The AI Domain Definition Language (AIDDL) — Three Use Cases for Integrated
Planning, Reasoning, and Learning

Uwe Kockemann

_Center for Applied Autonomous Sensor Systems
Orebro University, Sweden uwe.kockemann @oru.se

Abstract

As individual sub-fields of Al become more developed, it be-
comes increasingly important to study their integration into
complex systems. In this paper, we look at three examples of
how automated planning can be integrated with learning and
reasoning. We then provide a first look at the Al Domain Defi-
nition Language (AIDDL) as an attempt to provide a common
ground for modeling problems, data, solutions, and their in-
tegration across all branches of Al in a common language.

Introduction

Many possibilities arise when combining the strengths of
different Al methods. Automated planning, for instance,
has been combined with machine learning or reasoning
in various ways for mutual benefit(Coles and Coles 2007;
Gerevini, Saetti, and Vallati 2009; Jiménez et al. 2012). In
this work, we present the Al Domain Definition Language
(AIDDL) and framework (available under aiddl.org), which
aim at allowing Al system developers to easily integrate dif-
ferent AI models. AIDDL is flexible, extendable, and usable
for a any type of Al problem because new types can be de-
fined within the language itself. It also allows to easily ex-
change algorithms and solutions for individual sub-problem,
which make studying alternative combinations of solution
easy. It also facilitates the upgrade of the whole system to
latest state of the art advances. Finally, by using AIDDL,
the integration of the different AI models can be moved
from implementation- to model level. This means that in-
tegrated Al systems can be described independent of any
programming language. Thus, creating and maintaining Al
systems becomes easier as the developer can model inter-
actions between the system’s component without having to
worry about implementation details.

In this paper, we will consider three examples of inte-
gration of different AI models, namely automated planning,
learning and reasoning. These examples will be integrated
within the AIDDL framework which is composed of the
Al Domain Definition Language (AIDDL), a core library
(AIDDL Core), definitions and implementations of common
Al algorithms (AIDDL Common), and a library of examples
of integrated Al (AIDDL Examples).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The remainder of this paper is organized as follows.
First, we discuss three examples of integrative Al that com-
bine planning with learning or reasoning. After discussing
these examples, we provide an overview of the current ver-
sion of the AI Domain Definition Language (AIDDL) to
model problems and solutions for integrative Al. We dis-
cuss our design goals, the language format, and the com-
ponents of the framework: AIDDL Core, AIDDL Common,
and AIDDL Examples. We then take a detailed look at how
one of the three presented examples is realized. Finally, we
discuss related work and directions for future work.

Background

This paper focuses on examples integration of classical plan-
ning, supervised learning, and goal reasoning. Therefore,
this section will provide a short introduction to these three
concepts to allow the reader to fully understand the exam-
ples and the notations used through this paper. It is important
to note however that AIDDL is not limited to these models
but can be used (and extended) to any other type of algo-
rithms and Al problem.

A classical task planning problem (Ghallab, Nau, and
Traverso 2004) (Sp, G, O) consists of an initial state Sy, a
goal state G and a set of operators O. Both Sy and G are
state-variable assignments. An operator o = (n,, P, E,)
consists of a name n,, set preconditions P, and effects F,,.
Both, P, and FE, are state-variable assignments. A goal or
precondition G is satisfied in a state S if G C S. Ap-
plying an effect E to a state S replaces the value assign-
ments of all state-variables in S with the ones assigned
by E. A plan 7 = ay,...,a, is a sequence of operators
that can be applied starting at the initial state Sy leading to
the state sequence Sy, S1,...,S5,. A plan is applicable if
ViP,;, € Si—1. A plan is a solution if it results in state S,
with G C S,,. Our planner uses forward-state space search
with the Fast Forward heuristic(Hoffmann 2001).

A supervised machine learning problem (Mitchell 1997)
consists of a data set D = {dy,...,d,} where each d; =
(i, z;) consists of a label I; € L and a vector z; € X. The
goal is to learn a mapping f : X — L that accurately pre-
dicts the label [of any point in X. There are many variations
of machine learning problems depending on the domains X
and L. In this paper we use finite symbolic domains for L
and vectors of finite symbolic domains for X in both exam-

ples. As a learner we use a very basic approach to decision
tree learning called ID3(Mitchell 1997, Ch.3). A common
way to test the model produced by a machine learning algo-
rithm is cross validation (Murphy 2012, p.24). The idea of
cross validation is to divide that data into n partitions (folds),
and always use one fold for testing and all others for train-
ing.

The goal reasoning method used in the third case study
below looks at sub-class relations between objects. These
relations are expressed in a directed acyclic graph. A path
in this graph indicates that an object is a concrete instance
of a certain class. Therefore, this simple reasoning problem
can be solved by applying a path finding algorithm from an
object used in a goal to an object known to the planner. This
way of reasoning could easily be replaced by more general
reasoning methods. Prolog(Bratko 2000), for instance, is a
declarative language to model relational knowledge in pred-
icate logic that could be use to express a goal hierarchy and
answer queries about sub-class relationships. Our third case
study has one solution using a simple graph search and one
using a wrapper for YAP Prolog (Costa, Rocha, and Damas
2012).

Three Case Studies

All of the following examples use a similar style of flow
chart (see Figures 1 through 3). Yellow square boxes are the
function calls. Some of these refer to basic Al functionality
(e.g., Plan, ID3) that appears in multiple or all our examples.
Other functions (e.g., Generate Data Goals) are specific to
the aim of the example integration. Blue diamond shaped
nodes are decision points. Orange hexagon shaped nodes in-
dicate loops. The inner part of each loop is highlighted by a
bounding box. Finally, green cylinder shaped nodes indicate
data (data was omitted in our first two examples to avoid
cluttering the figures). All flow charts were automatically
created from their AIDDL request models and modified by
hand to increase clarity.

Planning for Learning

Data is often difficult to acquire and data acquisition may
require going through a complex process such as sending
a robot to collect samples. In this section we show a basic
approach that allows using an automated planner to gather
data for a machine learning system.

The flow diagram in Figure 1 shows the overall process.
Until our model performs well enough on a cross-validation,
we generate data goals, plan to collect data, execute the plan,
extract data, and then perform n-fold cross-validation.

Ideally, we would like to be able to integrate planning and
learning in this way to be as simple as creating this flow
chart. In fact, the only non-standard components in this ex-
ample are Generate Data Goals and Extract Samples.

Learning for Planning

In this example we use learning for planning. Specifically,
we start with an incomplete planning domain, generate data
from executed actions and observed state transitions, and
then learn new operators. If the problem cannot be solved

Generate Goals

1o

‘ Split Data

[next

mext

Test Model

loop-back

Calculate Accuracy

Figure 1: Using a planner to collect data for a learning sys-
tem.

a random action is chosen as an experiment. Otherwise we
execute the next action of the plan. In either case, we execute
the action, observe the outcome and generate data. Next, we
try to learn a model that predicts the effects of actions on
states. The resulting model is used to create operators for an
updated planning domain. Once the domain is updated, we
attempt to plan again and continue.

As before, we have components related to learning, plan-
ning, and execution and a few non-standard boxes (Exper-
iment, Extract Data, Generate Operators) that need to be
defined to implement the integration. Considering the first
example, we would like to re-use as many components as
possible, and then simply decide how to choose experimen-
tal actions, how to extract data, and how to create operators
from a learned model.

Apart from making it easier to create integrative Al sys-
tems, this view also enables an convenient way to perform
experiments on/with such systems. There are many ways to
decide what exactly the Experiment box in Figure 2 does.
It may choose an action at random, consider its previous
choices, or consider how well the current set of operators
performs. A similar point can be made for the Generate Data
Goals box in Figure 1.

Planning and Goal Reasoning

Our third example integrates automated planning with a
form of goal reasoning. Here, we consider a planner that
may be presented with a goal that it does not support di-
rectly. In case this happens, we call a reasoner to derive a

Expenment Action
1
1
! 1
Execute Action X [
- |
! I
! l
/ | o
1 I
Exiract Data [: |
1 I
. to
1 | I
1 | I
A J ! l !
1 \ linput
3 X ! '
:mpul :mpul :
1 | I
y | Lo
1 1
Generate Operators 1 : !
1 | \
: ! \
! l
! l
! l
! l
1 | !
1 | '
1 | !
i 1 | i
ue X ! input
\ \ !
N \
Plan . o
e ’I Plan
I
output
e ‘
Figure 3: Performin Ir nin ransform Is for
Check Success gure 3: Perfo g goal reasoning to transform goals fo

a planner.

frue

Reget

Figure 2: Using a learner to acquire domain knowledge for
planning.

goal that the planner can handle. As an example, consider
that a planner may have a set of locations {ly,...,l,} and is
presented with a goal to go to kitchen. We have a knowledge
base of sub-class relations and instance relations and want
to determine if any of the /; locations known to the planner
is a kitchen. Figure 3 outlines how our Al components are
connected. Here we also indicate the data flow between the
different components.

Apart from the fact that these Al components can be eas-
ily exchanged, this simple integration enriches the types of
goals that a planner can handle without touching the planner
itself. While our example of sub-class relations is trivial, it
is easy to see how more complex goal reasoning may be per-
formed. A goal such as “buy food” may be decomposed to
create a shopping list based on a meal plan and an overview
of groceries still in storage.

Planning and reasoning could benefit from each other in
many other ways. For instance, instead of reasoning on the
goal, we could extend the initial state by deriving further
facts from background knowledge. Another approach could
use the set of goals to task a reasoning system to focus the
domain of the planner on a subset of operators and state fac-
tors to reduce the search space of the planner task. Ideally,
these examples should boil down to re-arrangements of Fig-
ure 3.

The AIDDL Framework for Integrated Al
Systems

The previous examples are different in scope but they all
share at least the planner as a common component. In
this work, we propose the AI Domain Definition Language
(AIDDL) as a representation to make these examples of in-
tegration easy task. Ideally, integration should become as
easy as creating one of the presented flow charts, add some
missing components and execute the solution. The AIDDL
framework is a step in this direction. Our main design goals
are:

o Well-defined Integration: allow to create models of how
Al algorithms are connected (possibly reasoning about
these connections)

» Simplicity: simple tasks require simple models
* Emerging Complexity: connect simple and well-tested
pieces to build complex Al systems

* Re-usability: abstract away common patterns into type
definitions and software modules

* Robustness: types and implemented functionalities can
be tested individually

» Freedom: not imposing a specific programming language
or way of thinking or way of problem solving

The AIDDL framework is composed of the language
(AIDDL), as well as the Core, Common, and Example li-
braries. An overview of the framework can be found in Fig-
ure 4. AIDDL proper specifies types, data, functionalities,
and requests. Consider the following examples:

* Types: Planning Problem, Plan, Decision Tree, Super-
vised Learning Problem

&
4 ™ §
Language
- & Python
Models parsed by CO re Java
define . & Data ~ export Contai
= Types ontainer
input \ stores Modules
output
Functions checks e Entries
N —r
(| (
Request \m Evaluator &
) Type Checker|
idd! (fil executes Request
.al (e)/ _ | Handler = 2%
implements calls
Common Bayes Net csp Decision Trees
D P + SAT + Planning Problem +
efault types and functionality Inference . Solver ! Classifier
implementations for fast prototyping Solver Planner +
Learner
T uses
Examples Learning for Planning

Collection of exampies of integrative Al Planning for Learning

Planning and Reasoning

Figure 4: An overview of the AIDDL framework.

* Model/Data: Instance of planning problem, instance of
decision tree, sensor readings, etc.

* Functionality: Planner takes instance of planning prob-
lem and creates a plan

* Request: Figures 2 through 3 are visualizations of com-
plex requests represented in AIDDL.

The Core parses and exports AIDDL files, handles re-
quests and is capable of evaluating expressions, as well as
type checking. Common contains AIDDL modules defin-
ing types of common Al problem and implementations of
solvers for these problems. Finally, Examples is a collection
of example integrations containing the three examples dis-
cussed above. Both Common and Examples contain imple-
mentations of functionalities (i.e. the yellow square nodes
in the example figures). There are two additional libraries
not further detailed in this paper. Util contains additional
functionality. Most notably it allows to host and use the
AIDDL framework via Protobuf and gRPC' which allows
to distribute computing. Finally, External will contain vari-
ous libraries whose purpose is the integration with other Al
frameworks. Integration with Scikit Learn® and the Unified
Planning framework? are currently under development.

AIDDL, as specified by the grammar below, allows to
define data types and data for Al problems. It also allows
to connect functions that solve these Al problems to each
other. As a result, all three examples presented above can
be expressed fully in AIDDL. Each AIDDL file represents a
module and conforms to the following grammar.

"https://www.grpc.io/

*https://scikit-learn.org/

3https://www.aideurope.eu/research/ai-catalog/unified-
planning-framework

<AiddlFile> <Module> (<Entry>)
<Module> " (#mod" <Symbolic>
<Symbolic> ")"
<Entry> "("<Term> <Term> <Term>")"
<Term> <Basic> | <Composite>
| <Reference>
<Basic> : <Symbol> | <Numerical>
| <Variable> | <String>
<Numerical> <Integer> | <Rational>
| <Real> | <Infinity> | <NaN>
<Symbol> (("a"_"lel"All_"z"‘"#")
(Mamt-tz" | MAM-ZN Q-9
| "_" ‘ "." | n_mn | nwr ") *)
R VAR RN NN
| n ! mw ‘ w_n | "<l| | ">" ‘ ":>"
["<=>m o=t =t s
<String> s l‘\"ll [N\"]* l‘\"ll
<Variable> :: <Namedvar> | "_"
<Namedvar> ? (("all_"Z" ‘ "A"_"le)
("am-"z"|"A"-"Z"
| 'l0|l7"9" ‘ "_" | n . n | nwm_mw ‘ nrs ") *)
<Integer> ["="p (o™ "1i"="9") ("O"-"9"] %
<Rational> ["7"] ("O" | l|1|l7"9") ("0"7"9") *
"/" ("1"_"9"("O"_llg")*)
<Real> : e ["7"] ("Ol""ll|7"9ll) ('lollillgl')*
"." ("Oll_ll9||)+
<Infinity> :: ["+"|"-"]"INF"
<NaN> :: "NaN"
<Composite> <List> | <Set>
| <Tuple> | <KeyValue>
<List> B "[" <Term>x "]"
<Set> H "{" <Term>x "}"
<Tuple> N (" <Term>x ")"
<KeyValue> [<Basic>|<List>]|<Set>
| <Tuple>
|<Reference>]":"<Term>
<Reference> <EntRef> | <FunRef>
<EntRef> [<Symbolic>|<Tuple>]
"@"<Symbolic>
| "S$"<Term>
<FunRef> "TM[<Symbolic>|"$"<Symbolic>

| <Symbolic>"@"<Symbolic>]

Each AIDDL file starts with a module entry which states
the self-reference (i.e., the term a module uses to refer to
itself) and the module’s URI. An entry generically specifies
data as a tuple composed of type, name, and value.

Requirement entries (type #req) state dependency on an-
other module. The name of a requirement can be used locally
to refer to its module. Namespace entries (type #nms) are
used to replace each occurrence of a term with another. This
can be used to avoid repeated usage of long names. Defini-
tions (type #def) are used to define functions. The value of a
definition is a term that can be evaluated. Type entries (type
#type) define types as subsets of the language. Function in-
terfaces (type #interface) consist of a URI, input- and output
types for computations. An interface implementation can be
linked to an #interface entry to allow the type checker to
verify that input and output data satisfy the required type. Fi-

nally, request entries* (type Request@org.aiddl.request) can
be used to specify control flow by linking service calls to
entries in the AIDDL container.

AIDDL Core

The Core is a library that makes AIDDL available for use
with a programming language. It provides a parser to load
AIDDL files as modules into an AIDDL container. It also
includes an implementation of the evaluator (also used as
type checker) and request handler. Input for evaluator and
request handler are described in the next two sections. All
examples contained in this paper are implemented based on
a Java version of the AIDDL Core. The Core is also available
in the Python and Scala languages.

Evaluator

The evaluator is a component of the AIDDL Core that re-
cursively evaluates terms that can be interpreted as func-
tions. All such terms are tuples and the first term of the
tuple is a symbolic URI of the function. As an example,
(org.aiddl.eval.numerical.add 2 3) is evaluated to 5. The
evaluator can be used to test if the value of an entry satis-
fies the stated type. It is also used to perform basic oper-
ations on AIDDL data, e.g., to evaluate branching or loop
conditions in requests or filtering lists or sets without having
to implement a functionality. All conditional branches and
while-loops in the presented examples use the evaluator to
test their conditions. Namespaces are used to shorten overly
long names. One of the default namespaces allows writing
the above example as (+ 2 3). Default functions include ba-
sic operations on sets, lists, numerical values, logical opera-
tions (including quantification).

Requests

Requests compose functionality in an imperative fashion.
Unlike the strictly functional interpretation of the evaluator,
requests require to specify where the result of function calls
is stored (i.e., the name of entries to direct the output to).
Any evaluator term that appears in a request will be evalu-
ated (as explained above) before the request is handled. This
is often convenient for evaluating conditions. All examples
presented in this paper were implemented using requests.
The following list provides a short overview of requests with
examples.

* Call functionality on input and write result to output.
(call plan (s0 g 0O) pi)

» Execute requests in a sequence.
[R1 R2 R3]

» Execute request while condition is true.
(while (< acc 0.95) plan-and-learn)

* For each combination of variable-value pairs, create a
substitution ¢ and call Ro.
(forall [?x:[a b] 2y:[1 211 (call £ (?2x 2y
) o))

“The name of this entry is a reference to the entry Request in
module org.aiddl.request. The name is different because requests
are defined in AIDDL as any other type.

* Loop indefinitely
(loop [sense plan act])

e Match two terms and execute request on the resulting
substitution if possible.
(match (?2x ?y) ((1 2) (3 4)) (call dist
(?x ?y) d))
« If condition holds execute first request, otherwise execute
second request. (optional)
(if (x < 10) R1 R2)
* Misc: write value to entry, create entry, print message,
keep time.

AIDDL Common

The Common library consists of two elements: a library of
type and functionality definitions, and a library of imple-
mentations. Type definitions are written in AIDDL and cover
common Al problems and data types. Functionalities are de-
fined for solvers of these common problems. Second, Com-
mon provides a library of implementations of Al functional-
ity and some commonly used data structures (such as graphs
and matrices). These can be used as building blocks for set-
ting up and testing integrated Al systems.

Currently covered functions and types include: graphs
(e.g., strongly connected components, shortest path). State-
variable Planning with types for states, goals, operators,
plan, relaxed planning graphs, domain transition graph,
causal graph and functions for forward search, the fast for-
ward heuristic (Hoffmann 2001), the causal graph heuris-
tic (Helmert 2006). Machine Learning functions include the
ID3 algorithm used above, a decision tree classifier, and
various functions for testing. Reasoning functions include
a basic SAT solver and conversion of first-order queries to
Prolog. Temporal Reasoning is implemented by a solver
for simple temporal problems (Cesta, A. and Oddi, A.
1996). Scheduling with reusable resource is implemented as
a meta-CSP reasoner(Cesta, Oddi, and Smith 2002). Con-
straint processing by a basic combination of tree search and
propagation (Dechter 2003).

AIDDL Examples

Examples refers to a growing collection of implementations
of integrated Al. All three case studies presented in this pa-
per are implemented as part of AIDDL Examples. Most of
the functionalities used by these examples are implemented
in AIDDL Common. This section describes the AIDDL ver-
sion of the learning for planning example. The other two
examples are not included due to space limitations. All three
realizations of the presented case studies are available open
source at aiddl.org.

The aim of this integration example is to create opera-
tors from observed state transitions. We use a state transition
system where a state contains the status of 5 lights (true or
false). We have 5 actions that correspond to buttons. Each
action changes the state in an unknown way. There is one
special action reset that just reverts the current state to the
initial state to avoid dead-ends.

Terms such as a@m refer to the entry named a in module
m. This is mostly used to reference types in other modules.

Any term of the form § a refers to an entry with name a in
the module where it appears. Functions are referred to with
the * symbol. If a function reference is combined with an

entry reference (such as f@m or $f), the entire expression
is understood as a reference to a function in the specified
module.

The following shows how State, Goal, and Operator can
be defined. A state-variable assignment is a set consisting
of key-value pairs 7K :?V such that key and values are
first-order logic atoms (defined in module FL), variables,
or symbols. In a set of state-variable assignments, each key
is only assigned one value (this is asserted by the attached
constraint). States and goals are defined as state-variable as-
signments. An operator is a dictionary with a name of type
Atom@FL, and preconditions, and effects of type SVAs.

(#req FL reasoning.logic.first-order)
(#req EVAL org.aiddl.eval.namespace)
(#nms nms-all all-ops@EVAL)

(#type E (union
{"Atom@FL “symbolic “variable}))

(#type StateVariableAssignment
(typed-kvp "$E:"S$E))

(#type SVAs
(set—of “S$StateVariableAssignment
constraint: (lambda ?X
(is—unique-map ?X))))

(#type State "“$SVAs)
(#type Goal “$SVAs)

(#type Operator
(dict
[name: "Atom@FL
preconditions: " $SVAs
effects:"$SVAs]))

Below we show entries assigning initial state, goal, etc.
Here the module CP contains our classical planning defi-
nitions (included with # req). Note the set of operators O
and actions A are initially empty. Operators are added as do-
main knowledge is acquired, while actions are added ini-
tially when the state-transition system is randomly created
(see Init below). Initially we have an empty set of operators
and no plan.

(State@P sO {(light 1) false
(light 2) false
(light 3) false
(light 4) false
(light 5) false })
(State@P s {hH
(State@P s_next {})
(Goal@P g { (light 1) : true
(light 2) : true
(light 3) true
(light 4) true
(Light 5) true})

Operators@P O {})

set A {})
pi NIL)
Action@P selected_action NIL)

(
(
(Plan@P
(
(

Problem@P Pi (operators:s$O
initial-state:$s
goal:$qg))

(boolean goal-reached false)

The next listing introduces the learning problem. First, we
define the attributes of the data we are collecting. These in-
clude the current state and action taken, as well as observed
effects. Our data set is initially empty. The machine learning
problem is composed of attributes, label, and data.

(#req ML learning.supervised)
(#req DL learning.decision-tree)
(Attributes@ML PlanAttributes
[(light 1) (light 2) (light 3)
(light 4) (light 5) Action Effects])
(DataPoints@ML Data {})
(Problem@ML MLProblem

(attributes SPlanAttributes
label Effects
data : $Dhata))

(DecisionTree@DL DT [])

Now we compose an integrated Al method that uses the
data specified above. For readability, we divide the actual re-
quest into four parts defined below. The overall system runs
in an infinite loop and does not change initial state or goal.
In a more realistic setting, there should be some measure
of how well the current operators reflect the state transition
system and some variation of initial state and goal.

(#reqg R org.aiddl.request)
(Request@R Main [S$Init
(loop [
SSelectAndExecuteAction
SExtractAndLearn
SPlanAndCheckSuccess
IDED)

Some of the calls below have complex inputs and out-
puts (splitting their outputs to multiple entries). Init sets the
current state s to the initial state and create a random state
transition system, which will decide what actions do in any
given state.

(Request@R Init [
(write $s0 s)
(call sim-generator SN
{state-transitions:Sigma
actions:A}) 1)

SelectAndExecuteAction either selects the next action of
the current plan if it exists or a random action as an experi-
ment. Note that select-action here contains both cases of the
conditional in Figure 2. Otherwise a random action will be
selected as an “experiment”.

(Request@R SelectAndExecuteAction
(call select-action
(actions:$A plan:$pi

state:$s sigma:S$Sigma)
{selected-action:selected_action
plan-tail:pi})

(call execute-action
(state:$s action:$selected_action
sigma:$Sigma) s_next))

ExtractAndLearn extends our data set with the current
state transition and action, then uses the ID3 decision tree
learning algorithm on the data and generates operators from
the resulting decision tree.

(Request@R ExtractAndLearn
(if (!= $selected_action (reset)) [

(call extract-data
(attributes:$PlanAttributes state:$s
next-state:$s_next
data:$Dhata
action:$selected_action) Data)

(call ID3 S$MLProblem DT)

(call generate-operators $DT O) 1))

Finally, PlanAndCheckSuccess advances the current state,
attempts planning if no plan exists, and checks if the goal
was reached if the current plan is empty (i.e., it has been
fully executed). If we reach the goal, we revert back to the
initial state.

(Request@R PlanAndCheckSuccess [
(write $s_next s)
(if (= $pi NIL) (call plan $Pi pi))
(1f (= spi [1])
[

(call check-success
(state:$s goal:S$g) goal-reached)
(if $goal-reached
[(write $s0 s)
(write NIL plan) 1)11)

Related Work

Our work is motivated by work on domain definition lan-
guages for dedicated purposes (such as planning) and by
many approaches that realize systems often very similar to
our case studies. The AIDDL framework can be seen as an
attempt to connect the kind of works listed in the follow-
ing two paragraphs without creating yet another dedicated
domain definition language.

Research on automated planning has lead to many
changes and variations of the Planning Domain Definition
Language (PDDL)(Ghallab et al. 1998; Fox and Long 2003;
Gerevini and Long 2005; Coles and Coles. 2014) that to con-
sider, e.g., time, resources, or continuous change. The basic
language, however, is designed to express planning prob-
lems. In this work we take a step back and suggest a domain
definition language that can be extended to include any ex-
isting Al problem and also define how these problems are
solved. Unlike languages such as Prolog, we do not assume
anything about how problems are solved.

The examples we look at in this paper are somewhat sim-
plified takes on integrative Al. Learning and planning have
been combined with many different motivations. Our first

example uses learning to acquire domain knowledge. Early
approaches of this motivation for integration can be found in
(Shen and Simon 1989), (Gil 1992), and (Wang 1994). For
a more recent review of this line of research, see (Jiménez
et al. 2012). Our second example can be seen as an exten-
sion of active learning (Tong 2001). Active learning uses
queries to ask for specific instances of data to improve the
performance of learning. In our case, a query of the active
learner is a data goal which is satisfied by a planner. The
data is provided as a result of plan execution. Generate Data
Goals (see Figure 1) can be seen as an active learning mod-
ule. Other ways of integrating planning and learning include
learning heuristics for the search space of a planner(Thayer,
Dionne, and Ruml 2011), learning control knowledge to
guide planning search(Coles and Coles 2007), or config-
uring portfolio-based planning approaches(Gerevini, Saetti,
and Vallati 2009). Our third example can be seen as a sub-
problem of goal reasoning (Vattam et al. 2013) in form of
goal transformation (Cox and Dannenhauer 2016).

There are many forms of integrative Al that do not in-
clude planning. Statistical relational learning combines first-
order logic, probabilistic reasoning, and learning(Getoor and
Taskbar 2007). Satisfiability Modulo Theories (SMTs) (Bar-
rett et al. 2009) include a correspondence between proposi-
tional logic and models of other types of knowledge (such
as linear equations). The SMT approach has been adopted to
planning as well in form or Planning Modulo Theories (Gre-
gory et al. 2012). In this style of integration every modulo
theory T increases the expressiveness of operators. Theories
have to be evaluated to determine applicability and when ap-
plying actions. We hope to extract patterns for integrative Al
systems from these and similar approaches in future work.

Conclusion

We discussed a series of ways to integrate planning with
learning and reasoning and proposed the AIDDL Frame-
work for integrative Al. This way of performing Al inte-
gration allows the resulting systems to benefit from a large
body of existing implementations across all branches of Al
We also argue that a common domain definition language
for Al allows to perform integration as done in this paper
with minimal overhead.

Notably all of the examples presented in this paper use
planning and learning methods in form of a black box. Many
existing approaches for integrative Al use a white-box view
where an algorithm is modified or extended in some way
to accommodate some other Al technique. Currently, we
are investigating such white-box approaches to integration
within AIDDL in which we compose components of a plan-
ner (such as search space expansion, heuristic computation)
with reasoning about time or resources.

In addition, we would like to implement forms of integra-
tion that do not include automated planning to test the suit-
ability of AIDDL for general purpose Al integration. We are
quite positive about this outlook since none of the features
of AIDDL is inherently linked to automated planning.

If you are reading this paper and made it this far, we
hope we spiked your curiosity. Feel free to contact us if you
have any further questions, a use case, or would like to hook

up your Al tools to the AIDDL Framework available under
aiddl.org.

Acknowledgement. This work has been supported by the
European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 101016442 (Al-
Plan4EU).

References

Barrett, C.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability modulo theories. In Armin Biere Mar-
ijn Heule, H. v. M. T. W, ed., Handbook of Satisfiability,
volume 185, chapter 26, 825—-885. Frontiers in Artificial In-
telligence and Applications.

Bratko, 1. 2000. Prolog Programming for Artificial Intelli-
gence. Addison Wesley. ISBN 0201403757.

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A Constraint-
Based Method for Project Scheduling with Time Windows.
Journal of Heuristics, 8(1): 109-136.

Cesta, A. and Oddi, A. 1996. Gaining Efficiency and Flex-
ibility in the Simple Temporal Problem. In Chittaro, L.;
Goodwin, S.; Hamilton, H.; and Montanari, A., eds., Pro-
ceedings of the Third International Workshop on Temporal
Representation and Reasoning (TIME-96). IEEE Computer
Society Press: Los Alamitos, CA.

Coles, A.; and Coles, A. J. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. Journal of Ar-
tificial Intelligence Research, 28: 119-156.

Coles, A. J.; and Coles., A. 1. 2014. PDDL+ Planning
with Events and Linear Processes. In Proceedings of the
24th International Conference on Automated Planning and
Scheduling (ICAPS).

Costa, V. S.; Rocha, R.; and Damas, L. 2012. The YAP Pro-
log system. Theory and Practice of Logic Programming,
12(1-2): 5-34.

Cox, M. T.; and Dannenhauer, D. 2016. Goal transformation

and goal reasoning. In Proceedings of the 4th Workshop on
Goal Reasoning at IJCAI-2016.

Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann. ISBN 978-1-55860-890-0.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61-124.

Gerevini, A.; and Long, D. 2005. Plan Constraints and Pref-
erences in {PDDL3}. Technical report, Department of Elec-
tronics for Automation, University of Brescia, Ital.

Gerevini, A. E.; Saetti, A.; and Vallati, M. 2009. An Auto-
matically Configurable Portfolio-based Planner with Macro-
actions: PbP. In Proceedings of the 19th International Con-
ference on International Conference on Automated Planning
and Scheduling (ICAPS), ICAPS’09, 350-353. AAAI Press.
ISBN 978-1-57735-406-2.

Getoor, L.; and Taskbar, B. 2007. Introduction to Statistical
Relational Learning. The MIT Press. ISBN 0262072882.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical re-
port, CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Gil, Y. 1992. Acquiring domain knowledge for planning by
experimentation. Ph.D. thesis, CMU, Pittsburgh, PA, USA.

Gregory, P.; Long, D.; Fox, M.; and Beck, J. C. 2012. Plan-
ning Modulo Theories: Extending the Planning Paradigm.
In Proceedings of the 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS).

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26(1): 191-246.

Hoffmann, J. 2001. FF: The Fast-Forward Planning System.
Al Magazine, 22: 57-62.

Jiménez, S.; De La Rosa, T.; Fernandez, S.; Fernandez, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review,
27(4): 433-467.

Mitchell, T. M. 1997. Machine Learning. New York, NY,
USA: McGraw-Hill, Inc., 1 edition. ISBN 0070428077,
9780070428072.

Murphy, K. P. 2012. Machine Learning: A Probabilistic Per-
spective. The MIT Press. ISBN 0262018020.

Shen, W.-M.; and Simon, H. A. 1989. Rule creation and
rule learning through environmental exploration. In In Pro-
ceedings of the International Joint Conference on Artificial
Intelligence, 675-680.

Thayer, J. T.; Dionne, A. J.; and Ruml, W. 2011. Learn-
ing Inadmissible Heuristics During Search. In Bacchus, F.;
Domshlak, C.; Edelkamp, S.; and Helmert, M., eds., Pro-
ceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS). AAAL

Tong, S. 2001. Active Learning: Theory and Applications.
Ph.D. thesis, Stanford University.

Vattam, S.; Klenk, M.; Molineaux, M.; and Aha, D. W. 2013.
Breadth of Approaches to Goal Reasoning : A Research Sur-
vey. Goal Reasoning: Papers from the ACS Workshop, 111.
Wang, X. 1994. Learning Planning Operators by Observa-
tion and Practice. In International Conference on Artificial
Intelligence Planning Systems.

