
What Plan? Virtual Plan Visualization with PDSim

Emanuele De Pellegrin, Ronald P. A. Petrick,
Edinburgh Centre for Robotics

Heriot-Watt University
Edinburgh, Scotland, United Kingdom
ed50@hw.ac.uk, R.Petrick@hw.ac.uk

Abstract

Modelling and verifying planning solutions is a challeng-
ing problem, especially in real-world domains. This paper
presents an update on the development of the Planning Do-
main Simulation (PDSim) project, an asset for the Unity
game engine to simulate plans in a 2D or 3D environment
with custom animations and graphics effects. PDSim aims to
provide an intuitive tool for users to define animations with-
out the need to learn a new scripting language, in order to
quickly evaluate the validity of planning models. Due to the
scarcity of similar systems and tools, PDSim fills an impor-
tant gap in the area of planning simulation and validation:
simulating a planning problem using 3D graphics and ani-
mation techniques can help the user to quickly evaluate the
quality of a plan and improve the design of the planning do-
main and problem. This paper presents an update of PDSim,
including its aims as a system for automated planning, the
current state of development, and future plans for the project.

Introduction
The task of modelling planning domains and verifying plan
solutions can be a challenging problem, especially for real
world scenarios. While representation languages like PDDL
(McDermott et al. 1998) provide a standard way of repre-
senting planning models supported by a wide range of plan-
ners, it can be difficult to catch modelling errors due to the
complexity of the knowledge that needs to be specified (e.g.,
definitions of state properties, actions, and objects) and the
level of abstraction that is often required for ensuring the
generation of tractable solutions.

Although several tools do exist to aid in the validation
of planning domain models (e.g., VAL (Howey and Long
2003)), and formal plan verification methods are a growing
area of research (Bensalem, Havelund, and Orlandini 2014;
Cimatti, Micheli, and Roveri 2017; Hill, Komendantskaya,
and Petrick 2020), approaches based on visualisation meth-
ods and visual feedback can also play an important role in
addressing the problem of correctly modelling planning do-
mains. Visual tools provide a natural and interactive envi-
ronment for displaying, inspecting, and simulating aspects
of the planning process, which can aid in plan explainability
for human users (Fox, Long, and Magazzeni 2017).

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

PDSim (De Pellegrin 2020; De Pellegrin and Petrick
2021) introduced a system to visualise and simulate plans
for classical planning problems defined in PDDL. Although
planning problem visualisation has been previously investi-
gated (Vrakas and Vlahavas 2005; Vaquero et al. 2007; Chen
et al. 2020; Tapia, San Segundo, and Artieda 2015; Le Bras
et al. 2020), PDSim approaches the problem by building a
graphical environment for plan visualisation and simulation
within the Unity game engine (Unity Technologies 2020).
PDDL is used to define the planning domain knowledge and
problem formulation, including planner requirements, lan-
guage models used in the domain, and standard definitions
of the domain and problem. These components are used by
a planner to establish that a solution exists and to generate
a plan for the specified goals. Using the plan, PDSim inter-
prets state properties and action effects as 2D or 3D anima-
tions and graphics effects to deliver a visual explanation of
the world and its actions during plan execution. In this pa-
per, we report on recent developments to PDSim, notably
integration with the Unified Planning Framework (UPF) and
several enhancements to PDSim’s animation system.

The rest of the paper is organised as follows. First, we
review related work and provide an overview of the PDSim
system. We then describe recent additions to PDSim with an
overview of the components and examples of their use. We
conclude with a discussion of future PDSim development.

Related Work
PDSim (De Pellegrin 2020; De Pellegrin and Petrick 2021)
is part of the small (but growing) ecosystem of automated
planning simulators that use visual cues and animations to
translate the output of a plan into a visual environment. The
closest approach to ours is Planimation (Chen et al. 2020)
which uses Unity as the front-end system to display and an-
imate objects while following a given plan. Animations are
defined using an ad-hoc language (an animation profile) sim-
ilar to PDDL. PDSim removes this additional step with its
animation system and provides a more intuitive system for
users (see Figure 2, described in more detail below).

Other systems like vPlanSim (Roberts et al. 2021) and
JEDAI (Shah et al. 2021) are similar applications that also
aim to provide a 3D visualization of a plan, but with a num-
ber of important differences. For instance, while vPlanSim
offers a simple and fast custom graphical environment for



Figure 1: Robotarm PDSim simulation provided by Heem-
sekerk Innovative Technology1.

creating plan simulations with few dependencies, PDSim is
built using a popular game engine like Unity to offer the
user industry standard tools to create real scenarios. PDSim
offers a language agnostic tool to set up simulations which
is paramount for users that are not familiar with PDDL and
Unity. The approach used by JEDAI is also similar to that
used by PDSim. JEDAI uses a block-based plan creation
approach to let the user focus on the simulation; however,
the simulations are restricted to the robot planning use case,
while PDSim offers a more abstracted environment so the
user can simulate problems of different types and complex-
ity. For instance, Figure 1 shows a robotics simulation that
uses PDSim as the main component to display a plan that in-
volves a robot arm. The simulation visualises the plan gen-
erated for the robotic arm, involving the removal of solid
impurities on the surface of a liquid metal bath.

The Logic Planning Simulator (LPS) (Tapia, San Se-
gundo, and Artieda 2015) also provides a planning simu-
lation system that represents PDDL objects with 3D models
in a user-customisable environment. The approach is inte-
grated with a SAT-based planner and a user interface that
enables the execution of a plan to be simulated while visual-
ising updates to the state of the world and individual PDDL
properties. Unlike PDSim and Planimation, LPS is not based
on Unity but provides its own interface for plan visualisa-
tion. Several user-specified files are also required to define
3D object meshes, the relationship between PDDL elements
and 3D objects, and specific animation effect to be produced.

Several systems also exist to help formalise planning do-
mains and problems through user-friendly interfaces. For ex-
ample, GIPO (Simpson, Kitchin, and McCluskey 2007), It-
Simple (Vaquero et al. 2007), and VIZ (Vodrázka and Chrpa
2010) use graphical illustrations of the domain and prob-
lem, removing the need for PDDL knowledge to help new
users approach planning domain modelling for the first time.
Other software such as Web Planner (Magnaguagno et al.
2017) and Planning.Domains (Muise 2016) use Gantt charts
or tree-like visualisation methods to illustrate the generated
plan and the state space searched by a particular planning
algorithm. PlanCurves (Le Bras et al. 2020) uses a novel

1https://heemskerk-innovative.nl/

Figure 2: PDSim animation system.

Figure 3: High-level PDSim system architecture.

interface based on time curves (Bach et al. 2015) to display
multi-agent temporal plans distorted in timelines to illustrate
similarity between states. All of these tools attempt to help
users understand how a plan is generated and detect poten-
tial errors in the modelling process.

Simulators using a game engine such as MORSE (Echev-
erria et al. 2011) or Drone Sim Lab (Ganoni and Mukundan
2017) are also prevalent in robotics applications. A game en-
gine offers benefits like multiple cameras to follow the simu-
lation, a physics engine and realistic post-processing effects
with no need to implement them from scratch (Ganoni and
Mukundan 2017). PDSim is built by extending the Unity
game engine editor (Unity Technologies 2020) and uses
components offered by the engine, such as a path planner,
a lighting system, and scene management, among others.

PDSim System Architecture
The PDSim system can be imported into Unity3D as a com-
mon asset. The Unity editor interface is used to interact with



PDSim components such as setting the simulation scene,
creating animations, or importing 3D or 2D models. PDSim
relies on its Python back-end implementation that is used
to parse the PDDL files and generate plans. The high-level
structure of the PDSim system is shown in Figure 3.

A simulation is initialized and handled by the back-end
server running the Unified Planning Framework (UPF; see
below) which is responsible for parsing and building a JSON
representation of the planning model. UPF also handles calls
to external planners to generate plans. UPF is a planner-
agnostic framework for Python, which increases PDSim’s
modularity and lets users select their preferred planner im-
plementation, separating it from the simulation stage itself
which comes later in the process.

Several PDDL components are key to simulating a plan-
ning problem, including: predicates, actions, types, and ini-
tial values. Unity uses those components differently to rep-
resent PDDL in a graphical environment. The domain file is
used to build the core components and the animations for the
simulation. The types and objects define SimulationObjects,
the visual aspect of the simulation: 3D models or 2D sprites.
Predicates are used to define the AnimationGraphs, internal
visual scripting language to define common transformation
operations, path planning, audio emission, particle effects,
etc. For instance, Figure 2 shows an animation definition for
a predicate in the form of a stacking of 2 translation anima-
tions where the same object is translated along the x axis first
and the y axis subsequently. Action effects are the animated
components, where every predicate in the effects list that has
an associated animation graph will execute an animation at
simulation time. Finally, the initial values are used during
simulation time to set up the scene. Similar to the animation
effects, all the grounded values from UPF are animated if
the predicates are associated with an animation.

PDDL files are translated into a JSON map of the com-
ponents needed for simulation. PDSim uses components of
the domain to set up the core simulation in Unity. Figure 4
shows the JSON code for the logistics domain, used to estab-
lish the internal definitions of actions, types, and predicates.
The problem components of PDDL are used to set up a Unity
level or scene, as in Figure 5. Later in the Unity editor, the
user can configure multiple problems for the same domain
and, thus, multiple simulations for different plans.

In Unity, the user can set 2D or 3D models for the con-
stants defined in the planning problem, create animations
for predicates and use Unity’s internal components such as
the physics engine, planning system, etc. PDSim communi-
cates with UPF using the ZeroMQ library2, in particular the
Python implementation package pyzmq3 on the server side
and the C# implementation netMQ4 on the Unity side.

Figure 6 shows the workflow executed by the system
when the user wants to create a new simulation. The user
interacts with PDSim,using the editor user interface to cre-
ate a form in which the domain and problem files are ex-
pected. Unity tries to connect, using a separate thread, with

2https://zeromq.org/
3https://pypi.org/project/pyzmq/
4https://github.com/zeromq/netmq/

{ ’predicates’:
{’in-city’:

{’args’: [’place’, ’city’],
’arity’:2}, ... },

’actions’:
{’load-truck’:

{’effects’:[
{’args’[’pkg’, ’loc’],
’fluent’: ’at’,
’negated’: true} ... ],

’params’:{’pkg’:’package’,
’truck’:’truck’,
’loc’:’place’} } ... }

’types’:
{’object’:[’city’,’place’,’physobj’],
’place’:[’airport’,’location’] ...}

}

Figure 4: Example domain representation in JSON.

{’objects’:
{’apn1’ : ’airplane’
’city1’ : ’city’, ... },

’init’:
{’at’: [

{’args’: [’obj13’, ’pos1’]
’value’: true},

{’args’: [’obj23’, ’pos2’]
’value’: true}, ... ] ... }

}

Figure 5: Example problem representation in JSON.

Figure 6: New simulation workflow in PDSim.

the back-end server by submitting a request using the PDDL
domain and problem file paths. The request is sent with the
“init” header to tell the server that there is a request to parse
the PDDL and create a representation of the planning prob-
lem on the server to be used for later requests. If there are
no parsing, syntax, or general server-side errors, Unity in-
stantiates a new simulation scene. After scene creation, a
second request is sent to get the JSON PDDL representation
from the server, and all the PDSim components are initial-
ized. Figure 7 shows the plan request interaction to generate
a plan with the domain and the current simulation problem.

Unified Planning Framework (UPF)
One of the main extensions of PDSim is the wrapping of the
Unified Planning Framework (UPF) project as the driver for
handling and solving planning problems in PDSim. UPF is
a Python library that aims to simplify the adoption of auto-



Figure 7: Plan generation workflow in PDSim.

Figure 8: PDSim Blocks World simulation.

mated planning as AI technology, as part of the AIPlan4EU
project5. The project aims to standardize the techniques used
to solve a planning problem, making it accessible to users of
any level of expertise. It offers a well-developed and main-
tained parser and a standard interface for communicating
with external planners. Integration with UPF enables the
PDSim system to take advantage of these features and any
future updates that UPF may provide.

Examples
PDSim has been tested using the published benchmark do-
mains for the International Planning Competition (IPC)6.
We illustrate the complexity of the simulated planning prob-
lems here using Blocks World, Logistics, and Sokoban.

Blocks World: Blocks World (IPC 2000) is one of the sim-
plest domains: blocks can be stacked on top of each other,
and only one block can be picked, moved, and dropped at
a time. The goal is achieved when the specified stack se-
quence is reproduced. Figure 8 shows an example of the
Blocks World simulation in PDSim.

Logistics: Logistics (IPC 2000) describes a problem involv-
ing packages that need to be transported between cities us-
ing a airplane and within cities using trucks. This domain
steps up the complexity of the simulation environment while
keeping simple definitions of predicates and actions (e.g.,
the predicates InCity, At, In are used to respectively describe
if a location is inside a city, if an object is in a location, and if
a package is in a vehicle). Figure 9 shows the Logistics sim-
ulation, highlighting the animation of boxes and airplanes.

5https://www.aiplan4eu-project.eu/
6https://github.com/potassco/pddl-instances

Figure 9: PDSim Logistics simulation.

Figure 10: PDSim Sokoban simulation.

Sokoban: Sokoban (IPC 2008) describes the Sokoban game
problem7, where a player needs to move an object to a prede-
fined goal on a grid. Figure 10 illustrates a typical problem
level for Sokoban with a player and stone that needs to be
moved. This domain adds to the complexity of the previous
example, illustrating the functionality of this simulation in
Unity, and its ability to rapidly provide an in-game AI agent.

Conclusion and Future Work
This paper presented an update on the structure and opera-
tion of PDSim, a simulation system for animating PDDL do-
mains and plans. This project supports classical automated
planning, however, current work is extending PDSim to sup-
port temporal planning through an intuitive visualization
system for timed actions and deadlines. Future work on the
project will consider support for partial plans defined by the
user and other simulation features such as following simula-
tion actions, replaying previous actions, modifying the sim-
ulation speed, and displaying partial animations to show the
outcome of animation while defining the structure. An im-
portant direction for PDSim will also be to include exten-
sions for visualising the current state of an agent’s knowl-
edge and beliefs to support epistemic planning.

7https://en.wikipedia.org/wiki/Sokoban



Acknowledgements
Thanks to Robertico Gustina, Delft University of Technol-
ogy student who used PDSim for his Master’s dissertation,
and Heemsekerk Innovative Technology.

References
Bach, B.; Shi, C.; Heulot, N.; Madhyastha, T.; Grabowski,
T.; and Dragicevic, P. 2015. Time curves: Folding time to
visualize patterns of temporal evolution in data. IEEE trans-
actions on visualization and computer graphics, 22(1): 559–
568.
Bensalem, S.; Havelund, K.; and Orlandini, A. 2014. Veri-
fication and validation meet planning and scheduling. Inter-
national Journal on Software Tools for Technology Transfer,
16: 1–12.
Chen, G.; Ding, Y.; Edwards, H.; Chau, C. H.; Hou, S.; John-
son, G.; Sharukh Syed, M.; Tang, H.; Wu, Y.; Yan, Y.; Gil,
T.; and Nir, L. 2020. Planimation.
Cimatti, A.; Micheli, A.; and Roveri, M. 2017. Validating
domains and plans for temporal planning via encoding into
infinite-state linear temporal logic. In Proceedings of AAAI,
3547–3554.
De Pellegrin, E. 2020. PDSim: Planning Domain Simula-
tion with the Unity Game Engine. In Proceedings of the
ICAPS Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS).
De Pellegrin, E.; and Petrick, R. P. 2021. Automated Plan-
ning and Robotics Simulation with PDSim. In Proceed-
ings of the ICAPS Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS).
Echeverria, G.; Lassabe, N.; Degroote, A.; and Lemaignan,
S. 2011. Modular open robots simulation engine: Morse. In
2011 IEEE International Conference on Robotics and Au-
tomation, 46–51. IEEE.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. In Proceedings of the IJCAI Workshop on Ex-
plainable AI.
Ganoni, O.; and Mukundan, R. 2017. A framework for visu-
ally realistic multi-robot simulation in natural environment.
arXiv preprint arXiv:1708.01938.
Hill, A.; Komendantskaya, E.; and Petrick, R. P. A. 2020.
Proof-Carrying Plans: A Resource Logic for AI Planning.
In International Symposium on Principles and Practice of
Declarative Programming (PPDP), 1–13.
Howey, R.; and Long, D. 2003. VAL’s Progress: The Au-
tomatic Validation Tool for PDDL2.1 used in the Interna-
tional Planning Competition. In Proceedings of the ICAPS
Workshop on The Competition: Impact, Organization, Eval-
uation, Benchmarks.
Le Bras, P.; Carreno, Y.; Lindsay, A.; Petrick, R. P. A.; and
Chantler, M. J. 2020. PlanCurves: An Interface for End-
Users to Visualise Multi-Agent Temporal Plans. In Proceed-
ings of the ICAPS Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS).

Magnaguagno, M. C.; Fraga Pereira, R.; Móre, M. D.; and
Meneguzzi, F. R. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. In ICAPS Workshop on User Interfaces and Schedul-
ing and Planning (UISP).
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL—
The planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Muise, C. 2016. Planning.domains. ICAPS System Demon-
stration.
Roberts, J. O.; Mastorakis, G.; Lazaruk, B.; Franco, S.;
Stokes, A. A.; and Bernardini, S. 2021. vPlanSim: An Open
Source Graphical Interface for the Visualisation and Simula-
tion of AI Systems. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 31,
486–490.
Shah, N.; Verma, P.; Angle, T.; and Srivastava, S. 2021.
JEDAI: A System for Skill-Aligned Explainable Robot
Planning. arXiv e-prints, arXiv–2111.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. The Knowledge
Engineering Review, 22(2): 117–134.
Tapia, C.; San Segundo, P.; and Artieda, J. 2015. A PDDL-
based simulation system. In Proceedings of the IADIS Inter-
national Conference Intelligent Systems and Agents.
Unity Technologies. 2020. Unity.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An Integrated Tool for Designing Plan-
ning Domains. In Proceedings of ICAPS, 336–343.
Vodrázka, J.; and Chrpa, L. 2010. Visual design of planning
domains. In Proceedings of ICAPS Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS), 68–69.
Vrakas, D.; and Vlahavas, I. 2005. A Visualization Environ-
ment for Planning. International Journal of Artificial Intel-
ligence Tools, 14(6): 975–998.


