), defined
as P (σ⃗) =

∑K
i=1 ϕiN (σ⃗|µ⃗i,Σi), where K sets the number

of multivariate Gaussian components and ϕ⃗ associates the
weights to each component in the mixture model. Hence,
each component is a separate multi-variate Gaussian distri-
bution modelling variations in x, y, θ. We map each compo-
nent to a confidence level in the MDP, in order of decreasing
norm of the component’s mean. The number of components
in the GMM1 (and hence |Sc|) was determined using the



Table 1: Rewards, dosages associated to cleanliness levels

Log-reduction D90 (1-log) D99 (2-log) D99.9 (3-log)
Cleanliness level 1 2 3

Literature dose thres. (J/m2) 100
(Pierson et al. 2021)

134
(Kariwa, Fujii, and Takashima 2006)

280
(Correia Marques et al. 2021)

Model dose thres. (J/m2) 100 200 400
Reward R1 R1/2 R1/4

Bayesian Information Criterion. We assume that the con-
fidence level at a location is independent of all other state
factors. We therefore compute P (Sc|l) from the distribution
across GMM components of the points from D that are from
l, where we assign a point to a component using maximum
likelihood.

Transition function for t The time remaining is updated us-
ing t′ = t − tcleani

where tcleani
is the duration needed to

reach cleanliness level i. The probability of the duration be-
ing observed is modelled by P (tcleani

|c, a = cleani), i.e.
the duration required to clean to a given level defined by
the action depends on both, the level chosen and the current
confidence in the robot’s localisation. For each confidence-
cleanliness level pair we build P (tcleani |c, a = cleani) by
sampling poses from the GMM component for c and us-
ing the UV irradiation model described above to determine
the duration required to bring the lower dose quartile to the
cleanliness level i. We then fit a categorical distribution to
these samples using a discretisation of 5s. This pipeline is
described in Alg. 1, and the resulting distributions are shown
in Fig. 4 with the corresponding boxplots in Fig. 5. The time
for the action of no cleaning is always zero (i.e. tclean0

= 0).
This allows the disinfection agent to always have an action
available at every location even if no time remains.

Algorithm 1: Generation of p(tcleani
|c, clean)

Given: RadiationModel
Parameters: num components, num samples,
cleanliness levels, optimal dwell pose x∗

Init: all dists← ∅
1: Fit GMM(num components) to stdevs (AMCL data)
2: Order means of GMM components by their norm along

each dimension
3: for clean in cleanliness levels do
4: for σc = (µx, µy, µθ) in ordered GMM comps do
5: distclean,c ← ∅
6: while i ≤ num samples do
7: Sample displacement: ∆x ∼ N (0, σc)
8: x′ = x∗ +∆x
9: d∆t=1 = RadiationModel(x′)

10: ti,clean = clean/d∆t=1

11: distclean,c ← distclean,c ∪ {ti,clean}
12: end while
13: all dists← all dists ∪ distclean,c
14: end for
15: end for
16: return all dists
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Figure 4: Categorical distributions for durations tcleani for
each combination of confidence and cleanliness levels.
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Figure 5: Boxplots showing spread of dwell times, given dif-
ferent levels of confidence for each cleanliness level.

Reward

Our model gives diminishing rewards for increasing levels
of cleanliness, as shown in the last row of Tab. 1. R1 corre-
sponds to cleanliness level 1 and gives the highest reward.
Per step increase in cleanliness level, the reward of the pre-
vious level is halved. This is to incentivise the disinfection
agent to aim at reaching a minimum cleanliness level in ev-
ery location, rather than to clean a subset of locations to a
high level. Not cleaning at all, i.e. cleanliness level 0, gives
0 reward. R1 is subject to tuning and has been set to 100 in



our implementation.

MDP Model of UV Disinfection Task

Given all the components above we construct a finite-
horizon MDPMuv = ⟨Suv, s̄, Auv, Tuv,Ruv, H⟩ over the
fixed time-bound TMDP . The horizon H of the MDP is gov-
erned by the number of locations |Sl|. In each location one
action is taken: the decision on which cleanliness level to
achieve. The other tuple elements in Muv are summarised
as follows:

(i) Suv is the state space as introduced in the paragraph
about transition functions in the Method section.

(ii) Auv = {0, 1, 2, 3} is a set possible actions in each loca-
tion. It corresponds to the choice of cleanliness level to
achieve in that location.

(iii) Tuv is the transition function modelling the stochastic dy-
namics in the robot localisation. It is defined as

Tuv(s, a, s
′) =

I[s′l ̸= ΛTSP (sl)] · P (s′c|s′l) · P (s′t|st, a, tcleani
)

(2)

where I[s′l ̸= ΛTSP (sl)] is an indicator function incorpo-
rating the deterministic transition of the locations, i.e. it
will take the value 1 if the new location maps to the next
location given by the TSP sequence; P (s′t|st, a, tcleani)
is the transition probability for st being conditioned on
tcleani

∼ P (tcleani
|sc, a = cleani) which is defined

also defined in the transition function paragraph along
with P (s′c|sl).

(iv) Ruv is the reward function mapping from cleanliness
levels a fixed reward value, as defined in the previous
paragraph about rewards.

(v) s̄ = (l0, n, T ) is the initial state, starting in the first loca-
tion of a given TSP sequence.

EXPERIMENTAL EVALUATION
Data collection

In order to learn the radiation dynamics, we recorded a
dataset from a deployment of a MetraLabs SCITOS X3
robot1 navigating in Oxfordshire County Library on a topo-
logical map (cf. Fig. 1) over a period of approximately 4
hours. The robot localised using Adaptive Monte Carlo Lo-
calisation (AMCL) (Fox 2001) and the dataset includes logs
of the robot’s localisation uncertainty from this method.

Baseline

In order to quantify the performance of our proposed model,
we compare it against a rule-based baseline model. Similar
to our model, the time budget for the baseline is the time re-
maining after subtracting the time needed for the TSP tour
from the total budget T . Instead of setting a cleanliness level
to be reached in each location, the baseline model allocates
uniform dwell duration β = TMDP /|Sl| to all locations in

1https://www.metralabs.com/en/mobile-robot-scitos-x3/

the topological graph. In a deterministic world a constant
dwell time per node should always generate the same clean-
liness level i. However, in reality, some locations will not be
able to reach a chosen cleanliness level, due to variations in
the actual robot pose at each location.

For a meaningful comparison between the baseline and
our model, the time bounds are set to values allowing the
baseline to achieve optimal performance in a determinis-
tic setting. Therefore, it takes values T = TTSP + |Sl| ·
(Dj/α

∗), where α∗ is the dose for one time step if the robot
is in the exact location, computed via our radiation model;
Dj the total dosage needed to reach different cleanliness lev-
els; and TTSP the time needed to complete the TSP tour at
a predefined robot speed. Tab. 2 lists all values used for the
experiments.

While value iteration generates optimal results by defini-
tion, the baseline results were computed over a sufficiently
large number of 100 samples using the same deterministic
reward structure as in our MDP formulation.

Results

Table 2 summarises the total rewards received by the base-
line model as compared to our model for the different time
bounds. Our UV MDP model outperforms the baseline in
each of the experiments. We observe that with increasing
time bounds, the difference between the two models de-
creases, since at some point there is enough slack in the time
budget for the baseline to get all reward at every location,
regardless of the uncertainty. This is the case in the limit of
the highest time bound where the reward values are almost
equal.

In addition, Fig. 6 provides more insight why the MDP
model outperforms the baseline. The evolution of the cumu-
lative path reward given a policy generated by our model
versus the baseline model, shown in the top plot of Fig. 6,
highlights the ability of our model to not only achieve higher
rewards but also to achieve them more quickly, showing its
ability to adapt to the action durations it observes in the en-
vironment. Moreover, from this we can also observe that the
MDP does not use the entire time budget and yet generates
higher rewards. This is due to the formulation of the MDP
model, which does not attribute extra time to locations once
the remaining time bound is not large enough to reach an en-
tire increase in cleanliness level. This could be addressed by
including a new action of assigning extra time to the action
state space Auv of the UV MDP model. Last, the histograms
in the bottom of Fig. 6 show that the MDP always achieves a
better distribution of higher average cleanliness levels across
all nodes. For a time bound of 2745 (Exp. iii, i.e. in a deter-
ministic setting the baseline should always reach cleanliness
level 2) the middle histogram shows that in more than half
of the locations it fails to reach sufficient dosages in order to
reach that level, falling back to cleanliness level 1. In con-
trast, our model can guarantee a minimum cleanliness level
of 2 in all locations and in some locations even achieves the
maximum level.



Table 2: Comparison of total rewards, given different time
bounds

Exp.ID Time bound Baseline Ours

i 1373 (D90/α
∗ · |Sl|) 3334.0 7801.84

ii 2059 (150/α∗ · |Sl|) 7003.0 9499.67
iii 2745 (D99/α

∗ · |Sl|) 8611.0 10736.56
iv 4118 (300/α∗ · |Sl|) 10502.0 11512.99
v 5490 (D99.9/α

∗ · |Sl|) 11320.5 12249.89
vi 6863 (500/α∗ · |Sl|) 12244.5 12249.99
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Figure 6: Top: Collected cumulative rewards over the given
time horizons comparing the baseline (dashed lines) and our
model (solid lines). Shaded areas show the corresponding
variance of one standard deviation and dashed vertical lines
correspond to the time bounds. Bottom: Average distribu-
tions of cleanliness levels across all locations with the base-
line and our model for time bounds H corresponding to ex-
periments 1,3, and 5 in Tab.2.

CONCLUSIONS
Our work successfully demonstrates a new approach of
modelling and solving the UV disinfection task for large-
scale environments under uncertainty. We quantify uncer-
tainty by learning state transition probabilities from empir-
ical robot data. These probabilities are used to parametrise
a radiation model for the library application. Compared to a
rule-based baseline, assigning dwell times uniformly across
all locations, our model achieves significantly higher re-
wards. This is due to the fact that it is able to reason over
the stochasticity in the system’s dynamics, acting optimally
with respect to its localisation uncertainty.

So far, our model has been only tested in simulations.
However, the next step in this project is to deploy the model
on the robot in a real-world environment. Moreover, we will

investigate including more sources of uncertainty into our
model, e.g. from changes in the environment. These changes
could be tracked via real-time mapping algorithms and our
model could incorporate such uncertainties from the sensor
model into the state space and the corresponding transition
function. Finally, the reward structure chosen in this work
also allows us to configure the reward structure such that we
are able to prioritise locations over others, given the fixed
time budget. Such prioritisation could address high-touch
surfaces, which could be based on models localising humans
in different areas of the library during opening hours.
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