
Learning Macro-Actions to Improve the Relaxed Planning Graph Heuristic
Dancheng Gao, Andrew Coles, Amanda Coles

Department of Informatics
Faculty of Natural, Mathematical and Engineering Sciences

King’s College London
30 Aldwych

London WC2B 4BG
dancheng.gao@kcl.ac.uk, andrew.coles@kcl.ac.uk, amanda.coles@kcl.ac.uk

Abstract

Research has shown that using macro-actions in planning of-
ten helps to improve the performance of planners. However,
their use comes at the cost of an increased branching factor
during search, which may affect the planners’ effectiveness
adversely. Since macro-actions also influence heuristic com-
putation, removing them from search while keeping them in
the heuristic may still be able to help improve the planner’s
performance. This paper aims to assess the performance of
planning under the Relaxed Planning Graph heuristic when
macro-actions are excluded from the search process. Use-
ful macro-actions for benchmark domains were learned us-
ing two different approaches, one systematic and one inspired
by ParamILS. Empirical evaluation shows improvement in a
number of domains.

1 Introduction
Current AI planners have been proved successful in solv-
ing a range of problems. However, harder problems can still
present a challenge to scalability, and macro-actions are one
option to help with this (Fikes, Hart, and Nilsson 1972). A
macro-action is a meta-action built from a sequence of ac-
tion steps that, when applied, generates a successor state
equivalent to applying each action in turn (Korf 1985). By
performing search with a domain augmented with these
macro-actions, the result is a search space that is broader
– there is an increased branching factor – but, all being
well, needs to be explored less deeply. This trade-off be-
tween breadth and depth underpins the importance of choos-
ing good macro-actions.

In addition to their historic intention of modifying the
search space directly (Dawson and Siklóssy 1977), extend-
ing a domain with macro-actions influences the heuristic,
and may modify planner performance in this way (Coles and
Smith 2007). But, a process for learning macro-actions for
use in a given domain, with a given planner, may well then
be conflating these two effects: the benefit or drawback of
a given macro-action may be due to its effect on the search
space, or the heuristic, or both.

In this paper, we explore the effect of macro-actions on
the planning process when they are included in the domain,
but are excluded from search. This removes any effect on
branching factor, with the focus being on macro-actions that
support better heuristic guidance. Using a macro-action gen-

erator that is able to generate and evaluate macro-actions
for arbitrary domains, we describe two learning methods –
one more systematic, one using a local-search approach in-
spired by ParamILS (Hutter et al. 2009) – and use these to
learn useful macro-actions with the Fast Downward plan-
ner (Helmert 2006). Experiment results show that the learnt
macro-actions can help to improve the performance in mul-
tiple benchmark domains.

2 Background
In this paper we consider deterministic classical PDDL (Fox
and Long 2003) planning, with our focus being on quickly
finding a plan that achieves the desired goals. A popular ap-
proach to solving planning problems is to perform forward
search over a state-space defined by the actions in a planning
domain, and guided by a heuristic. The labels along a path
from the initial state to a state in which the goals are satisfied
is a plan.

2.1 Heuristics
In planning problems, a heuristic provides an estimate of
the distance from the current state to the goal state (McDer-
mott 1996). As calculating the real heuristic value is a NP-
hard problem (Bonet and Geffner 2001), a relaxed version
of the original planning problem is commonly used to com-
pute a heuristic value. A number of heuristics have been pro-
posed; we use the Relaxed Planning Graph (RPG) heuristic
in this work (Hoffmann 2001), which is based on a delete-
relaxation (all negative effects of the actions are ignored).
The RPG heuristic can find a (non-optimal) relaxed plan in
polynomial time, and the number of actions in this relaxed
plan serves as a domain-independent heuristic value.

One planner that can make use of the RPG heuristic
is Fast Downward (Helmert 2006). Fast Downward trans-
lates PDDL domains into the SAS+ formalism (Bäckström
and Nebel 1995) before the actual search process (Helmert
2009). SAS+ allows planning tasks to be expressed us-
ing multi-valued state variables, facilitating analyses (and a
compact state representation) that improve planner perfor-
mance.

2.2 Macro-actions
As a domain-independent heuristic will work more or less
well in different domains, one option to improve planner



performance in a specific domain is to learn macro-actions.
A macro-action in AI planning is a meta-action built from
a series of actions. Applying a macro-action to a state is
equivalent to applying the sequence of actions that build up
the macro-action. Macro-actions typically influence planner
performance in two ways:

• By modifying the search space: states have additional
successors corresponding to the application of macro-
actions. Thus, by learning macro-actions that are based
on action sequences commonly seen in solution plans,
one can aim to reduce search effort by providing short-
cuts through the search space.

• By modifying the heuristic: with a heuristic such as the
RPG heuristic that is based on the given domain, the ad-
dition of macro-actions to a domain will influence the
heuristic.

A caveat for the use of macro-actions is that more actions
need to be considered when finding the successors of each
state. This means that the branching factor in each iteration
of the search process is increased and more states need to
be evaluated. Too many macro-actions can result in a drastic
increase in the search space breadth, and a severe decrease
in the planner’s performance.

2.3 Generating macro-actions for arbitrary
planners and domains
Several macro-actions generation techniques have been ex-
plored in the past, including off-line learning such as Macro-
FF (Botea et al. 2005; Botea, Müller, and Schaeffer 2004),
and online generation such as Marvin (Coles and Smith
2007). Wizard is another approach, learning macro-actions
using a genetic framework. Wizard generates macro-actions
by using the original domains to solve small problems, and
lifting action sequences from the plans (Newton and Levine
2007b; Newton et al. 2007). Since macro-actions not used
in any plans can still help to improve the planner’s perfor-
mance, Wizard is also designed to learn unobserved macro-
actions. This is done by evolving the observed macro-actions
(Newton and Levine 2007a). More recent approaches in-
clude MEvo (Vallati, Chrpa, and Serina 2020), which dy-
namically selects effective macro-actions from a given pool,
and a new technique to generate Critical Section macros
(Chrpa and Vallati 2021).

2.4 ParamILS
As complex algorithms have many parameters, with mul-
tiple possible values, it is usually too time-consuming to
exhaustively look for the best combination of parameters.
ParamILS (Hutter et al. 2009) approaches this challenge by
using local search to explore the parameter space of an al-
gorithm to identify parameter settings that yield good per-
formance. To summarise the terminology and parameters of
ParamILS:

• θ: a single configuration (combination of parameters).

• Incumbent: the best performing configuration.

• κmax: maximal allowed run time of a configuration. The
cutoff run time of a configuration must be equal to or
lower than this value.

• objective(θ, N, optional parameter bound): computes the
mean run time of a configuration over N number of
problem instances. The optional parameter bound is the
maximum allowed objective value. When this value is
not specified, a large integer value is assumed to be the
bound.

• dominates(θ1, θ2): configuration θ1 dominates θ2 when
the N value of θ1 is at least as large as that of θ2, and
when the objective value of θ1 is smaller or equal to that
of θ2.

• Iterative first improvement(θ): a process to recursively
find the best configuration θils in the neighbourhood of
θ.

• Neighbourhood(θ): the neighbourhood of a configuration
θ is defined by the set of all configurations that differ
from θ in one parameter.

• s: the number of times to choose a configuration during
perturbation.

• prestart: the probability to restart the process.
• r: the number of configuration considered before the iter-

ative first improvement process.

ParamILS makes use of randomness and an adaptive cap-
ping mechanism in focused local search, and tries to find
the best combination in a short period of time. Configura-
tions are compared using objective values. The N number
increases when two configurations have the same N value,
and when one configuration is dominating the other. An ini-
tial incumbent is chosen from a random r number of configu-
rations. Iterative first improvement is then performed on the
chosen incumbent, θils. The perturbation process then starts
by randomly choosing a configuration from the neighbour-
hood of θils s number of times, and performing iterative first
improvement on the chosen configuration. If the resulting
configuration θ of iterative first improvement is better than
θils, θils is replaced by θ. θils can be replaced by a random
configuration with the probability prestart, until the termina-
tion criterion is met. Empirical results have shown that as
compared to the default input configurations, ParamILS is
able to find significantly better configurations for various
SAT algorithms and CPLEX benchmark sets.

3 Generating Macro-actions
Macro-actions are not originally included in the benchmark
domains. Therefore, in order to assess the effect of macro-
actions, the domains have to be processed to generate macro-
actions, and these are embedded into an extended domain
definition that we refer to as an augmented domain. The
macro-action generation process we used is briefly described
below:

1. Merge a sequence of two actions together, with the pre-
conditions being the weakest preconditions of the se-
quence (those that must be true for it to succeed) and
the effects being the strongest effects (changes to the



states that necessarily occur once the sequence has been
applied). By way of example, the Gripper domain com-
prises actions to ‘pick’ up and ‘drop’ balls, and to ‘move’
a robot from one room to another. If the sequence to
‘pick’ then ‘move’ is merged, and the parameters of
‘pick’ are renamed to ensure they are distinct to those
of ‘move’, we obtain the following:

(:action macro-pick-and-move

:parameters (?b_0 - ball ?g_0 - gripper

?p_0 ?fp ?tp - place)

:precondition (and

(ball-at-place ?b_0 ?p_0)

(robot-at-place ?p_0)

(gripper-empty ?g_0)

(robot-at-place ?fp)

(not (= ?fp ?tp)))

:effect (and

(not (ball-at-place ?b_0 ?p_0))

(not (gripper-empty ?g_0))

(ball-at-gripper ?b_0 ?g_0)

(not (robot-at-place ?fp))

(robot-at-place ?tp)))

2. Create several instances of this macro action, consid-
ering the different combinations of parameter bindings.
Without referring to a solution plan and/or problem file,
it is impossible to know whether same-type parameters
should be assigned the same or different objects at plan-
ning time. Therefore, all possibilities should be consid-
ered. For each pair of parameters ?a and ?b with the same
type, create a pair of predicates (= ?a ?b) and (not
(= ?a ?b)). In the ‘macro-pick-and-move’ example,
the following pairs will be created:

pair 1: (= ?p_0 ?fp) , (not (= ?p_0 ?fp))

pair 2: (= ?fp ?tp) , (not (= ?fp ?tp))

pair 3: (= ?p_0 ?tp) , (not (= ?p_0 ?tp))

An instance of the macro action then has one predicate
from each pair, so in this example, there are 8 possible
combinations. For instance:

(not(= ?p_0 ?fp)) (not(= ?fp ?tp)) (= ?p_0 ?tp)

For each combination, take the base macro action, and
add the predicates needed to define the combination. The
result here, thus, is 8 macro-actions, differing only in
terms of the parameter relationships between the under-
lying actions.

3. Refine the created macro instances, again retaining only
weakest preconditions and strongest effects – these may
bave changed once the parameter bindings have been
set. As a simplification, if two parameters are set to be
equal in the precondition, one of the parameters will
be replaced by the other throughout the action, and the
equality precondition removed. An example of the re-
fined macro instance generated after this step, using the
previous parameter constraint combination, is shown be-
low:

(:action macro-pick-and-move_7

:parameters (?b_0 - ball ?g_0 - gripper

?p_0 ?fp - place)

:precondition (and

(ball-at-place ?b_0 ?p_0)

(robot-at-place ?p_0)

(gripper-empty ?g_0)

(robot-at-place ?fp)

(not (= ?fp ?p_0)))

:effect (and (not (ball-at-place ?b_0 ?p_0))

(not (gripper-empty ?g_0))

(ball-at-gripper ?b_0 ?g_0)

(not (robot-at-place ?fp))

(robot-at-place ?p_0)))

4 Learning Useful Macro-actions
Systematically

We begin by describing a way of learning macro actions to
explore whether it is possible to use these to improve plan-
ner performance without being used in search. We do not
refer to solution plans in our approach here – as our macro-
actions are not to be used in search, it follows that good
macro-actions do not necessarily resemble solution plans.
Hence, we use a multi-round approach that in the first round
performs a systematic evaluation of all macro-actions com-
prising two primitive actions; and run this for a number of
iterations to expand the number of macro-actions in the do-
main further. The learnt macro-actions are then evaluated us-
ing larger problem files to assess their performance.

4.1 Learning Process
Systematic learning consists of different rounds. The initial
round only considers macro-actions that are formed by us-
ing two actions from the original domain. Each subsequent
round will make use of the result of the previous round, i.e.
the best performing domain (including its macro-actions) of
one round is used as the basis for macro-actions in the next.
Note that since the best domain after each round is fixed
to be used as a basis for subsequent rounds, this systematic
learning approach is not an exhaustive one. In this paper, the
systematic learning process is run for three rounds for each
benchmark domain.

The best performing domain of each round is selected by
comparing total planning times on three training problems.
Fast Downward first translates the augmented domain into
an SAS+ output file. The SAS+ output is checked to see if
it contains any macro-actions. If no macro-actions are in-
cluded, it means that the macro-actions in the current aug-
mented domain were inconsistent and/or not useful, so the
augmented domain will therefore be discarded. Each train-
ing problem is solved once for each augmented domain, with
a time limit of 900 seconds. Once all training problems are
solved for an augmented domain, its total planning time will
be computed. After all problems have been solved for all
augmented domains, the augmented domain with the lowest
total planning time for all training problems will be selected
as the best domain of this round.

The initial objective of this paper is to find macro-actions
that are useful during heuristic computation. This kind of
macro-actions are more likely to change the initial heuris-
tic values of the planning process. Therefore, depending on
the experimental setups, the initial heuristic value of a plan-



Baseline
Original Macro Translator-only No-initial-checking 5s

Depots 9.93 14.97 12.17 13.72 14.73
Driverlog 16.21 15.55 15.46 18.74 18.46

Rovers 17.17 12.25 16.89 16.88 17.38
Satellite 17.30 16.75 18.59 18.17 -

ZenoTravel 18.96 17.98 19.44 18.31 17.00

Table 1: IPC scores of the different systematic learning configurations for benchmark problems.

Baseline
Original Macro Translator-only No-initial-checking 5s

Depots 11.58 22.35 14.56 18.60 22.11
Driverlog 19.01 25.25 21.35 29.79 29.24

Rovers 19.56 15.10 20.20 20.48 21.80
Satellite 20.35 23.39 26.71 25.70 -

ZenoTravel 26.79 27.78 30.58 28.25 26.63

Table 2: IPC scores of the different systematic learning configurations for all evaluating problems (including both benchmark
and more complex problems).

ning problem may be checked to determine whether an aug-
mented domain is worth examining or not.

4.2 Experimental Setups
Fast Downward is the planner used for all experiments.
The search method selected is lazy greedy best first search,
and the heuristic method used is the RPG heuristic (the
‘FF’ heuristic). The only modification made to the planner
is identifying macro-actions and excluding them from the
search process.

The domain used for the experiments are IPC2002 (Long
and Fox 2003) benchmark domains, namely Depots, Driver-
log, Rovers, Satellite, and ZenoTravel. Three problem files
that take less than 30 seconds to solve with the original do-
main model are randomly generated using problem genera-
tors, to be used as training problems. All experiments used a
2GHz Xeon E5-2660 CPU, with an 8GB memory limit.

Multiple sets of experiments are run using different learn-
ing configurations. Each set of experiments is run for three
rounds for each domain. The best planning time of a round
is the total planning time of the best performing domain of
the round. The names and set-ups of these configurations are
listed below:

1. Original: the original, unmodified domain.

2. Baseline:Macro: including learnt macro-actions, with
the initial heuristic values being checked during the
learning process: for a given problem instance, if the ini-
tial heuristic value of an augmented domain is the same
as that of the original domain, the augmented domain is
assumed to have the same planning time as the original
domain. The problem files used for the learning process
originally take 15-30 seconds to solve.

3. No-initial-checking: the initial heuristic values are not
checked during the learning process. The problem files

used for the learning process originally take 15-30 sec-
onds to solve.

4. 5s: the problem files used for the learning process origi-
nally take 5-10 seconds to solve. These problem files are
randomly generated using the problem generators.

For each benchmark domain, we compare the best total
planning time on the three training problems after each of
the three rounds, and the best is selected as the learnt do-
main. Benchmark problems as well as more complex prob-
lems that originally take more than 70 seconds to solve are
used for evaluating the learnt domains. The more complex
problems are randomly generated using problem generators.
As our focus is on reducing planning time, our overall eval-
uation metric is that of the ‘agile’ track in the 2014 IPC1,
where the score of a given planner on a given problem is 0
if it did not solve it, or:

1/(1 + log(T/T ⋆))

...where T ⋆ is the lowest planning time seen by any plan-
ner, and T is that of the current planner. Any times below 1
second get the same score.

During evaluation, it is observed that apart from chang-
ing the initial heuristic values of planning problems, macro-
actions are also able to change the translated SAS+ encod-
ing. Therefore, to assess the effect of macro-actions on SAS+

encoding, an additional Baseline:Translator-only configu-
ration is used where macro-actions are removed from the
SAS+ outputs after translation. In this way, macro-actions
are only allowed to change the SAS+ encoding, and have no
effect on the heuristic computation process.

4.3 Experiment Results
Table 1 shows the IPC scores of the benchmark competition
problems for each of our evaluation configurations. Note the

1https://helios.hud.ac.uk/scommv/IPC-14/rules.html



Original Round 1 Round 2 Round 3

Depots 108.53 33.38 1.45 13.78
Driverlog 91.85 7.03 4.08 6.30

Rovers 98.49 24.11 0.12 0.10
Satellite 112.17 46.67 22.71 20.01

ZenoTravel 109.89 58.67 55.64 27.59

Table 3: Best planning time (seconds) of each learning
round, when the initial heuristic values are checked during
the learning process.

IPC scores of our augmented domains may be worse than the
original domain. This is because a significant portion of the
benchmark problems are small problems that take less than
1 seconds to solve. Including macro-actions for these prob-
lems will create an overhead that slows down the planning
process, since the translator and heuristic need more time to
consider macro-actions. To better illustrate performance on
non-trivial problems, we thus randomly generated additional
problems that originally took more than 70 seconds to solve.
The IPC scores when more complex problems are included
are shown in Table 2.

4.3.1 The effect of macro-actions on the performance of
the planner In this set of experiments, the Baseline:Macro
configuration is used. The planning times of the original
domain and those of the augmented domains with macro-
actions are compared. The purpose of this set of experiments
is to see whether the learnt macro-actions are able to im-
prove the performance of the planner.

Table 3 shows the best planning time of each learning
round on the training problems, showing that the perfor-
mance of macro-actions on these problems is significantly
improved compared to the original domain. In Table 1 and 2,
by comparing the Original column and the Macro column,
it can be seen that the Depots domain has shown improve-
ments in both the benchmark and more complex problems,
while the Driverlog, Satellite, and ZenoTravel domains only
have improvements in the more complex problems. The
learnt macro-actions are not useful in the Rovers domain.
Nonetheless, this serves as first confirmation that it is possi-
ble to find macro-actions that are useful outwith search.

4.3.2 The effect of macro-actions on the SAS+ encod-
ing As noted in section 4.2, macro-actions can change the
SAS+ translation of a planning problem. Since Fast Down-
ward relies on SAS+ encoding to solve planning problems,
the change in SAS+ output from the translator can result in
different planner performance. Therefore, the purpose of this
set of experiments is to examine whether the change in SAS+

encoding brought about by the learnt macro-actions can help
to improve the performance of the planner. The same macro-
actions learnt in section 4.3.1 are used again for evaluation,
but any ground macro-actions are removed from the SAS+

output from the translator prior to running the planner itself.
The evaluation results can be found in the Translator-only
column in Table 1 and 2.

By looking at the Original column and the Translator-only

Round 1 Round 2 Round 3

Depots 2.31/16.12 11.25/33.23 22.81/52.80
Driverlog 2.69/9.17 6.52/28.15 22.45/49.10

Rovers 15.75/82.42 31.11/191.62 67.96/272.28
Satellite 4.15/8.36 6.21/10.62 35.67/18.79

ZenoTravel 23.37/38.53 70.99/52.48 128.55/55.51

Table 4: Comparing the learning times (hours) of each round
for Baseline/No-initial-checking configurations.

column in Table 1 and 2, the planning times of the original
SAS+ encoding and those of the augmented SAS+ encoding
without macro-actions are compared. It can be seen that the
Depots, Satellite, and ZenoTravel domains have improve-
ments in both the benchmark and more complex problems,
while the Driverlog and Rovers domains only have improve-
ments in the more complex problems. Either way, even with-
out the heuristic having access to macro-actions, the change
of encoding alone can improve planner performance

Much as adding macro-actions to search can reduce plan-
ner performance, by increasing the branching factor, adding
macro-actions for use by the heuristic can increase the over-
heads in computing heuristic values. To explore this trade-
off, by comparing the Macro and Translator-only columns in
Tables 1 and 2, it can be seen that for the Rovers, Satellite,
and ZenoTravel domains, macro-actions are more effective
in improving just the SAS+ encoding, whereas for the other
two domains the best performance is when these are avail-
able for use by the heuristic. Different domains have differ-
ent performance due to the fact that mixed types of macro-
actions are learnt during the learning process: some of them
are more useful in the heuristic, while the others are more
useful in improving the SAS+ encoding.

4.3.3 Including macro-actions with the same initial
heuristic value in the learning process In previous ex-
periments, augmented domains with the same initial heuris-
tic value for the same problem instance are assumed to have
the same planning time. This is a short-cut with the aim to re-
duce learning time, but may exclude macro-actions – yield-
ing different heuristic values in other states – that actually
have better planning times. As a result, it is possible that
some useful macro-actions are left out during the learning
process in previous experiments. In this set of experiments,
the No-initial-checking configuration is used – all macro-
actions are evaluated in full, regardless of initial state heuris-
tic values. This will, however, significantly increase the time
taken to learn macro-actions.

The learning times for each round of the learning process
for both Baseline and No-initial-checking configurations are
listed in Table 4; as can be seen, the No-initial-checking
configuration has higher learning times for most domains.
The exceptions are Satellite and ZenoTravel, where the No-
initial-checking configuration has a shorter learning time
in the last or second last rounds. This is because different
macro-actions are learnt in the previous rounds, which leads
to different number of macro-actions being generated in the
next round.



By comparing the Macro column and the No-initial-
checking column in Table 1 and 2, it can be seen that the
macro-actions learnt for the Driverlog, Rovers, Satellite,
and ZenoTravel domains are better than those produced by
the Baseline configuration for both benchmark and more
complex problems. The learnt macro-actions for the De-
pots domain are worse than those learnt by the Baseline
configuration, but the planner still has better performance
than the original domain. The results show that the No-
initial-checking can generally produce better macro-actions
than the Baseline configuration, at the cost of significantly
longer learning times. The only exception is the Depots do-
main. This is because many macro-actions have similar per-
formance during the learning process. As a result, differ-
ent macro-actions may be learnt in the first round, which
leads to different macro-actions being generated in the sub-
sequent rounds. Therefore, there is a chance that the No-
initial-checking approach ultimately generates worse macro-
actions than the Baseline approach.

4.3.4 Using smaller problems to learn macro-actions
In order to reduce the time taken to learn macro-actions,
smaller training problems are used. In this set of experi-
ments, the 5s configuration is used, which means that the
generated training problems originally take 5-10 seconds to
solve. The experiments aim to find out whether using smaller
training problem files has an impact on the performance of
the planner.

By comparing the Macro column and the 5s column in
Table 1 and 2, it can be seen that whilst smaller problems did
not allow any useful macro-actions to be learnt in Satellite,
the macro-actions produced by this configuration were better
for Depots, Driverlog and Rovers, and slightly worse for the
ZenoTravel domain.

5 Learning Useful Macro-actions Using Local
Search

Not all learnt macro-actions from the systematic approach
perform well during evaluation. Especially for the Rovers
domain, the learnt macro-actions provide limited or no im-
provement over all configurations. This can be due to the fact
that only three problem files are used for learning, which
can lead to over-fitting issues. Therefore, including more
problem files during the learning process may help to gen-
erate more useful macro-actions. However, our systematic
learning process is time consuming, as many macro-actions
have to be considered. To address this problem, this paper
presents a second learning method inspired by ParamILS.

5.1 Learning Process
Some of the definitions from ParamILS that are modified
during the learning process are listed below:

• θ: a single domain. Augmented domains with various
number of macro-actions are the domains that need to
be tested.

• Incumbent: the best performing domain.
• κmax: the maximal captime is set to 30 seconds.

• objective(θ, N, optional parameter bound): the objective
value of a domain is calculated by either the mean or the
median planning time across N training problems. Since
there is at most 20 training problems, the N number is
capped at 20.

• dominates(θ1, θ2): for θ1 to dominate θ2, the objective
value of θ1 has to be significantly better than that of θ2.
When the objective value is calculated by the mean plan-
ning time, θ1 and θ2 are significantly different if the dif-
ference between the sum of planning times of θ1 and that
of θ2 across N problems is at least [d / (total number of
training problems / N)]. When the objective value is cal-
culated by the median planning time, θ1 and θ2 are signif-
icantly different if the difference between their objective
values is at least 1.

• Neighbourhood(θ): The original domain is used to gener-
ate an initial set of macro-actions which only consist of
two primitive actions. The neighbourhood of a domain
consists of the following two types of domains:
1. Remove one macro-action from the current domain,

add one other macro-action from the initial set of
macro-actions.

2. Keep all macro-actions in the current domain, add
one other macro-action from the initial set of macro-
actions.

Additionally, we set a limit m to be the maximum num-
ber of macro-actions allowed in a domain.

• Iterative first improvement(θ): since the neighbourhood
sizes are too large for the augmented domains, the pro-
cess is modified to only consider a randomly selected n
number of neighbours, rather than iterating through the
entire neighbourhood. (NB at least one neighbour of each
of the two types identified above is kept.)

• s: the value is set to 3.
• prestart: the value is set to 0.01.
• r: the value varies for different experiments.

The learning process terminates either when the current
incumbent is performing significantly better than the origi-
nal domain, or when domains have more than m number of
macro-actions.

5.2 Experimental Setups
The same domains, planner, and evaluating problems used
for systematic learning are used again in this learning ap-
proach. Multiple sets of experiments are run using different
configurations. Since randomness is involved in this learning
method, each set of experiments is run 10 times to improve
the accuracy of the experiments. The best learning outcome
out of 10 runs for each domain is selected for evaluation. An
ablation study is to assess the impact of different parameters
on the learning outcomes. The names and set-ups of these
configurations are listed below:

1. Original: The original unmodified domain
2. Baseline: The r, d, m, and n values are set to 20, 10, 5, and

10 respectively. Objective values calculated using mean
planning times. Twenty problem files that can be solved



r d m n
Original Baseline 5 10 5 20 1 3 5 20 3-problems Longer-macros

Depots 9.93 10.58 10.32 9.90 9.85 9.91 10.23 9.96 9.91 9.90 14.52 9.91
Driverlog 16.21 16.18 16.25 16.16 16.17 16.79 15.98 16.13 16.15 16.14 17.41 16.14

Rovers 17.17 17.28 17.13 17.06 17.05 17.10 17.05 17.09 16.96 17.88 14.46 17.93
Satellite 17.30 17.89 16.46 17.86 17.77 17.81 17.87 18.11 17.73 18.67 17.98 18.52

ZenoTravel 18.96 17.23 18.68 18.03 18.68 17.89 18.05 18.41 18.52 17.45 17.18 18.07

Table 5: IPC scores of the different ParamILS-inspired learning configurations for benchmark problems, when objectives are
calculated by mean.

r d m n
Original Baseline 5 10 5 20 1 3 5 20 3-problems Longer-macros

Depots 11.58 11.89 11.99 11.54 11.46 11.55 11.54 11.61 11.55 11.55 22.77 11.55
Driverlog 19.01 19.26 20.56 18.94 19.25 25.47 22.67 18.90 19.97 18.92 22.53 24.76

Rovers 19.56 24.09 19.60 20.90 24.55 20.14 24.55 18.75 20.47 26.77 15.78 24.13
Satellite 20.35 28.67 23.13 26.19 28.46 28.53 25.84 25.38 27.28 25.59 25.77 26.56

ZenoTravel 26.79 27.19 26.41 28.30 26.46 27.92 28.38 29.07 26.23 28.12 26.87 28.44

Table 6: IPC scores of the different ParamILS-inspired learning configurations for all evaluating problems (including both
benchmark and more complex problems), when objectives are calculated by mean.

by the original domain under 30 seconds are randomly
generated to be the training problems.

3. r-test: r values are set to 5 and 10 respectively.
4. d-test: d values are set to 5 and 20 respectively.
5. m-test: m values are set to 1 and 3 respectively.
6. n-test: n values are set to 5 and 20 respectively.
7. Median: Median instead of mean planning times are used

as objective values.
8. 3-problems: Only 3 problem files are used for learning.

The 3 problem files are the same as those used in system-
atic learning.

9. Longer-macros: For each domain θ that requires neigh-
bourhood generation, use all the macro-actions in θ to
generate a new set of longer macro-actions. The aug-
mented set of macro-actions consists of the initial set of
macro-actions, and all newly generated macro-actions.
The neighbourhood of θ is modified to include the fol-
lowing two types of domains:

(a) Remove one macro-action from the current domain,
add one other macro-action from the augmented set of
macro-actions.

(b) Keep all macro-actions in the current domain, add one
other macro-action from the augmented set of macro-
actions.

5.3 Experimental Results
5.3.1 Learning macro-actions using this approach In
this set of experiments, the Baseline configuration is used,
and compared to Original. The aim of this set of experiments
is to demonstrate that the new learning methods is able to
produce useful macro-actions.

As seen from Table 5, the Baseline configuration is able
to provide useful macro-actions for the benchmark problems
for the Depots, Rovers, and Satellite domains. The effect on

benchmark problems is not very obvious for the Driverlog
domain, and the Zenotravel domain has worse performance.
For the more complex problems, as shown in Table 6, all do-
mains have better performance as compared to the original
domain. This proves that the new learning method is able
to produce useful macro-actions, especially for larger prob-
lems. This is consistent with the observation made in Section
4.3, where macro-actions only paid off on the more complex
problems.

5.3.2 Sensitivity tests for r, d, m, and n The values of r,
d, m, and n are varied to inspect their impact on the learning
outcome. As the benchmark problems are too small to be
used for meaningful evaluation here, our focus will be on
the more complex problems.

By comparing the r column with the Baseline column in
Table 6, it can be seen that the performance of the Rovers
and Satellite domain improves as the r value increases. The r
value does not have significant impact on the other domains.

By comparing the d column with the Baseline column in
Table 6, it can be seen that the Driverlog and ZenoTravel
domains have better performance as the d value increases.
The Rovers domain has worse performance as the d value
increases. The d value dose not have significant impact on
the other domains.

By comparing the m column with the Baseline column
in Table 6, it can be seen that only the Depots domain has
slightly better performance as the m value increases – learn-
ing always terminated with fewer than 5 macro-actions.

By comparing the n column with the Baseline column in
Table 6, it can be seen that the performance of the Rovers
and ZenoTravel domain improves as the value of n increases.
It does not have significant impact on the other domains.

5.3.3 Compute objective values using median This set
of experiments uses the Median configuration. Since a large
integer value is used for the planning time of any unsolvable



Median
Original Baseline 3-problems Longer-macros

Depots 9.93 12.75 10.90 12.90
Driverlog 16.21 16.76 15.92 16.92

Rovers 17.17 17.33 16.88 17.33
Satellite 17.30 17.89 18.57 17.67

ZenoTravel 18.96 17.92 17.61 -

Table 7: IPC scores of the different ParamILS-inspired
learning configurations for benchmark problems, when ob-
jectives are calculated by median.

Median
Original Baseline 3-problems Longer-macros

Depots 11.58 16.85 13.55 18.84
Driverlog 19.01 25.40 22.53 24.76

Rovers 19.56 24.12 19.40 24.10
Satellite 20.35 28.67 25.71 27.93

ZenoTravel 26.79 30.88 29.24 -

Table 8: IPC scores of the different ParamILS-inspired
learning configurations for all evaluating problems (includ-
ing both benchmark and more complex problems), when ob-
jectives are calculated by median.

problems during the learning process, using mean planning
time as objective values may lead to useful macro-actions
being discarded if the choice of training problems was un-
fortunate. Therefore, median planning time may be a bet-
ter way to calculate objective values, since it is not affected
by extreme values. This set of experiments aims to assess
whether using median instead of mean to compute objective
values has any impact on the performance of the planner.

By comparing the Baseline columns in Table 7 and 8 with
the Baseline columns in Table 5 and 6, this approach pro-
vides better results for almost all domains for both bench-
mark and the more complex problems. The only exception
is the Rovers domain, where the performance for the more
complex problems is slightly worse than that of the Baseline
configuration. However, its performance is still much better
than the original domain. Hence, on the whole, median run
time is a better way to compute objective values.

5.3.4 Use a smaller number of training problems In
this set of experiments, the 3 problems from the system-
atic learning approach are used instead of the 20 training
problems. This set of experiments aims to assess whether
the local search learning method is able to produce useful
macro-actions with a small number of training problems. By
comparing the 3-problems column and the Baseline column
in Table 5 and 6, it can be seen that the learning outcome be-
comes significantly worse for the Rovers domain, where the
performance of the learnt augmented domain is worse than
that of the original domain. The Satellite and ZenoTravel do-
mains show worse performance than the Baseline approach,
but the performance is better than that of the original do-
main. The 3-problems approach works well on the Depots
and Driverlog domains. Especially Depots, the scores are

much higher than those of the other approaches which use 20
training problems. This is because the useful macro-actions
for the Depots domain make some of the 20 training prob-
lems unsolvable with the afforded time and memory limits.
Since the objective value of an augmented domain is calcu-
lated by mean run time, and a large integer value is used as
the planning time when a training problem can not be solved,
the useful macro-actions are discarded during the learning
process due to large objective values. This issue is avoided
when only 3 training problems are used, as the useful macro-
actions are able to solve all of the training problems.

By comparing the 3-problems column and the Baseline
column in Table 7 and 8, it can be seen that the 3-problems
approach is always worse than the Baseline approach when
the objectives are calculated by median, even for the Depots
domain. This is because the median of just 3 planning times,
rather than 20, is a poor indicator of overall performance.

5.3.5 Include longer macro-actions in the neighbourhood
We observed with the systematic learning method that use-
ful macro-actions may comprise more than two primitive ac-
tions. Previous sets of experiments here only include the ini-
tial set of macro-actions, which may not be enough to iden-
tify the most useful macro-actions.

By comparing the Baseline column and the Longer-
macros column in Table 5 and 6, it can be seen that the
approach provide significantly better macro-actions for the
Driverlog and ZenoTravel domains. The other domains have
similar or worse performance. By comparing the Median
Baseline column and the Longer-macros column in Table 7
and 8, it can be seen that longer-macros only provides bet-
ter macro-actions for the Depots domain when the objectives
are calculated by median. No useful macro-actions are found
for the ZenoTravel domain: the longer macros in the neigh-
bourhood reduced the exploration of shorter ones, which
were a better choice here.

6 Conclusions and Future Work
This paper shows that it is possible to learn macro-actions
that can improve planner performance, even while excluded
from search. We presented two ways of learning such
macros, and were able to show improved performance in
a range of benchmark domains. Our ‘baseline’ configura-
tions of these offer good performance overall, with some
further gains or losses to be had on a domain-by-domain
basis as one varies the exact training configuration (hyper-
parameters, training problems).

In future work, we will continue to explore how best to
configure our local search learning process. For example,
different termination criteria may be examined to assess
their effect on the macro-actions learnt. We will also explore
how effective our approach is with different heuristics,
and with different benchmark domains. Another possible
research direction would be to perform experiments using
the macro-actions generated by other generators, such as
MacroFF and Marvin, to see if they can help to improve the
planner’s performance when only used in heuristics.



References
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129: 5–33.
Botea, A.; Enzenberger, M.; Müller, M.; and Schaeffer, J.
2005. Macro-FF: Improving AI Planning with Automati-
cally Learned Macro-Operators. Journal of Artificial Intel-
ligence Research, 24: 581–621.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Using Com-
ponent Abstraction for Automatic Generation of Macro-
Actions. In Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS 2004), 181–
190.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Chrpa, L.; and Vallati, M. 2021. Planning with Critical Sec-
tion Macros: Theory and Practice. Journal of Artificial In-
telligence Research.
Coles, A.; and Smith, A. 2007. Marvin: A Heuristic Search
Planner with Online Macro-Action Learning. Journal of Ar-
tificial Intelligence Research, 28: 119–156.
Dawson, C.; and Siklóssy, L. 1977. The role of preprocess-
ing in problem solving systems. In Proceedings of the In-
ternational Joint Conference on Artificial Intelligence, 465–
471.
Fikes, R. E.; Hart, P. E.; and Nilsson, N. J. 1972. Learning
and Executing Generalized Robot Plans. Artificial Intelli-
gence, 3(4): 251–288.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence, 173: 503–535.
Hoffmann, J. 2001. FF: The Fast-Forward Planning System.
AI Magazine, 22(3): 57–62.
Hutter, F.; Hoos, H.; Leyton-Brown, K.; and Stützle, T.
2009. ParamILS: An Automatic Algorithm Configuration
Framework. J. Artif. Intell. Res. (JAIR), 36: 267–306.
Korf, R. E. 1985. Macro-operators: A weak method for
learning. Artificial Intelligence, 26(1): 35–77.
Long, D.; and Fox, M. 2003. The 3rd International Plan-
ning Competition: Results and Analysis. J. Artif. Intell. Res.
(JAIR), 20: 1–59.
McDermott, D. 1996. A Heuristic Estimator for Means-
Ends Analysis in Planning. In Proceedings of the 3rd In-
ternational Conference on Artificial Intelligence Planning
Systems (AIPS-96), 142–149. AAAI Press.
Newton, M.; and Levine, J. 2007a. Evolving Macro-Actions
for Planning. In Proceedings of the Workshop on AI Plan-
ning and Learning held at ICAPS 2007.
Newton, M.; and Levine, J. 2007b. Wizard: Suggesting
Macro-Actions Comprehensively. In Proceedings of the
Doctoral Consortium held at ICAPS 2007.

Newton, M.; Levine, J.; Fox, M.; and D., L. 2007. Learn-
ing Macro-Actions for Arbitrary Planners and Domains. In
Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS 2007), 256–263.
Vallati, M.; Chrpa, L.; and Serina, I. 2020. MEvo: A frame-
work for effective macro sets evolution. Journal of Exper-
imental and Theoretical Artificial Intelligence, 32(4): 685–
703.


