
Analysis and Utilisation of Conflicts in Multi-Agent Path Finding

Avgi Kollakidou,1 Leon Bodenhagen, 1

1 Mærsk Mc-Kinney Møller Institute, University of Southern Denmark
avko@mmmi.sdu.dk, lebo@mmmi.sdu.dk

Abstract

With the escalation in deployments of robotic fleets in un-
structured environments, the need to address the increasing
number of conflicts in Multi-Agent Path Finding also rises.
We discuss the evident issue of conflicts and analyse their
spatial relationships. A method to use previous missions and
their resulting conflicts to extract highways is proposed. The
highways facilitate a modified heuristic for Conflict Based
Search allowing for fewer initial conflicts and thus decreasing
the computational complexity of the search. The importance
of the analysis of conflict patterns is displayed with real life
experiments of a simulated assembly line workplace.

Introduction
Mobile robots are progressively employed in an ever ex-
panding variety of applications and in larger fleets. With
the increasing number of robots within a finite environ-
ment, navigation becomes an issue. Multi-Agent Path Find-
ing (MAPF) describes the problem of finding paths for a set
of agents, which can be carried out simultaneously without
the agents coming in conflict. The search for a solution is
time consuming, especially with the increasing number of
agents required as well as the maps and environment com-
plexity the agents have to navigate in.

Conflict Based Search (CBS) is a two stage solution to the
MAPF problem. The solution revolves around the conflicts
occurring during the search and the constraints they impose
(Sharon et al. 2015). CBS has its limitations, as discussed in
(Sharon et al. 2013). It is affected by the number of agents
as well as the environment’s topology and size. The itera-
tive nature of CBS and its large state-space (exponential to
agent number), create a high computational load and mem-
ory strain. This impedes the use of CBS in real-time.

In this work, we investigate the conflicts occurring during
the CBS search and the possibility of their exploitation for
improved future planning. The understanding of such con-
flicts will enable improved initial plans with fewer conflicts
through virtual structure introduced in the environment.

Some CBS variations attempted to address the compu-
tational strain of CBS by imposing structure to the envi-
ronment. Wang and Botea (2008) proposed Flow Annota-
tion Replanning which introduces restraints similar to traf-
fic rules, e.g. one way streets, to avoid head on conflicts
between agents. A decentralised approach where agents

share information about their previous states and direction
of travel, thus encouraging other agents to follow the same
direction, was also considered (Jansen and Sturtevant 2008).
The use of highways as a means to decrease conflicts in
CBS, with manually generated directed graph edges was in-
troduced (Cohen, Uras, and Koenig 2015). Automatic gen-
eration of highways was later proposed (Cohen et al. 2016),
determined by the initial conflicts detected in CBS. These
highways are inferred before each CBS attempt and applied
only on the upcoming search. The information is not utilised
any further for future plans.

We extend on previous ideas, especially in (Cohen et al.
2016), with a method to extract machine generated highways
and use knowledge of previous missions to inform the path
search. These highways facilitate CBS attempts in the same
environment without pre-processing, utilising observations
of previous missions.

Problem Definition
Multi-Agent Path Finding
The input to the MAPF problem is an undirected graph
G = (V,E), in the form of a grid, and a set of k agents
with a starting vertex si and target vertex ti each. An agent
can occupy a single vertex and each vertex can accommo-
date only a single agent at a certain time step. All actions
are carried out in unit time. Two types of actions can be per-
formed with unit cost: move to an adjacent vertex, or wait.
The qualifications for adjacency vary in different versions of
MAPF. In this work, a vertex is adjacent to the 4 vertices that
border it (west, north, east, south). No diagonal movement
is admissible (Sharon et al. 2015; Stern et al. 2019).

We consider two types of conflicts: vertex and edge con-
flicts. A vertex conflict arises when two agents are planned to
occupy the same vertex during the same time step. An edge
conflict occurs when two agents are planned to traverse the
same edge during the same time step.

Conflict Based Search
The CBS solution to the MAPF problem is divided in two
levels. The two levels have distinct tasks: individual path
planning, and constraint definition from detected conflicts.
On the low level each agent searches for a path individu-
ally and independently, ignoring all other agents’ positions

Figure 1: Accumulated conflict occurrences
(25 scenarios of 30 missions each)

or plans, using the A* algorithm. A list of constraints, de-
rived from previously existing conflicts, is provided by the
upper-level. For the first low level search, an empty list of
constraints exists. If a node is generated where agent αi

needs to occupy vertex v at time t and a constraint exists
that involves the same configuration, that node is discarded.
Likewise, if agent αi is to traverse edge e at time t and a con-
straint exists involving the edge, the node is also dismissed.

On the high level, CBS creates a binary Constraint Tree
(CT). The process begins with the investigation of the pro-
duced paths from the low level search for occurring con-
flicts. If a conflict arises, this is translated into constraints.
We define one constraint for each agent involved in the form
of c = ⟨αi, v/e, t⟩, where αi is one of the involved agents,
v/e is the involved vertex or edge and t the time step. The
constraints are then added to the CT. Each CT node contains
a set of constraints, a solution including a set of paths for all
agents and the paths’ total cost. The first node of the CT is
initiated with an empty list of constraints. All new nodes in-
herit the list with previous constraints. Two child nodes are
created from each conflict and both are explored. If more
than two agents are involved in a conflict, these are resolved
iteratively, two by two. With every new node, a low level
search is triggered only for the agent involved in the con-
straint, with the rest of the paths remaining unchanged.

Conflict Analysis
A large number of agents combined with a rather narrow
or complex environment leads to a sizable number of con-
flicts. This extensively increases the computational power
and memory needed to solve the problem as well as the time
required to reach the solution, making the algorithm unsuit-
able for real time applications. To explore possible conflict
patterns and their potential applications for improving future
path planning, we use an open-source MAPF benchmark for
data generation and evaluation. The benchmark (Stern et al.
2019) consists of a set of maps and accompanying sets of

Figure 2: Spatial analysis of conflict occurrences with re-
spect to other conflicts. The bars indicate the distribution
of the conflicts according to the amount of other conflicts
within a certain distance.

agent missions, in the form of start and target locations. The
maps have varying dimensions and complexities, e.g. real
city maps, Dragon Age Origins (DAO video game) maps or
simulated warehouse environments.

For each tested benchmark instance (map), multiple sce-
narios were used. The conflicts encountered in each sce-
nario were combined and then analysed collectively. Fig. 1
shows the position and frequency of conflict occurrences in
an example benchmark instance (DAO den312sd). Problem-
atic areas can easily be seen along the corridor in the cen-
tre, even though the corridor is wide enough for three robots
to traverse simultaneously (each vertex/cell fits exactly one
agent). Reappearing conflicts are also visible next to obsta-
cles, several corners and other narrow passages. Even though
the topology of each map is different, a tendency for the con-
flicts to be more frequent in such areas was observed.

We analysed the spatial relationships of conflicts, to de-
termine whether any patterns occur. Two inquiries were car-
ried out. Firstly, the relationships of conflicts with each other
were examined. For each recorded conflict, all other con-
flicts within a certain distance are tallied. The L1 norm dis-
tance is used, as it is also applied in A* for the heuristics.
Fig. 2 shows the number of such conflicts in the vicinity
with increasing distances (up to 4). A clustering of conflicts
is evident. On average, conflicts have one additional conflict
within a distance of one move. This is exacerbated in com-
plicated maps. For visualisation purposes a threshold was
defined, where all cases with more than 10 conflicts were
accrued in one group. The maximum of 24 conflicts was
recorded within a distance of 4 moves.

Furthermore, the conflict locations relative to obstacles
were investigated. For all conflicts, we registered whether an
obstacle is within a certain L1 norm distance. A fifth of the
conflicts happened next to an obstacle (fig. 3). This suggests
that the map’s topology influences the frequency and loca-
tions of conflicts and should be considered during planning.
An additional input of nearby obstacles and their location
relative to the conflict could be for example utilised during

Figure 3: Percentage of conflicts occurring near obstacles.

the conflict resolution.

Highway Definition
Drawing from the patterns seen in the conflict analysis and
expanding on the idea of (Cohen, Uras, and Koenig 2015),
we propose the use of weighted edges, from here on men-
tioned as highways, used in the low level search graph to in-
fluence the path decisions, in order to minimise the number
of initial conflicts. Similarly to (Cohen et al. 2016), machine
generated highways are produced. While the previously sug-
gested method, considers each MAPF instance individually,
this work exploits knowledge acquired from previous mis-
sions to inform future path planning.

Within an environment, with every MAPF problem, all
occurred conflicts are documented and analysed. In the case
where a vertex conflict is detected at time t the states of
the involved agents si[t] = (αi, v, t) and sj [t] = (αj , v, t)
as well as their states at the time steps immediately before
si[t−1], sj [t−1] and after si[t+1], sj [t+1] are recorded.
In the case of an edge conflict, the states of both agents at
time t and t− 1 are recorded.

The accumulated conflicts are analysed to distinguish
problematic areas, where conflicts are frequent. A variable
threshold can be used to determine whether a highway is de-
fined. Initially, the threshold is set to 1, the threshold can
however change according to the density and recurrence of
conflicts, as well as the amount of data available.

A highway is defined as a weight on the edge connecting
two nodes. The direction of the defined highway is deter-
mined by the directions the conflicting agents attempted to
follow. For every vertex, 8 uni-directional vectors are de-
fined: inbound I = {IW , IN , IE , IS} and outbound O =
{OW , ON , OE , OS} for the four directions (west, north,
east, south) connecting adjacent vertices (Jansen and Sturte-
vant 2008). With every recorded vertex conflict, for each
agent, the value of the corresponding inbound (time t) and
outbound (time t + 1) vector is increased by 1. For every
edge conflict, the score of the two vectors at time t is in-
creased. The scores of each pair of vectors, e.g. IW and OW ,
are compared. The MAPF edge corresponding to the high-
est scoring vector is defined as a highway. Tie-breaker pos-
sibilities, such as preferred right-hand driving or specified

Figure 4: Highways and their directions

distance from obstacles, are considered.

Highway Structure
The conflict analysis and highway extraction result to
weights informed not only from one single instance but from
multiple missions ran on the same environment thus recog-
nising and addressing reoccurring conflicts. The highways
form continuous patterns, as well as occasionally contradict-
ing their neighbours, showing the need for post-processing
to avoid multiple conflict occurrences at highway edges. Fig.
4 shows the defined highways after analysis of the conflicts
seen previously in fig. 1. The long corridor has a continuous
north bound direction changed to south bound when reach-
ing the narrow passage. Post-processing should be consid-
ered to address such issues. A possible consideration is the
inclusion of obstacle produced vectors to weigh in the direc-
tion decision and deduce structures such as driving on the
right to follow crowd flow. This would also affect the pre-
dictability of agent movement, an important issue for mobile
robots when navigating in areas occupied by humans.

Modified CBS with highways
Following their definition, the highways are embedded in
the low level search of the CBS by updating the cost func-
tion. The revised cost expands on the classic A* function
f(n) = g(n) + h(n) with an extended heuristic. With the
Manhattan distance as base , a highway penalty/reward con-
stant is added. The heuristic is then updated to h(n) =
|t − n|1 + (χ · p). The variable χ has 3 possible values and
depends on the existence of a highway and its direction. If
no highway is defined, χ = 0 and therefore the heuristic is
not affected. If a highway is defined, against the attempted
direction, χ = 1 and a penalty is applied. On the contrary,
if it matches the highway direction, χ = −1 and a reward
is applied. The penalty/reward value can be adjusted accord-
ingly, for example in the case of a large amount of conflicts.
For this work, the χ variable is set equal to the unit action
cost of 0.5.

Figure 5: Robot movement during experiment

The highways are not enforced, thus traversing an edge in
a direction dissimilar of the highway’s, is not forbidden, it is
only more costly. This ensures that, even though, the derived
paths might not be optimal, they are bounded-suboptimal
with a suboptimality factor proportional to the penalty value.

Conflicts in the wild
To explore the nature of conflicts in the real world, exper-
iments were conducted in lab conditions to examine con-
flict occurrences in real life and investigate whether or how
the difficulties transfer to the wild. The experiment was con-
trolled. No outside interference was allowed, e.g. humans in
the area. The scenario was synthesised with real cases used
as inspiration and a strive for adhering to real conditions.
The environment seen in fig. 6 contains a conveyor belt in
the centre and spans approximately 20 m × 15 m. Four pick-
up and four drop-off points were assigned around the belt
and the surrounding area (indicated with green and magenta
points respectively). Three MiR1001 robots were given ran-
domised missions and left to navigate freely in the environ-
ment with their on-board planning and collision avoidance.
The paths of the robots can be seen in fig. 5. The conflicts
were recorded using cross-correlations between a robot’s
need to replan, as its original plan was obstructed, and the
location of another robot in the vicinity. The second robot’s
log was then consulted to identify whether both robots had
a need of a new plan.

With a run-time of approximately 45 minutes, the robots
completed collectively 112 missions and had 71 conflicts.
Out of the 71 conflicts (blue), 5 resulted in a crash be-
tween two robots (red) (fig. 6). The conflict locations are
more dense towards the right side of the map. This is cor-
related with more target points in close proximity as well
as the more turbulent trajectories of the robots in contrast
with the left side where the robots seem to follow one route.
Analysing the spatial relationships between conflicts, we de-
termined that each detected conflict, has on average 2.73
other conflicts happening within 0.5 m of its location, with a
maximum of 9 instances and with the distance increased to
1 m, the numbers reach 6.62 in average and a maximum of
12 conflicts.

1www.mobile-industrial-robots.com/solutions/robots/mir100/

Figure 6: Map of real life experiments and extracted con-
flicts. Blue: ordinary conflicts; Red: robot crashes; Green:
mission pick-up points; Magenta: mission drop-off points

This shows that conflicts arise often in the real world. The
precise definition of conflicts in the wild is not outlined as
they could appear in different forms e.g. deadlocks between
robots, inability to reach their target or strongly affected by
the map’s topology and left to wander aimlessly. The appli-
cation of highways could be beneficial in real life scenarios,
in addressing the previously mentioned conflicts, with exten-
sions to accommodate the resolution of the used maps and
timing uncertainties.

Conclusion and Future Work

In this work, we explore the occurrences of conflicts in the
MAPF problem and their exploitation for the production of
informed future paths. The quantity and spatial relationships
of conflicts, both with each other as well as the map, are
analysed and discussed. A method to determine locations
and directions of highways is presented along with an up-
dated heuristic for the low-level search of CBS. The sig-
nificance of conflict patterns is investigated in a controlled
experiment of a simulated assembly line where robots come
into multiple conflicts and several crashes in certain areas.

In future work, it is our intention to further investigate
conflicts and occurring patterns. The highway definitions
will be tested against a basic CBS method. Additionally,
possible connections of highways with others in the vicin-
ity is considered, as well as the influence the map topology
should have on them.

Finally, to bridge the perfect world of simulation with the
often precarious real world, we intend to adapt the suggested
method for deployment on a fleet of mobile robots. Several
adaptations and considerations need to be made for it to be
possible. The definitions and nature of conflicts in the wild
should be explored as the situations offer much more uncer-
tainty both in timing as well as in localisation. Varying map
resolutions and robot sizes also affect the applicability of the
method in the real world. The temporal dimension of high-
ways will also be examined to accommodate for periodical
obstacle appearances in real world scenarios, such as weekly
deliveries in a warehouse environment.

References
Cohen, L.; Uras, T.; and Koenig, S. 2015. Feasibility
study: Using highways for bounded-suboptimal multi-agent
path finding. In International Symposium on Combinatorial
Search.
Cohen, L.; Uras, T.; Kumar, T. S.; Xu, H.; Ayanian, N.;
and Koenig, S. 2016. Improved Solvers for Bounded-
Suboptimal Multi-Agent Path Finding. In IJCAI, 3067–
3074.
Jansen, R.; and Sturtevant, N. 2008. A new approach to co-
operative pathfinding. In Proceedings of the 7th interna-
tional joint conference on Autonomous agents and multia-
gent systems, 1401–1404.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence, 195: 470–495.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
et al. 2019. Multi-agent pathfinding: Definitions, variants,
and benchmarks. In Twelfth Annual Symposium on Combi-
natorial Search.
Wang, K.-H. C.; and Botea, A. 2008. Fast and Memory-
Efficient Multi-Agent Pathfinding. In ICAPS, 380–387.

