
Learning Path Constraints for UAV Autonomous Navigation
under Uncertain GNSS Availability

paper #4985

Abstract

This paper addresses a safe path planning problem for UAV
urban navigation, under uncertain GNSS availability. The
problem can be modeled as a POMDP and solved with
sampling-based algorithms. However, such a complex do-
main suffers from high computational cost and achieves poor
results under real-time constraints. Recent research seeks to
integrate offline learning in order to efficiently guide online
planning. Inspired by the state-of-the-art CAMP (Context-
specific Abstract Markov decision Process) formalization,
this paper proposes an offline process which learns the path
constraint to impose for online POMDP solving. More pre-
cisely, the offline learnt constraint selector returns the best
path constraint according to the GNSS availability in the envi-
ronment. This constraint is then imposed during online plan-
ning to reduce the policy search space. Conclusions of ex-
periments, carried out for different environments, show that
using the proposed approach allows to improve the quality
of a solution reached by an online planner, within a fixed
decision-making timeframe, particularly when GNSS avail-
ability probability is low.

Introduction
Solving autonomous navigation problems consists in find-
ing a path from an initial position to a goal with a maxi-
mum efficiency, while avoiding the obstacles. These prob-
lems become challenging when the vehicle state is uncertain.
Particularly, most of Unmanned Aerial Vehicles (UAVs) are
equipped with a Global Navigation Satellite System (GNSS)
receiver as navigation system. In an urban environment, the
visibility of the GNSS satellite constellation can be reduced
by the buildings surrounding the UAV, the precision or even
the availability of the GNSS position estimate can then be
significantly altered, what can lead to a fatal collision.

(Delamer, Watanabe, and Ponzoni Carvalho Chanel 2021)
formalize the UAV urban navigation problem under uncer-
tain GNSS availability as a Partially Observable Markov De-
cision Process (POMDP) (Kaelbling, Littman, and Cassan-
dra 1998). The latter is a principled approach to solve plan-
ning problems under uncertainty. However, POMDP plan-
ning faces two notorious problems. The first one is the curse
of dimensionality: the size of the belief state space grows up

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

exponentially with that of the state space. The second prob-
lem is the curse of history: the number of action/observation
sequences to evaluate during research grows up exponen-
tially with the planning horizon (Pineau, Gordon, and Thrun
2006). The use of a Partially Observable Monte-Carlo Plan-
ning (POMCP) (Silver and Veness 2010) algorithm makes
it possible to overcome these difficulties. Nevertheless, the
performance remains dependent on the search depth reached
within the planning horizon, which is itself dependent on the
branching factor of the search tree (Hostetler, Fern, and Di-
etterich 2014). The branching factor includes both the ac-
tion factor, i.e. the number of actions available in each be-
lief state, and the stochastic factor, i.e. the number of pos-
sible observations for each action. The stake is then to re-
duce the branching factor in order to scale up planning. This
is all the more important for online planning: the planner
has to make a decision quickly whereas the long-planning
horizon of such a real-world task incurs prohibitive compu-
tational cost. For that, incorporating domain abstraction is a
promising approach. (Chitnis et al. 2021) introduce Context-
specific Abstract Markov Decision Process (CAMP), an ab-
straction of the original MDP model, obtained by imposing
the best constraint on the states and actions considered by
the agent. This best constraint is chosen by an offline learnt
context selector according to the features of a task.

Inspired by this CAMP domain abstraction, this paper
proposes to learn offline the context selector and to impose
the best constraint returned in order to reduce the policy
search space during online POMDP solving, for the UAV
urban navigation problem. The context selector returns the
constraint which reduces the UAV position state space while
preserving the solution optimality, in function of the GNSS
availability probability map of a task. Unlike the original
CAMP, we address a partially observable domain. As states
are not fully observable, applying action space abstraction is
not straightforward. Nevertheless, a state space abstraction
can be achieved through modification of the cost function
for penalizing the constraint violation, which will modify
the action outcomes. Moreover, contrary to the model pro-
posed in the CAMP paper, the states and actions are not fac-
tored. Hence, imposing a constraint does not render some
variables irrelevant, which could then have been dropped.
Additionally, as our objective is to perform online planning
for the UAV safe navigation problem, whereas an offline

POMCP variant is used in the offline process, an online ver-
sion is applied for planning. As a result, we investigate the
use of different algorithms for learning and planning, which
has not been done in the original work of CAMP. Thus, re-
garding the UAV navigation problem with uncertain GNSS
availability, our contribution is twofold: (i) we investigate if
domain abstraction, by adapting the CAMP framework for a
partially observable domain, gives better results when com-
pared to a full POMDP model, and (ii) we evaluate if such
a CAMP-inspired approach is robust if we use a different
algorithm for learning and planning.

After providing the theoretical background and the related
work in the next section, we present the CAMP method
adapted to our problem in Section 3. Experimental results
are reported in Section 4, demonstrating the planning perfor-
mance improvement. Finally, Section 5 includes concluding
remarks and future works.

Background and Related Work
POMDP Preliminaries
A POMDP (Kaelbling, Littman, and Cassandra 1998) is de-
fined as a tuple (S,A,Ω, T ,O, C, b0, γ), where S, A, and
Ω denote respectively spaces of states, actions, and observa-
tions. The transition function T (s, a, s′) = p(s′|s, a) repre-
sents the dynamics of the agent as the probability of transit-
ing from s to s′ by taking action a. The observation func-
tion O(a, s′, o) = p(o|s′, a) specifies the probability of ob-
serving o after taking action a to reach s′. The cost function
C(s, a) defines the cost of taking action a in s. b0 denotes the
initial belief state. γ ∈ [0, 1] is a discount factor expressing
a preference for minimizing immediate over future cost.

POMDPs capture partial observability of the system using
the belief state b, i.e. a probability distribution over S, that
is updated after each action a and observation o using the
Bayes’ rule. A POMDP policy π : B → A prescribes an
action for each belief state in the belief space B. Solving a
POMDP requires finding the optimal policy π∗ minimizing
the expected future cost, called the value, for all b ∈ B. The
value of the policy π∗ in belief b is defined as:

V π∗
(b) = min

π
E

[∞∑
t=0

γtC(bt, π(bt))
∣∣ b0 = b

]
(1)

Additionally, the Q-value of action a in belief b can be de-
fined as:

Qπ(b, a) = E

[
C(b, a) +

∞∑
t=1

γtC(bt, π(bt))

]
(2)

UAV Urban Navigation POMDP-based Problem
The original planning model, proposed by (Delamer, Watan-
abe, and Ponzoni Carvalho Chanel 2021), is formalized as a
Mixed-Observability Markov Decision Process (MOMDP)
(Ong et al. 2010), a special class of the POMDP frame-
work. The state space is factorized into fully, sv , and par-
tially, sh, observable state variables, what reduces the belief
state space dimension, and in turn, reduces policy computa-
tion time. The state tuple s = (sh, sv) ∈ S is defined with

sh = (X ,V, βa) where X and V are the vehicle position and
velocity, and βa is the IMU acceleration measurement bias,
and sv = (Fcol, FGNSS , P, tflight) with Fcol and FGNSS

the collision and GNSS availability Boolean flags, P the
estimation error covariance matrix over sh, and tflight the
flight time elapsed. An action a ∈ A corresponds to the de-
sired velocity direction. The action space A is a finite set of
10 actions, following 8 radial directions in the 2D horizontal
plane, plus up and down. An observation o ∈ Ω is defined
as the sub-tuple o = sv of the state tuple, given a full ob-
servability of (Fcol, FGNSS) and a deterministic transition
of (P, tflight). As sv depends on sh, the observation o = sv
will modify the distribution of sh. In consequence, the com-
plete state s remains partially observable. This partial state
observability limits the branching factor of the search tree.
The transition function follows a GNC (Guidance, Naviga-
tion and Control) model, composed of the vehicle motion
model, a guidance law, a state estimator, and the IMU and
GNSS sensor models. The GNSS availability FGNSS affects
the error covariance P , which affects the belief state b′ af-
ter transition. In brief, P grows when GNSS is unavailable,
resulting in more collision risk. Finally, the cost function is
defined as:

C(s, a) =


0 if goal reached
Kcol − tflight if collision
∆Ta otherwise

(3)

with ∆Ta > 0 the action execution time, and Kcol > 0 the
cost penalty in case of collision. When a collision occurs, the
cost is this penalty subtracted with the flight time elapsed.
Added to the sum of the previous action execution times, all
the collision paths are then equally penalized.

MinPOMCP-GO Algorithm
(Delamer, Watanabe, and Ponzoni Carvalho Chanel 2021)
propose the POMCP - Goal-Oriented (POMCP-GO) algo-
rithm, an offline goal-oriented variant of POMCP (Silver
and Veness 2010). It samples a state s from the initial belief
state b0 corresponding to the root node, and simulates ac-
tion/observation sequences, through trials, in order to eval-
uate actions while building a tree of nodes. To perform a
trial, POMCP-GO follows a given action selection strategy
and a heuristic node value initialization. For the action se-
lection, it relies on the Upper Confidence Bounds (UCB1)
strategy (Kocsis and Szepesvári 2006) to deal with the ex-
ploration–exploitation dilemma. A trial is stopped when a
terminal state is reached (a goal or a collision state), and this
procedure is repeated during a fixed timeframe.

Each tree node h represents a history of action/observa-
tion sequences from the initial belief state. The Q-value (Eq.
2) of a belief state is approximated by Q(h, a), which is
the mean cost returned from all trials started from h when
action a was selected. This approximation incurs a well-
known bias, which decreases as the number of trials in-
creases (Keller and Helmert 2013). To accelerate the pol-
icy value convergence by reducing the Q-value bias, (Carmo
et al. 2020) propose the MinPOMCP-GO algorithm which
uses a Min-Monte-Carlo backup (Keller and Helmert 2013).

The present paper approach is based on this algorithm.
During tree building, MinPOMCP-GO initializes the Q-
value of a newly created node to a pre-computed heuristic
value, corresponding to the flight time left to the goal es-
timated by the Dijkstra algorithm (Dijkstra 1959). Even if
this heuristic function is more informative than the tradi-
tional rollout used in POMCP, it does not consider GNSS
availability probability. This is only indirectly considered,
by back-propagating the cost penalty when a collision oc-
curs, hence sampling trajectories that may lead to collisions
due to the uncertain UAV position estimate.

Domain Abstraction
Sampling-based algorithms, such as POMCP and variants,
suffer from exponential complexity with respect to the
branching factor of the search tree. In our UAV navigation
problem under uncertain GNSS availability, the solver can-
not explore enough, within a short decision-making time-
frame, to prevent collisions. In difficult environments, with
obstacles reducing GNSS availability probability, navigation
mission safety may be compromised. So, we focus on incor-
porating domain abstraction to reduce the branching factor
and thus to improve online planning solutions.

State Aggregation. One well-known technique of domain
abstraction is state aggregation: the state space is reduced by
clustering equivalent states, i.e. states that share some fully-
identical properties - exact aggregation - or nearly-identical
properties - approximate aggregation - and treating each
of these resulting state clusters as one. In (Li, Walsh, and
Littman 2006), the authors list the existing methods of ex-
act state aggregation and unify them to deduce five generic
functions. However, since two states rarely share some fully-
identical properties, exact abstraction is often useless, while
approximate abstraction can achieve greater degrees of com-
pression. In (Abel, Hershkowitz, and Littman 2016), the
authors present four types of approximate aggregation and
demonstrate that they lead to a bounded loss of optimal-
ity of behavior. In (Hostetler, Fern, and Dietterich 2014),
the authors generalize the formulation of two of these four
types of aggregation and apply them to Monte-Carlo Tree
Search (MCTS). AS-UCT (Jiang, Singh, and Lewis 2014),
ASAP-UCT (Anand et al. 2015), and OGA-UCT (Anand
et al. 2016) are other implementations of state or state-action
pair aggregation to UCT, a MCTS algorithm variant. All of
these methods have not been applied in the partially observ-
able framework.

Hierarchical Planning. Another approach to domain ab-
straction is hierarchical planning. It consists in decompos-
ing the planning problem into a network of independent sub-
goals. Hierarchical Dynamic Programming (HDP) (Bakker,
Zivkovic, and Kröse 2005) is an example of hierarchical
planning for navigation problems. A hierarchy of MDPs
is constructed and solved using a hierarchical variation of
value iteration. Abstract Markov Decision Process (AMDP)
(Gopalan et al. 2017) is a more general method, which al-
lows any MDP planner to be used. Both HDP and AMDP
are top-down approaches: they select the subgoal before

performing planning to reach it. Contrary to bottom-up ap-
proaches, they present the advantage that planning is neces-
sary only for subgoals used for task completion. Neverthe-
less, the way to define appropriate subgoals remains an open
question.

Integrating Learning for Planning. A third method is to
integrate an offline learning phase as a first step, to guide
the search during online planning. The CAMP approach
(Chitnis et al. 2021), that has inspired this paper, is part
of this category. It searches the best reduced state and
action spaces by imposing a constraint learnt according to
the features of a task. Another example is Macro-Action
Generator-Critic (MAGIC) (Lee, Cai, and Hsu 2021), a kind
of temporal abstraction, which learns the more efficient
set of candidate macro-actions to cut down the effective
planning horizon.

As previously discussed in the MinPOMCP-GO Al-
gorithm Section, GNSS availability probability is only
considered by back-propagating the collision cost. The
planning efficiency can hence be improved by using this
information to further focus the search on more relevant
areas, i.e. where GNSS is more likely available. For this
purpose, the CAMP method seems a good candidate to
leverage. Implementing a similar approach for our problem
allows to reduce the UAV position state space in function of
a probability map of GNSS availability, considering this as
a task feature.

Learning Path Constraints based on GNSS
Availability

Approach Overview

The objective of the CAMP method (Chitnis et al. 2021) is to
learn a context selector f : Θ → C. Each training task cor-
responds to a feature vector θ ∈ Θ. For each feature vector,
the best constraint C∗ ∈ C is identified. The pairs (θi, C

∗
i)

are given to a neural network to learn f . Once the context
selector f is learnt, the best constraint C∗ returned from the
feature vector θ is then imposed to guide online planning.

In our navigation problem under uncertain GNSS avail-
ability, we assume a given environment, i.e. known obstacles
on a map, and a given navigation mission, i.e. fixed initial
position and goal. Figure 1 describes our application of the
context selector learning process to our problem. The proba-
bility maps of GNSS availability are used as feature vectors.
For each training map of GNSS availability probability, the
best constraint is identified. We define a constraint as a cor-
ridor of the environment in which the UAV must stay, that
we evaluate by performing planning within a training time-
out. Then, these probability maps of GNSS availability and
the associated best constraints are used to train the context
selector. Finally, the test tasks are solved online, imposing
the best constraints returned by the context selector from the
test maps of GNSS availability probability. Each step of this
process is detailed in the following sub-sections.

Figure 1: Learning the context selector f by identifying the best constraint C∗
i , for each training task i associated to a probability

map of GNSS availability θi.

Feature Vectors
As previously discussed, the GNSS availability is crucial to
determine safe paths for our UAV. As the GNSS satellites
are orbiting around the Earth, the GNSS availability prob-
ability varies with the time-of-the-day even for a fixed ob-
stacle environment. We then propose to compute navigation
constraints based on probability maps of GNSS availability
to reduce the UAV position state space.

A quality of the GNSS position estimate is given as a
metric called Position Dilution Of Precision (PDOP) (Klei-
jer, Odijk, and Verbree 2009). Given satellite geometry and
user location, a PDOP map is generated by using a GNSS
simulator. We consider PDOP value as a standard deviation
of the GNSS positioning error, assumed to follow a zero-
mean Gaussian distribution (Delamer, Watanabe, and Pon-
zoni Carvalho Chanel 2021). Then, the PDOP map is trans-
formed to a probability map of GNSS availability by using
erf , the Gauss error function, and by setting a maximum
position error threshold ϵ:

Pr(FGNSS = 1) = erf

(
ϵ√

2PDOP

)
. (4)

First, we generated the test task features by setting dif-
ferent ϵ values, to cover the easy and difficult cases where
GNSS is most-like available/unavailable. Then, the train-
ing task features were generated by linear combination of
these test task features with randomly selected coefficients,
for more feature variety.

Constraint Definition and Evaluation
Constraint Definition. We divide the environment map
into nL × nl × nh areas in an uniform way. nL denotes the
number of areas over the length, nl over the width, and nh

over the height. For each of these areas, we define a corri-
dor of areas leading from the initial position to the goal one,
passing through this area, called passage area. For that, we
concatenate the paths resulting from the A* algorithm (Hart,
Nilsson, and Raphael 1968) from the area including the ini-
tial position to this passage area, and from the latter to the
area including the goal position. We use the number of areas

constituting the path as cost function in the A* algorithm.
We obtain thus at most nL × nl × nh different corridors of
areas, corresponding to candidate constraints, in which the
UAV is allowed to navigate. The sub-figure in the middle of
Figure 2 shows a candidate constraint defined by dividing
the environment map into (nL = 5)× (nl = 5)× (nh = 1)
areas, and using the top left area as passage area, which is
highlighted in blue.

Planning with Constraint. For each training map of
GNSS availability probability, all the candidate constraints
are evaluated. For that, planning imposing the candidate
constraint is performed. We use the MinPOMCP-GO plan-
ning algorithm (Carmo et al. 2020), adapting the heuristic
function, which estimates the flight time left to the goal, so
that the constraint is respected. Figure 2 illustrates an exam-
ple of the heuristic map obtained from a given environment,
navigation mission, and candidate constraint. On the envi-
ronment map on the left, as on the following maps, the ini-
tial position and the goal are respectively represented by a
point and a star, and the obstacles are depicted in yellow. On
the heuristic map on the right, the estimated flight time left
to the goal is represented inside the constraint.

To impose a constraint, the cost function of the planning
model (Eq. 3) is also adapted so that it considers a violation
of the constraint as a terminal state which leads to a cost
penalty Kconstr. In addition, the collision cost is saturated
by a minimal threshold Kcolthr

, as some imposed constraints
incur long flight times. The cost function then becomes:

C(s, a) =


0 if goal reached
max(Kcol − tflight,Kcolthr) if collision
Kconstr if constraint violation
∆Ta otherwise

(5)

Best Constraint Identification. In the original CAMP ap-
proach (Chitnis et al. 2021), a candidate constraint is evalu-
ated using a score formulation, which expresses the trade-off
between how much planning is sped up and how much op-
timality is preserved imposing this constraint. The planning

time and the policy value are obtained as means over sev-
eral online-solved episodes. In our method, we perform of-
fline planning to evaluate the candidate constraints. Hence,
reaching the convergence on the policy value is required to
estimate the planning time and the policy value. However,
this convergence is difficult to judge and achieve it can take
too long. Therefore, to evaluate a candidate constraint, we
stop planning when a training timeout is reached, and we
express the score as the inverse of the resulting initial belief
state value V π(b0). For a probability map of GNSS avail-
ability θi, the candidate constraint that achieves the highest
score, i.e. the lowest initial belief state value, is chosen as
the best constraint, and is noted C∗

i .

Figure 2: Generation of the heuristic map (right) from an en-
vironment, a navigation mission (left), and a candidate con-
straint (middle).

Context Selector Learning and Online Planning
The training maps of GNSS availability probability {θi} and
the associated best constraints {C∗

i } are used to train a neu-
ral network with cross-entropy loss, resulting in the context
selector f (Fig. 1). The generic neural network available in
the CAMP framework is applied, with the proposed Fully
Connected Network architecture (Chitnis et al. 2021).

At test time, the best constraint is returned by the con-
text selector, given the probability map of GNSS availabil-
ity of the test task: C∗ = f(θ). This constraint is then
integrated in the model for online planning to reduce the
UAV position state space, by imposing to compute naviga-
tion paths that stay within the constraint. We use two plan-
ning algorithms to compute these navigation paths. The first
one is MinPOMCP-GO, also used for evaluating the candi-
date constraints in the training phase. The second algorithm
is MinPOMCP-GO*: it is a variant of MinPOMCP-GO in
which trials end whenever a previously unvisited leaf node
is encountered, instead of ending a trial only when a terminal
state is reached. MinPOMCP-GO* is aimed to be used on-
line, as it produces more trials with a shortest depth, hence
favoring short-term performance that would help avoiding
collisions, while taking into account actual observations in
an online setting.

Experiments
We implement the previously described method to three nav-
igation benchmark environments available in (Mettler et al.
2010): Cube Baffle, containing two cubes, Wall Baffle, con-
taining two walls, and the real downtown of San Diego. They
are illustrated in Figure 3.

To evaluate our approach, four test tasks are solved for
each environment, numbered from 1 to 4, corresponding to
the maps presenting from the lowest to the highest GNSS

(a) (b) (c)

Figure 3: Cube Baffle (a), Wall Baffle (b), and San Diego (c).

availability probabilities. We compare the results obtained
imposing the best constraint returned by the context selec-
tor with those obtained without constraint. The performance
metrics are the number of collisions and the mean costs ob-
tained considering a fixed decision-making timeframe. The
lower they are, the better performance is.

Material
To carry out the experiments, we use a supercomputer con-
stituted of 24 cores. For each of these cores, the frequency is
of 2.60 GHz, the Random Access Memory size is of 96 Gb,
and the cache size is of 19.25 Mb.

Settings
In the following, we describe the settings used in our exper-
iments. The GNC model and the reference velocity settings
are the same as those described in (Delamer, Watanabe, and
Ponzoni Carvalho Chanel 2021).

Initial Position and Goal. The mean initial position is set
to X0 = [10, 25, 5] for Cube Baffle and Wall Baffle, and X0 =
[110, 60, 5] for San Diego. The goal position is set to XG =
[85, 78, 5] for Cube Baffle, XG = [50, 80, 5] for Wall Baffle,
and XG = [200, 125, 5] for San Diego.

Map Decomposition. The map size of Cube Baffle and
Wall Baffle is [101, 101, 21]. For San Diego, it is [217, 167,
24]. The maps are uniformly divided into (nL = 5)× (nl =
5)× (nh = 1) areas.

Model and Solver. The factor γ is set to 1 and the action
cost ∆Ta is set to 2.2. The collision penalty Kcol, its thresh-
old Kcolthr

, and the constraint violation penalty Kconstr

(Eq. 5) are respectively set to 450, 350, and 450. The ex-
ploration coefficient c of UCB1 is set to 6.

Training Tasks. The training timeout is set to 2 minutes
and the number of training tasks, i.e. the number of proba-
bility maps of GNSS availability used for training, is 30.

Neural Network and Test Tasks. The neural network loss
threshold is set to 1.8. The decision-making timeframe is set
to 2 seconds and the number of test tasks, i.e. the number
of probability maps of GNSS availability used for testing, is
4. These maps are generated with the error thresholds: ϵ =
1, 2, 5, and 10 meters. For each test task, 50 episodes are
launched.

Results
The performance metric values obtained for each environ-
ment are summarized in Table 1. The probability maps of
GNSS availability at the initial and goal altitude are dis-
played as background of the following figures, the resulting

paths are plotted in red and the collisions are represented by
black dots.

For the Cube Baffle environment, the costs obtained
without constraint and imposing the best constraint, using
MinPOMCP-GO or MinPOMCP-GO*, are similar for all
the test tasks. Indeed, the UAV does not fly close enough
to the cubes and the GNSS availability probability is suffi-
ciently high. Hence, very few collisions occur, even without
constraint. Figure 4 shows the resulting paths without con-
straint and imposing the best constraint for the first test task,
corresponding to the lowest GNSS availability probabilities.
The imposed constraint makes the resulting paths deviate to
avoid the zones of possible GNSS loss to reduce the colli-
sion risk.

(a) (b)

Figure 4: Results obtained for Cube Baffle, for test task (1):
paths obtained using MinPOMCP-GO*, without constraint
(a), and with the best constraint (b).

For the Wall Baffle environment, with MinPOMCP-GO or
MinPOMCP-GO*, the number of collisions and the cost ob-
tained imposing the best constraint are considerably lower
than those without constraint for the test tasks (1) and
(2), corresponding to the two maps presenting the low-
est GNSS availability probabilities. For test task (1), using
MinPOMCP-GO, the number of collisions obtained impos-
ing the best constraint is reduced of almost 72%; and us-
ing MinPOMCP-GO*, it is reduced to 0. Figure 5 shows
the resulting paths without constraint and imposing the best
constraint. For these first two test tasks, the best constraint
forces to fly over the wall, where GNSS availability proba-
bility is greater, instead of flying between the two walls as
obtained when no constraint is imposed. Even if the flight
time becomes a bit longer, the cost is much reduced because
less collisions occur. That is, the mission safety is largely
improved. For the third test task, with MinPOMCP-GO or
MinPOMCP-GO*, the cost is slightly increased when im-
posing the best constraint, still favoring the safer paths fly-
ing over the wall. Finally, for the fourth test task, presenting
the highest GNSS availability probabilities, the best con-
straint only imposes to slightly move away from the first
wall. It results in a slight decrease of the collision rate, with
MinPOMCP-GO or MinPOMCP-GO*.

The San Diego environment includes multiple buildings,
that incurs a lot of regions where GNSS availability proba-
bility is low. Without constraint, the mission leads to a colli-
sion in most episodes, for each test task. The best constraints
returned correspond to pass to the left of the obstacles (Fig.
6). With MinPOMCP-GO or MinPOMCP-GO*, the number
of collisions and the cost are decreased imposing the best
constraint, particularly for the two maps presenting the high-
est GNSS availability probabilities, test tasks (3) and (4). For
the third test task, the cost is decreased to almost 46% using

(1)

(2)

(3)

(4)

(a) (b)

Figure 5: Results obtained for Wall Baffle: paths obtained
using MinPOMCP-GO*, without constraint (a), and with the
best constraint (b)

MinPOMCP-GO*, and for the fourth task, it is reduced to
almost 38% using MinPOMCP-GO.

(3)

(4)

(a) (b)

Figure 6: Results obtained for San Diego, for test tasks (3)
and (4): paths obtained using MinPOMCP-GO*, without
constraint (a), and with the best constraint (b)

In conclusion, for the three environments, imposing the
best constraint always reduces the number of collisions, with
any MinPOMCP-GO variant. This gain on the number of
collisions and the one on the cost are much greater for dif-
ficult environments, comprising multiple obstacles and pre-
senting low GNSS availability probabilities. Moreover, al-
though the context selector is learnt from MinPOMCP-GO,

MinPOMCP-GO MinPOMCP-GO*
No constraint Constraint Relative Gain (%) No constraint Constraint Relative Gain (%)
Ncol Cost Ncol Cost Ncol Cost Ncol Cost Ncol Cost Ncol Cost

1 2 115.144 0 114.296 100.00 0.74 0 91.912 0 106.072 / -15.41
Cube 2 0 96.936 0 97.808 / -0.90 0 93.592 0 95.144 / -1.66
Baffle 3 1 104.360 0 105.688 100.00 -1.27 2 108.848 0 100.720 100.00 7.47

4 1 102.648 0 98.384 100.00 4.19 0 94.824 0 99.368 / -4.79
1 21 243.848 6 162.936 71.43 33.18 12 179.696 0 116.664 100.00 35.08

Wall 2 14 191.600 3 141.616 78.57 26.09 9 152.024 0 116.720 100.00 23.22
Baffle 3 0 85.336 0 95.632 / -12.07 0 84.816 0 95.768 / -12.91

4 3 110.976 2 102.616 33.33 7.53 1 95.216 0 87.280 100.00 8.33
1 37 387.776 36 370.904 2.70 4.35 40 385.800 35 355.352 12.50 7.89

San 2 39 381.368 31 347.800 20.51 8.80 27 305.408 23 278.600 14.81 8.78
Diego 3 34 355.872 18 249.392 47.06 29.92 32 334.264 8 180.576 75.00 45.98

4 27 305.496 9 189.824 66.67 37.86 28 311.352 11 199.136 60.71 36.04

Table 1: Comparison of the performance metrics obtained by imposing the best constraint with the ones without constraint. The
relative gains are computed as relative changes, taking the performance metric value obtained without constraint as reference.
The considerably performance gains are presented in bold.

imposing the best constraint that it returns improves clearly
the planning performance even when using the online equiv-
alent, MinPOMCP-GO*.

Conclusion
In this paper, we have proposed a learning-based state ab-
straction approach to address a partially observable problem
of UAV autonomous navigation, where the GNSS availabil-
ity may have a dramatic impact on the UAV path. We have
then implemented a process to learn the best path constraint,
i.e. the best corridor in which the UAV must navigate, from
a set of GNSS availability probability maps. We have evalu-
ated this approach on different environments, including a re-
alistic urban one. The presented results have shown that first,
imposing these learnt path constraints based on GNSS avail-
ability can indeed improve the quality of the online com-
puted paths, especially when uncertainty is high, and sec-
ond, it has good performances on problems where only the
state space is abstracted, and in situations where the con-
straint is learnt using one algorithm, and then used online
with another algorithm.

Future works will generalize this approach by not only
considering the GNSS availability map as feature, but also
the initial and goal positions. To do so, we will avoid to
evaluate all the possible constraints by only considering the
most suitable candidate constraints, in order not to generate
a huge number of training data. For example, in our nav-
igation problem, only three constraints may be considered
for each feature vector: the one corresponding to the short-
est path, the one maximizing GNSS availability probability,
and the one weighting the both of them.

References
Abel, D.; Hershkowitz, D. E.; and Littman, M. L. 2016. Near
Optimal Behavior via Approximate State Abstraction. In In-
ternational Conference on International Conference on Ma-
chine Learning (ICML). New York City, NY, USA.
Anand, A.; Grover, A.; Mausam, M.; and Singla, P. 2015.
ASAP-UCT: Abstraction of State-Action Pairs in UCT. In

International Joint Conference on Artificial Intelligence (IJ-
CAI). Buenos Aires, Argentina.

Anand, A.; Noothigattu, R.; Mausam; and Singla, P. 2016.
OGA-UCT: On-the-Go Abstractions in UCT. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS). London, UK.

Bakker, B.; Zivkovic, Z.; and Kröse, B. 2005. Hierarchical
dynamic programming for robot path planning. In Interna-
tional Conference on Intelligent Robots and Systems (IROS).
Hamburg, Germany.

Carmo, A. R.; Delamer, J.-A.; Watanabe, Y.; Ventura, R.;
and Ponzoni Carvalho Chanel, C. 2020. Entropy-based
adaptive exploit-explore coefficient for Monte-Carlo path
planning. In International Conference on Prestigious Ap-
plications of Intelligent Systems (PAIS). (Digital ECAI).

Chitnis, R.; Silver, T.; Kim, B.; Kaelbling, L.; and Lozano-
Perez, T. 2021. CAMPs: Learning Context-Specific Ab-
stractions for Efficient Planning in Factored MDPs. In Con-
ference on Robot Learning. London, UK.

Delamer, J.-A.; Watanabe, Y.; and Ponzoni Car-
valho Chanel, C. 2021. Safe path planning for UAV
urban operation under GNSS signal occlusion risk.
Robotics and Autonomous Systems, 142: 103800.

Dijkstra, E. W. 1959. A Note on Two Problems in Connex-
ion with Graphs. Numerische Mathematik, 1: 269–271.

Gopalan, N.; desJardins, M.; Littman, M. L.; MacGlashan,
J.; Squire, S.; Tellex, S.; Winder, J.; and Wong, L. L. S.
2017. Planning with Abstract Markov Decision Processes.
In International Conference on Automated Planning and
Scheduling (ICAPS). Pittsburgh, PA, USA.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics, 4(2): 100–107.

Hostetler, J.; Fern, A.; and Dietterich, T. 2014. State Aggre-
gation in Monte Carlo Tree Search. In AAAI Conference on
Artificial Intelligence (AAAI). Québec City, QC, Canada.

Jiang, N.; Singh, S.; and Lewis, R. 2014. Improving UCT
Planning via Approximate Homomorphisms. In Interna-
tional Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS). Paris, France.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence, 101: 99–134.
Keller, T.; and Helmert, M. 2013. Trial-Based Heuristic Tree
Search for Finite Horizon MDPs. In International Con-
ference on Automated Planning and Scheduling (ICAPS).
Rome, Italy.
Kleijer, F.; Odijk, D.; and Verbree, E. 2009. Prediction of
GNSS Availability and Accuracy in Urban Environments
Case Study Schiphol Airport. In Location Based Services
and TeleCartography II. Lecture Notes in Geoinformation
and Cartography. Springer, Berlin, Heidelberg.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In European Conference on Machine Learn-
ing (ECML). Berlin, Germany.
Lee, Y.; Cai, P.; and Hsu, D. 2021. MAGIC: Learning
Macro-Actions for Online POMDP Planning. In Robotics:
Science & Systems (RSS). (Held Virtually).
Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
Unified Theory of State Abstraction for MDPs. In Interna-
tional Symposium on Artificial Intelligence and Mathemat-
ics (ISAIM). Fort Lauderdale, FL, USA.
Mettler, B.; Kong, Z.; Goerzen, C.; and Whalley, M. 2010.
Benchmarking of obstacle field navigation algorithms for
autonomous helicopters. In Forum of the American Heli-
copter Society (AHS). Phoenix, AZ, USA.
Ong, S. C. W.; Png, S. W.; Hsu, D.; and Lee, W. S. 2010.
Planning under Uncertainty for Robotic Tasks with Mixed
Observability. The International Journal of Robotics Re-
search, 29(8): 1053–1068.
Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime Point-
Based Approximations for Large POMDPs. Journal of Ar-
tificial Intelligence Research (JAIR), 27: 335–380.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Advances in Neural Information Pro-
cessing Systems (NeurIPS). Vancouver, BC, Canada.

