Theory Alignment via a Classical Encoding of Regular Bisimulation

Alex Coulter®, Teo Ilie*, Renee Tibando*, Christian Muise

Queen’s University, Kingston, On, Canada
{alex.coulter, 17ti5, 17rat3, christian.muise } @ queensu.ca

Abstract

Bisimulation, at its core, is a means of studying the alignment
between two dynamical systems. It has been used to great
effect in the planning community for heuristic computation;
simulating the full state space in the space of abstractions
(merge-and-shrink heuristics). Here, we consider the direct
task of theory alignment — assessing if two planning prob-
lems are “equivalent” — through the lens of regular bisimula-
tion. We accomplish the task through a novel encoding that
merges the two theories as a new planning problem, where
the encoded problem is unsolvable if and only if the two the-
ories are a regular bisimulation. We demonstrate that modern
planners are capable of solving many of these encodings, and
the solutions (if plans exist) provide a rich explanation as to
why two models differ. The work has already had a direct and
practical impact, being deployed in a classroom setting to as-
sess the correctness of student-authored planning models as
compared against a reference solution. Our solution has a di-
rect impact on being able to verify if a candidate planning
model matches a known specification, and opens the door to
model verification through planning techniques.

1 Introduction

Aligning two planning theories — the task of seeing how
two models relate — can have many applications. Notable
examples include continual refinement to improve human-
robot interaction (Chakraborti et al. 2017), model acqui-
sition of action theories (Fervari, Velazquez-Quesada, and
Wang 2021), and heuristic computation for classical plan-
ning (Helmert et al. 2014). Here, we consider the direct task
of aligning two planning theories that share a number of el-
ements from the high-level PDDL specification: types, ob-
jects, constants, and action names + parameters. The main
question we seek to answer is how we can test if two mod-
els align (where the fluents and action implementations may
differ), and if not, where that mis-alignment occurs. While
our encoding works directly at the PDDL model, our work
is built on a foundation of regular bisimulation.

The area of bisimulation has been mined by the plan-
ning community for several aspects. Most notably, it has
lead to the extremely impressive and popular line of merge-
and-shrink heuristics (Katz, Hoffmann, and Helmert 2012;

“These authors contributed equally.

Helmert et al. 2014) found in the state-of-the-art Fast Down-
ward planning system (Helmert 2006). Loosely defined, a
bisimulation is a correspondence between two transition sys-
tems such that labeled transitions between the two systems
coincide: if two nodes (one from each system) coincide, then
the reachable nodes in each system also coincide (following
the labeled transitions). We focus on regular bisimulation,
where the labels of the transitions are presumed to be the
same, as well as the models’ reachable state space.

Due to the ultimate application of comparing PDDL mod-
els, our approach is grounded firmly in the manipulation
of PDDL. Taking two planning models (represented in do-
main+problem PDDL files), we merge them through a novel
encoding to a new domain+problem file. This merged do-
main retains the original types, action names/parameters, ob-
jects, and constants (assumed to be the equivalent in both
of the original models), and combines the action specifica-
tions to progress through both models simultaneously. Sim-
ilarly, fluents and initial states are merged. Finally, “failure
actions” are introduced that represent a potential misalign-
ment between the two models. As long as one of these fail-
ure actions can be executed, the two theories do not align.

The encoding was implemented, and embedded as a core
analytic in an undergraduate Al class where one of the as-
signments was to create a planning model (fluents, action
preconditions/effects, initial/goal states) according to a text-
based specification. Two reference models were created to
compare against, and the proposed alignment was an integral
part of the teaching staff’s analysis of student submissions.
We found that our proposed alignment was not only viable,
with many submissions having “solutions” to the merged
model showing where a modeling error occurs, but several
cases demonstrated errors with the submitted domains that
were subtle and detected only by this added approach.

Next, we cover some of the preliminary material re-
quired to understand the approach we take. We then describe
our main approach in Section 3, grounded primarily in the
PDDL processing that was required to realize the ideas we
put forward. We discuss the (mainly qualitative) results in
Section 4 and conclude with a brief discussion in Section 5.

2 Background

Our approach operates entirely on the Planning Domain
Definition Language (PDDL) and for a more complete treat-

ment, the interested reader can refer to (Haslum et al. 2019).
Here, we detail some of the core functionality and notation
used through the paper.

Figure 1 shows a complete example in PDDL, and the
specific features we make use of mostly surround actions.
Specifically, we use the following notation:

* parameters(act): The typed parameters of the ac-
tion act. Referring to Figure 1, parameters(turnon)
would be just 7] — light.

¢ precond(act): The precondition of action act. We as-
sume simple effects as a conjunction of predicates or
their negation.

* effects(act): The effects of action act. We allow arbi-
trary ADL effects, but primarily focus on those theories
with a conjunction of conditional, add, and delete effects.

We assume that the input planning models are potentially
in lifted form (so ungrounded actions), and our compilation
retains this assumption.

3 Approach

Here, we describe the high-level approach we take to align-
ing two planning models. Specifically, we start by detailing
the core assumptions under which alignment can take place,
then describe how two models can be merged to create a
third that will allow us to test for alignment. Finally, we dis-
cuss how the merged model and its solutions should be inter-
preted, and discuss the connection to regular bisimulation.

3.1 Specification Assumptions

There is a wide space of ways one might interpret the prob-
lem of “aligning two planning models”. Finding an iso-
morphism between action names, focusing on fluent-defined
reachable state spaces, etc. Here, we detail precisely the set-
ting we are interested in, motivated (in large part) by the
application of our work in the classroom setting.

Types We assume that the typing for each of the two mod-
els are precisely the same. This is required in order to ade-
quately handle the action parameter space. While slight de-
viations may be possible!, we simply assume that the set of
types in both models are precisely the same.

Objects / Constants Similarly, we assume that the objects
and constants, including the types they adopt, are precisely
the same between the two models. Moreover, we assume that
both of the models use these objects in the same way. For
example, imagine we have two models to align that capture
the mechanics of flipping a pair of switches in a real physical
room (one left and one right). If the models share the objects
or constants switchl and switch?2, then those objects
must consistently refer to the left and right switches (or vice
versa) across two models. This is necessary, as a renaming
of the objects could lead to a misalignment between the two
models unnecessarily. It is an open question for future work
to consider encodings that relax this assumption.

'One example would be having some types that do not play a
role in the action parameter specification, but only on constants and
fluents mentioned in the action implementation.

Action Names & Parameters Because we are looking for
an alignment of the state spaces, the space of full ground
action specifications must coincide. We can ensure this by
making sure the same action names and :paramaters
definition is used in both of the models under consideration.
This will mean that the set of ground actions will have the
same reference in both of the models.

Initial States We assume that each model captures the
same initial state semantically. Note, however, that this is
not something we can check through syntactic analysis. But,
rather, it is a property we assume in even deciding to make
this alignment. If the two models captured different initial
states, then we wouldn’t expect them to align.

Fluents We do not assume that the fluents are aligned.
This includes both the naming and parameterization. This
opens the door to a wide-range of alignment possibilities
from semantically equivalent (as defined by regular bisim-
ulation) models. If the two models use the same name/sym-
bol for a fluent, we will not assume them to be equivalent
(as they may be used in different ways).

Action Preconditions & Effects Finally, we do not as-
sume there to be any syntactic equivalence between the ac-
tion preconditions / effects of the two models. This allows
us to compare wildly different encodings of the same real-
world system. It is also an essential element, given that the
fluents are not assumed to coincide. The effective applica-
tion of the action will be analyzed through the alignment
process, but the actual implementation (using each model’s
custom set of fluents) must not coincide syntactically in any
way.

3.2 Encoding

The encoding process creates a domain+problem PDDL pair
that corresponds to the merged domains that will be aligned.
Integral to this encoding, every shared action has a pair of
“failure actions” introduced that correspond to the situation
where the action can be executed in one model, but not the
other.

Definition 1 (Failure Action). For a shared action
act with parameters parameters(act), precon-
ditions precond;(act) [/ precondz(act), and ef-
fects effects;(act) [/ effectss(act), we can define
failure_act_1 as follows 2:

parameters(failure_act_1) = parameters(act)

precond(failure_act_1) = (and precond;(act)
(not preconds(act)))

effects(failure_act_1) = (failed)

Note that we do not require the effects from either version
of the action: the applicability of a failure action is enough
to ensure that a transition can occur in one input planning
model but not the other. Each of the original action spec-
ifications will have a pair of “failure actions” created, and

The dual action is defined analogously.

these correspond to the two options of progression in one
domain but not the other. One final note on practicality —
the planning system used must be able to handle nested pre-
conditions such as those created by the scheme above. This
was true of the FastDownward planning system used to solve
these problems (Helmert 2006).

We can now describe the full encoding in detail. The pro-
cess is as follows:

1. Read in both of the input planning models. We use Tarski
for this part and further manipulation (Francés, Ramirez,
and Collaborators 2018).

2. Rename all of the predicates/fluents throughout both
models so they are unique.>.

3. Include all of the syntactically shared elements: types,
objects, and constants.

4. Create a merged initial state (:init ...) by combin-
ing the initial states from both input models.

5. Create a merged section, (:predicates ...), by
combining the uniquely defined (and now renamed) pred-
icates from both input models.

6. Add (failed) as a predicate, and set the goal to just
be achieving this fact.*

7. Create a single merged action for shared action in the
original specifications: the preconditions and effects are
simply concatenated with an (and ...) term.

8. For every action, created a pair of “failure actions”.

We illustrate the procedure by using a simple light-switch
example. Figures 1 and 2 demonstrate the two planning
models to be aligned, while Figure 3 shows the merged
model in its entirety.

3.3 Interpreting Solutions

If no solution exists, it means that there is no reachable state
where an action is executable in one model but not the other.
Thus, if a planner determines the merged model to be un-
solvable, the two original models align. While showing a
model to be unsolvable is arguably harder than finding a plan
(Muise and Lipovetzky 2015), we found that the majority
of tested instances were indeed manageable. Further, if the
planner struggles to find a solution within resource limits, it
is strongly suggestive that no solution exists. While this may
not be useful when guarantees are required, it is indeed use-
ful for our use case, where plan existence is simply an aid to
understand errors in a model.

With the merged domain, the only way to achieve the goal
is for one of the “fail actions” to be executed. If this happens,
it means that the plan represents a sequence of actions exe-
cutable in both original models that arrives at a pair of states
s1 and ss in each model respectively. From that point, if a

3We prepend a prefix to every occurrence of a fluent (e.g.,
adding domain1_ or domain2_ to the start of every fluent name)

* Any predicate sharing this name from the input models would
be renamed already).

(define (domain lightsl)

(:requirements
:negative—preconditions :typing)

(:types light)
(:predicates (on ?1 - light))

(:action turnon
:parameters (?1 - light)
:precondition (and (not (on ?1)))
:effect (and (on ?1))

(:action turnoff
:parameters (?1 - light)
:precondition (and (on ?1))
:effect (and (not (on ?1)))

)

(define (problem lighttprobl)
(:domain lightsl)
(:objects lightl light2 - light)
(:init (on lightl))
(:goal (and (on lightl)
(on 1light2))))

Figure 1: Simple planning model for switching lights

“fail action” is executable (and thus the merged model solv-
able), an action is applicable in one model but not the other.
We have thus found an candidate for why the two original
models do not align. Many such examples may exist, and the
planner will naturally find one of shorter length. We found
the when models misalign, the planning process to demon-
strate as such was very quick (sub-second solve time).

As an example, consider the “broken” model in Figure
4 for the light switch example discussed previously (only
the broken action is shown, and the rest corresponds to Fig-
ure 2). The error introduced mirrors the common mistake of
forgetting to delete a fluent. The found plan for the merged
domain is as follows:

1: (turnon light2)
2: (fail_turnon2 light2)

Notice that the final action, which achieves our
(failed) predicate, indicates that the action was allowed
to execute in the second domain (with the failed action), but
not the first. Without deleting the (off ?21) fluent in the
action effects, it erroneously allows the light to be both on
and off simultaneously. Also note that the solutions of the
two domains coincide — both, if given to a planner, would
come up with a correct solution to just turn on 1ight2. It
is only through the analysis we present here that the mis-
alignment between the two models is detected.

Given the assumptions we outline in Section 3.1, there are

(define (domain lights2)
; Same requirements and types

(:predicates
(on ?1 - light)
(off ?1 - light)

(:action turnon
:parameters (?1 - light)
:precondition (and (off ?1))

:effect (and (on ?1) (not (off ?1)))

(:action turnoff
:parameters (?1 - light)
:precondition (and (on ?1))

:effect (and (not (on ?1)) (off ?1))

)

(define (problem lighttprob2)
(:domain lights2)
(:objects lightl light2 - 1light)
(:init (on lightl) (off light2))
(:goal (and (on lightl)
(on light2))))

Figure 2: An alternative model for light switching

three potential sources of failure for model alignment:

1. Initial state.
2. Preconditions of an action.
3. Effects of an action.

A final “failure action” failure_act may be due to
a mismatch of the act preconditions or effects, but it also
may be due to another action’s effects or differences in ini-
tial state implementation. It is thus interesting to consider
how to use a found plan in order to diagnose a misalignment
between models.

Failed Action Precondition The most common source of
error found is an error in precondition of the failed action.
Consequently, the first step in analyzing a plan is to contrast
the preconditions of act in both of the models, and see if
there is a mismatch in what is implemented.

Previous Action Effect If the two models capture act
similarly, then the next most common issue leading to mis-
alignment is a previous action in the plan. Typically, can-
didate solutions that lead to a failure are short, and so the
space of actions that must be considered is limited. Further,
it would need to be an action that directly influences the
failed action act (through its preconditions), and so that re-
stricts the analysis further. It is worth noting, however, that
because we have generalized to actions with conditional ef-
fects, it may not be as simple as exploring the actions that

(define (domain lights3)
; Same requirements and types

(:predicates
(domainl_on ?x1 - light)
(domain2_on ?x1 - light)
(domain2_off ?x1 - light)
(failed))

; For space, only turnon actions shown

(:action turnon
:parameters (?1 - light)
:precondition (and
(not (domainl_on ?1))
(domain2_off ?1))
:effect (and
(domainl_on ?1)
(domain2_on ?1)
(not (domain2_off ?1))))

(:action fail_turnonl
:parameters (?1 - light)
:precondition (and

(not (domain2_off ?1))
(not (domainl_on ?1)))
:effect (and (failed)))

(:action fail_turnon?2
:parameters (?1 - light)
:precondition (and

(domainl_on ?1)
(domain2_off ?1))
:effect (and (failed)))
)

(define (problem lighttprob3)

(:domain lights3)

(:objects lightl light2 - light)

(:init
(domainl_on 1lightl)
(domain2_on lightl)
(domain2_off 1light2))

(:goal (failed)))

Figure 3: Merged light switching domain

correspond to those achieving act’s preconditions — rather,
it may be actions further back in the plan that lead to differ-
ent conditional effects firing.

Initial State The most rare source of errors is a misalign-
ment in the initial state implementation. Depending on the
planning problem being modeled, plans that demonstrate
this error may range in size (depending on how hard it is to
get to a point in the state space that relies on the erroneous
initial state). In a sense, this source of error can be seen as

(:action turnon
:parameters (?1 - light)
:precondition (and (off ?1))
:effect (and (on ?1))

)

Figure 4: An erroneous action definition for light switching

analogous to the “Previous Action Effect” errors, when one
views the initial state as the effects of a single action at the
start of a plan.

3.4 Potential Extensions

While the approach described above has led to a powerful
and usable system for model alignment already, there are
several key avenues for potential extensions to provide even
better analysis of the model’s misalignment. We detail some
of them here.

Precondition Analysis The only true failure mode of the
encoding above is for an action to be applicable in one
model, but not the other. Applicability, by its very definition,
is concerned with precondition satisfaction. Knowing which
aspect of the precondition has failed can lead to greater in-
sight. Currently, this is not offered, and users of the system
must infer such details manually.

Goal Analysis There is nothing in the above approach that
speaks to the implemented goal of the pair of input mod-
els. If there is a misalignment between them, this will not
be detected. One simple work-around would be to include a
“goal-achieving action” that can be executed only if the goal
is satisfied. Then, we would expect a plan for misalignment
to exist that finishes with this goal-achieving action (mean-
ing the goal holds in one model but not the other).

Plan Diversity We found that a simple failure may be
detected early on, and other issues with the models go
unchecked. One way to mitigate this would be to generate
a diversity of plans for the merged model. This may both (1)
surface multiple sources of error; and (2) demonstrate com-
monalities between the plans that point to a source of error
(e.g., all sharing an early action that has a misalignment on
the action’s effect).

Iterative Model Refinement Perhaps the most useful next
step would be to enable the iterative refinement of models. In
the spirit of (Chakraborti et al. 2017), we could (1) detect an
error using everything described above; (2) “fix” the model
that appears to have the error; and (3) re-start the process to
look for further sources of mis-alignment. Currently, this is
not offered as a possibility of the implementation.

3.5 Connection to Regular Bisimulation

Our work is largely motivated by, and intimately tied to, the
setting of PDDL. Despite the practical nature of the work,
there is a rich theory behind what is being analyzed — plans
in the merged model effectively provide us with a proof of
contradiction to the two models being a regular bisimula-
tion (Milner 1990). Regular bisimulation captures the notion

that there is a mapping between two transitions systems such
that labeled edges between states of the system coincide: ev-
ery sequence of labels in one must be mirrored in the other.
For two models that are regular bisimilar, the reachable state
space of our merged model represents this bijective map-
ping.

Unlike the common characterization of determining if
two transition systems are bisimilar, our setting begins with
a shared mapping on the initial state, and further benefits
from the labeled edges being uniquely defined (based on ac-
tion applicability). This means that we know precisely how
the two transition systems (coming from the reachable state
spaces of each model) would align. What is left for the plan-
ner to decide is (1) if they are indeed regular bisimilar (the
case when no plan exists); or (2) if they are not, a candidate
explanation as to why in the form of a sequence of actions.

While this connection is straight-forward at the outset, we
feel it is an important one to highlight: if we consider relaxed
or different forms of bisimulation, this may yield interest-
ing new encodings and model reconciliation settings beyond
what is considered here.

4 Evaluation

The method above was implemented using the Tarski library
for reading, synthesizing, and writing the PDDL involved
(Francés, Ramirez, and Collaborators 2018). The expressiv-
ity of PDDL handled is generally STRIPS-like domains with
negative preconditions and conditional effects. Richer forms
of effects would also be readily handled, since our method
does not require advanced manipulation of them: they are
simply merged. The preconditions of the actions need to be
negated for the “fail actions”, and this was readily handled
by the planner used for the compiled domain (Fast Down-
ward).

As a very grounded and useful application of the meth-
ods, we deployed the system as a primary driver for grading
a PDDL authoring assignment in an undergraduate Al class:
86 groups of 1-3 students were tasked with creating PDDL
models from a given specification, and the assignment in-
cluded assumptions of the form found in Section 3.1. Here,
we detail some of the results of this usage.

4.1 Assignment Setup

The assignment asked students to implement a model that
captured a hero going through a dungeon: locked corridors,
colour-coded keys/locks, limited-use keys, collapseable cor-
ridors, and final treasure chest location were all features of
the setting. The implementation involved devising (1) the
fluents for the domain; (2) the preconditions and effects for
4 actions (move, pickup, drop, unlock); (3) the initial and
goal states for 3 described problems; and (4) a novel problem
with limited rooms and a minimal shortest plan length (re-
quiring students to come up with a nesting of keys & locked
doors that forced long plans). Crucially, the students were
provided with a skeleton of the domain and problem files
that correspond precisely to the assumptions in Section 3.1.
Starting PDDL templates can be found in the session,

http://editor.planning.domains/#read_session=6Xczw7tbFC

http://editor.planning.domains/#read_session=6Xczw7tbFC

Problem Solve St-Val Ref-Val AlignsOrig Aligns Move

p01
p02

p03

Figure 5: Single Problem Analysis

4.2 Other Grading Indicators

The alignment to a reference model is only one aspect
used to support the grading of assignments. Other planning-
oriented functionality included,

1. Running student domain/problem files to generate plans.
2. Validating student-found plans with the reference model.
3. Validating reference plans with the student model.

4. Align to a model which included the most common error.

Typically, grading would stop at the first (i.e., running the
student’s models and manually inspecting). Steps 2 and 3 are
made possible as a result of the set of assumptions we put
in place. Specifically, the plans (grounded and parameter-
ized actions) should be valid in both models since the action
names and objects are the same. The final check permits fur-
ther analysis using the alignment technique described above.
This is particularly useful when a common error causes the
alignment to the original reference model to fail in a pre-
dictable and consistent way.

4.3 Summary of Usage

For the given assignment, teaching assistants were instructed
to document where errors occurred (e.g., pre (move)) and
further include which analysis led to the errors found. The
follow statistics summarize the findings:

Total # of Assignments 86

Assignments With Plan-based Errors 11
Assignments With Validation Errors 31
Assignments With Alignment Errors 67
Those With Multiple Alignment Errors 9

The introduction of this assignment grading methodol-
ogy demonstrated the clear advantage of using stronger
planning-based mechanisms in this setting. Nearly 3x more
errors were found with validation techniques (i.e., running
the found plans on another model) compared to just analyz-
ing the plans produced, and over 6x more errors were found
with the alignment analysis following the work presented in
this paper. Further, in several of the cases we had assign-
ments that would validate just fine (student plans work for
the reference model and vice versa), but the errors only man-
ifested in the alignment analysis. These subtle bugs are the
ones that historically go unchecked for PDDL assignments.

4.4 Example Application

As an example beyond the simple light switch, here we show
the analysis of a single submission. Figure 5 shows the in-
formation presented to the grader. Failures in “Aligns Move”
are due to the group not making the common error (align-
ment should only work for at most one reference model).
Failures for “Aligns Orig” can be seen in the example plan:

Mis—-alignment plan for p0l (version: orig):
(move locl2 loc22 cl222)

(pick-up loc22 keyl)

(move loc22 loc23 c2223)

(unlock loc23 c2324 red keyl)
(fail_unlock2 loc23 c2324 red keyl)
; cost = 5 (unit cost)

Upon inspecting the suspicious unlock example, it is clear
that the team neglected to change the locked status of the
corridor (it should be deleted as an effect):

(:action unlock
:parameters (...)
:precondition (and

(cor—-locked ?cor ?col)

-)

:effect (and
(cor-unlocked ?cor)
(when (key-two-use ?k)

(key—-one-use ?7k))
(when (key-one-use ?k)
(key—used-up 7k)

This is a common modeling error, and one that does not
affect any of the found plans for the setting. It is only through
the alignment that such errors become readily detectable.

S Summary

In this paper, we have introduced a novel encoding for the
task of aligning two planning models that share some key
aspects: objects, constants, types, and action signatures. The
models are free to define the predicates and action precon-
ditions/effects in any way and the alignment is conducted
through the systematic search in a merged state space for a
state where one model diverges from another. In our setting,
this means that a particular (shared) action is applicable in
one model for a found state, but not in the other model. The
fundamental principle captured by the merged model is reg-
ular bisimulation, and we found that modern planners are
very capable at finding counterexamples to two models be-
ing regular bisimular. Our approach has been successfully
deployed in a classroom setting, and has led to substan-
tial improvements in analytic support for the teaching staff
marking a PDDL authoring assignment. So not only does
our proposed method address a fundamental question in how
to provide certificates is misalignment for regular bisimula-
tion, but it also offers a powerful modeling or assessment
tool for comparing two planning models.

References

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In IJCAL

Fervari, R.; Velazquez-Quesada, F. R.; and Wang, Y. 2021.
Bisimulations for knowing how logics. The Review of Sym-
bolic Logic, 1-37.

Francés, G.; Ramirez, M.; and Collaborators. 2018. Tarski:
An Al Planning Modeling Framework. https://github.com/
aig-upf/tarski.

Haslum, P,; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers.

Helmert, M. 2006. The Fast Downward Planning System. J.
Artif. Intell. Res., 26: 191-246.

Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge-and-Shrink Abstraction: A Method for Generating
Lower Bounds in Factored State Spaces. J. ACM, 61(3):
16:1-16:63.

Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to
Relax a Bisimulation? In McCluskey, L.; Williams, B. C.;
Silva, J. R.; and Bonet, B., eds., Proceedings of the Twenty-
Second International Conference on Automated Planning
and Scheduling, ICAPS. AAAL

Milner, R. 1990. Operational and Algebraic Semantics of
Concurrent Processes. In van Leeuwen, J., ed., Handbook
of Theoretical Computer Science, Volume B: Formal Models
and Semantics, 1201-1242. Elsevier and MIT Press.

Muise, C.; and Lipovetzky, N. 2015. Unplannability IPC
track. Proc. of the 2015 Works. on the IPC (WIPC 2015).

https://github.com/aig-upf/tarski
https://github.com/aig-upf/tarski

	Introduction
	Background
	Approach
	Specification Assumptions
	Encoding
	Interpreting Solutions
	Potential Extensions
	Connection to Regular Bisimulation

	Evaluation
	Assignment Setup
	Other Grading Indicators
	Summary of Usage
	Example Application

	Summary

