
Elimination of Unnecessary Actions from Plans Using Automated Planning

Mauricio Salerno, Raquel Fuentetaja
Department of Computer Science and Engineering

Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
msalerno@pa.uc3m.es, rfuentet@inf.uc3m.es

Abstract

Finding solutions in Automated Planning has been proven to
be intractable. However, satisficing planning approaches are
capable of finding solutions to large problems relatively fast,
in contrast to optimal planning. The solutions provided by
satisficing planners are often far from optimal, and can even
contain actions that can be removed while the plan maintains
its validity. These unnecessary actions not only increase the
cost of a solution, but also can render a plan irrelevant in
certain settings. The problem of eliminating unnecessary or
redundant actions from plans is known to be NP-complete.
There are both sub-optimal (greedy) and optimal approaches
to solve it. In this paper we introduce two compilations to
solve this problem in a post-planning optimization step that
encode the problem as an Automated Planning task. Using an
optimal planner to solve the corresponding task guarantees
finding the best set of unnecessary actions, while using a sat-
isficing planner might find good solutions fast. The proposed
approaches are empirically compared to existing approaches.

Introduction
One of the objectives in Automated Planning (AP) is to
achieve a good trade-off between the time to generate plans
and the quality of them. Quality of plans is typically mea-
sured using a cost function. However, quality can be also
defined from the point of view of “plan relevance” or “justi-
fied plans” (Fink and Yang 1992). From a domain indepen-
dent perspective, relevant plans can be understood as those
that do not contain loops and do not contain irrelevant or un-
necessary actions (Fink and Yang 1992; Nebel, Dimopoulos,
and Koehler 1997). From a domain specific point of view
more subtle notions of relevancy could be considered.

The notion of relevance was previously considered from
two points of view: external and internal (Nebel, Dimopou-
los, and Koehler 1997). The external point of view refers to
the definition of the planning task, which may contain in-
formation as type information, initial facts, objects, and/or
operators that are not needed for a solution. The internal
point of view refers to the internal process of planning where
ground operators or ground facts can be relevant or irrel-
evant. Also, different degrees of irrelevance can be distin-
guished, from completely irrelevant information (informa-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion that is not part of any solution), to solution irrelevance
(information that may appear in solutions but it is not nec-
essary). Deciding about these “semantic” notions of rele-
vance was showed to be computationally as hard as planning
itself (Nebel, Dimopoulos, and Koehler 1997), and guar-
anteeing a plan does not contain redundant actions is NP-
complete (Fink and Yang 1992; Nakhost and Müller 2010),
where redundant actions are those that can be removed from
a plan while maintaining its validity.

In large-scale real-world applications with varying and di-
verse goals it is common to include in the domain many op-
erators, static facts and objects which might be irrelevant for
a specific goal and initial situation. This can occur for in-
stance in robotic domains where the robot can perform mul-
tiple tasks. It is true that current planners which are guided
by powerful heuristics will probably not include (many) ir-
relevant operators in the output plan. However, there are
settings where this is not enough, so that the problem is
still interesting. An example is top-k planning (Yen 1971;
Katz et al. 2018; Katz, Sohrabi, and Udrea 2020; Speck,
Mattmüller, and Nebel 2020), where the objective is to de-
rive a set of plans instead of just one. Iterative approaches
to top-k planning (Katz et al. 2018) include more irrelevant
information in the plans as more iterations are carried out,
to the point that truly alternative plans are not distinguished
from those that were extended with unnecessary operators.

In this work, we focus on filtering unnecessary actions in
plan post-optimization, in the same line of some previous
works (Nakhost and Müller 2010; Chrpa, McCluskey, and
Osborne 2012b,a; Balyo, Chrpa, and Kilani 2014). Specifi-
cally, we contribute with several compilations to encode the
problem as an Automated Planning Task, and then solve it
using an off-the-shelf automated planner. Using an optimal
planner will guarantee to find the “best” set of unnecessary
actions, while a satisficing planner is expected to find solu-
tions faster but without that guarantees.

The rest of the paper is organized as follows. Next section
includes a summary of related work. Section introduces ba-
sic notions of classical planning and plan optimization. In
Section we define the planning compilations. Section con-
tains an empirical evaluation comparing our approach to ex-
isting post planning optimization methods. Finally there is a
discussion and an outline future lines of research.

Related Work
Most previous works related to action and fact irrele-
vance focused on filtering irrelevant actions in a plan post-
optimization step. Fink and Yang [1992] formalized differ-
ent notions of plan justifications and provided complexity
results for them. Specifically, they defined greedily justified
actions as those that make the plan invalid when they are
removed from it, and perfectly-justified plans as those with
no redundant actions. Nakhost and Müller [2010] proposed
Action Elimination, an algorithm based on greedy justifi-
cation, and an additional technique based on plan neigh-
borhood graph search. Siddiqui and Haslum [2015] pro-
posed a method to improve a plan based on neighbour-
hood search, where the substitution of subplans with im-
proved subplans define a plans’ neighbourhood. The solu-
tions found by this approach are not necessarily subsets of
the input plan. Chrpa et al. proposed methods based on iden-
tifying redundant actions and non-optimal sub-plans by ana-
lyzing action dependencies and independencies (Chrpa, Mc-
Cluskey, and Osborne 2012b), and by checking pairs of in-
verse actions (Chrpa, McCluskey, and Osborne 2012a). Ba-
lyo, Chrpa, and Kilani [2014] introduced an approach for
determining the “best” set of redundant actions encoding
the problem as a weighted MaxSAT problem. Similarly,
Muise, Beck, and McIlraith [2016] propose an encoding as a
weighted MaxSAT problem centered on improving the flexi-
bility of partial-order plans, that also supports redundant ac-
tion elimination. Say, Cire, and Beck [2016] also propose
an approach to improve the flexibility and eliminate actions
from a partial-order plan, but based on mixed-integer lin-
eal programming models. Olz and Bercher [2019] provide
a complexity analysis for eliminating redundant actions for
partial-order plans, finding that this problem is harder than
the one regarding totally ordered plans. Waters, Padgham,
and Sardina [2021] optimize a partial-order plan flexibility
via action reinstantiation using a MaxSAT approach. The
work in this paper is closely related with all these works
with the difference that we approach the problem using AP.

There are also techniques that remove irrelevant infor-
mation at preprocessing. For instance, Nebel, Dimopoulos,
and Koehler 1997 proposed heuristics for selecting rele-
vant information based on minimizing the number of ini-
tial facts by computing a fact generation tree going back-
wards from the goals; and a recent approach (Silver et al.
2020) learns convolutional graph neural networks to predict
subsets of objects that are sufficient for solving the plan-
ning task. Approaching the problem at preprocessing has
the additional advantage that it can make easier the plan-
ning process. This is specially interesting when the number
of objects is very large. In this case, most modern heuris-
tic planners that ground the actions over objects during pre-
processing scale poorly. This is also one of the motivations
for recent research on lifted planning (Corrêa et al. 2020),
abstractions that simplify the problem (Fuentetaja and de la
Rosa 2016) and some approaches based on generalized plan-
ning, as the aforementioned work of Silver et al.

Irrelevant information may have an important negative
impact when the objective is to derive a set of plans in-
stead of just one, though it has been little studied in this

context. However, it is an important setting since there are
many applications where deriving a set of plans is neces-
sary, as malware detection (Boddy et al. 2005), model-based
goal and plan recognition (Ramı́rez and Geffner 2009, 2010;
Sohrabi, Riabov, and Udrea 2016; Pereira 2016), diverse
planning (Srivastava et al. 2007; Roberts, Howe, and Ray
2014), plan monitoring (Fox et al. 2006) and explainable
AI (Chakraborti et al. 2018; Eifler et al. 2020). When it is
required to derive a set of plans, those plans could be asked
to fulfill some extra constraints as being the best k solutions
or being diverse. In this sense several approaches have been
defined for generating sets of plans (Yen 1971; Katz et al.
2018; Katz, Sohrabi, and Udrea 2020; Speck, Mattmüller,
and Nebel 2020), and for considering different diversity met-
rics (Fox et al. 2006; Nguyen et al. 2012; Roberts, Howe, and
Ray 2014).

Background
This section contains some basic definitions on AP and plan
justifications that will be used throughout the rest of the pa-
per.

Classical Planning
In this subsection the STRIPS formalism (Fikes and Nilsson
1971) for Classical Automated Planning is introduced.

A classical planning task is defined as a tuple Π =
(F ,A, I,G), where F is set of propositions; A is set of
actions; I ⊆ F is the initial situation, encoding what
propositions are true initially; and G ⊆ F is a set of goal
propositions. Every a ∈ A has preconditions, denoted as
pre(a) ⊆ F , added effects add(a) ⊆ F and negative ef-
fects del(a) ⊆ F .

A planning task Π defines a state model which states
s ∈ S are subsets of F and are represented by the flu-
ents that are true in the corresponding state. In this model,
the initial state is si = I, and the goal states are those
sg that include the goals G ⊆ sg . The actions a ∈ A
that are applicable in a state s, denoted as A(s), are those
for which pre(a) ⊆ s. The transition function is γ, where
γ(s, a) = (s \ del(a)) ∪ add(a) represents the state s′ that
results from the application of the action a in state s.

A solution or valid plan for Π is an action sequence
π = ⟨a1, . . . , an⟩ that induces a state sequence Sπ =
⟨s0, . . . , sn⟩ such that s0 = I and, for each i such that
1 ≤ i ≤ n, ai is applicable in si−1 and si = γ(si−1, ai)
. A plan π solves Π if and only if G ⊆ sn. Each action
a ∈ A is assumed to have a non-negative cost c(a), so that
the cost of a plan is c(π) =

∑
c(ai). A plan is optimal if it

has minimum cost.

Plan Justification
This subsection introduces the notion of justified plans.
Causal links are used in some types of plan justifications,
so they are introduced now. Given a planning task Π =
(F ,A, I,G) and a plan π = (a1, ..., an), a causal link be-
tween two actions ai, aj (i < j) in π represents a causal
dependency between both actions through a proposition p.
Specifically, the triple cl = ⟨ai, aj , p⟩ forms a causal link if

ai adds p, p is a precondition of aj , and p is neither added
nor deleted by any action between ai and aj . Given the plan-
ning task Π and a plan π, the causal links can be extracted
following the approach presented in (Celorrio et al. 2013) in
polynomial time. Causal links were called establishments in
previous work (Fink and Yang 1992).

The notion of plan justification can be traced back to the
early 1990s (Fink and Yang 1992). In that work, Fink and
Yang define three types of plan justifications: backward jus-
tification, well justification and perfect justification. Given
Π = (F ,A, I,G), a plan π = (a1, ..., an) and the set of
causal links of πlinks, an action ai ∈ π is backward justi-
fied if ∃p ∈ add(ai) such that p ∈ G or ⟨ai, aj , p⟩ ∈ πlinks

and aj is backward justified. This means that ai is back-
ward justified if there is a sequence of causal links rooting
in ai that ends up related to a goal proposition. A plan π
is backward justified if all of its actions are backward justi-
fied. Well justified actions are those that cannot be removed
from the plan without affecting the applicability of other ac-
tions. Perfectly-justified plans are those for which no subset
of actions can be removed from the plan without invalidating
plan. We also apply this idea.

AP compilations for Action Elimination
This section introduces some formal definitions used in the
rest of the paper, and explains the proposed AP compilations
to eliminate unnecessary actions from plans.

Formal Definitions
We use the notion of perfectly-justified introduced by Fink
and Yang. Thus, a plan is perfectly-justified if no actions
can be skipped or eliminated while maintaining the plans’
validity. We introduce it using the following definitions.

Definition 1 (Reduced Plan). Given a plan π =
⟨a1, . . . , an⟩ for Π and a subset of its actions Aπ ⊆ π,
the reduced plan π\Aπ

is the action sequence resulting from
eliminating the actions ai ∈ Aπ from π.

Definition 2 (Well-justified action set). A subset of plan
actions Aπ ⊆ π, Aπ ̸= ∅, is well justified if the correspond-
ing reduced plan π\Aπ

is not a valid plan for Π.

The previous definition just extends the notion of well-
justified actions to well-justified subsets of actions. 1

Now, we consider a plan π to be perfectly-justified if all
of its subsets of actions are well justified, i.e. all the plans
reduced by those subsets are invalid, so that there is no way
of reducing the plan while maintaining its validity.

Definition 3 (Perfectly-justified plan). A plan π is
perfectly-justified iff all non-empty subsets of its actions,
Aπ ⊆ π, are well-justified.

Then, if there is at least a subset of actions which is not
well-justified, the plan is not perfectly-justified. In that case
will say the actions in that subset are unnecessary.

Given Π and a plan π, the task of finding the small-
est perfectly-justified plan by eliminating actions from π

1This notion is also defined by Balyo, Chrpa, and Kilani [2014]
as plan reductions.

is called Minimal Length Reduction (MLR) (Balyo, Chrpa,
and Kilani 2014). Balyo, Chrpa, and Kilani also define the
Minimal Reduction (MR) task. The aim of this task is to find
a plan with the smallest possible cost by eliminating actions
from π. We are particularly interested in MR and MLR. In
the following section we propose different ways of compil-
ing the problem into an AP one so that it can be solved with
an off-the-shelf planner.

Perfect Justification as Planning
In this section we propose two alternative compilations to
represent the perfect justification problem as a planning
problem.

Compilation with skip actions The idea is to define a
classical planning task that, given a planning task and a so-
lution plan, can identify and eliminate sets of unnecessary
actions from plans. Then, it is necessary to encode a task
where any number of actions can be skipped (eliminated)
from the original plan π while maintaining the order of the
actions in the sequence (i.e. if j > i, ai cannot be applied
after aj).

Let Π = (F ,A, I,G) be planning task and π =
⟨a1, ..., an⟩ a valid plan for Π. We define a new planning
task Πskip = (F ′,A′, I ′,G) that encodes the action elimi-
nation problem as follows:

• F ′ = F ∪ Flast ∪ Fnext ∪ Fplanact, where:
– Flast = {lasti | 0 ≤ i ≤ n} facts represent the last

position considered. There is a position (order in the
sequence) for every action in the original plan plus an
additional zero position,

– Fnext = {nexti,i+1 | 0 ≤ i < n} are static facts to
encode that position i is immediately before position
j, and

– Fplanact = {planact ai | 1 ≤ i ≤ n} are static facts
to represent the action a appears in the plan π at posi-
tion i.

• A′ = {ai,i+1 | a ∈ A, 0 ≤ i < n}∪{skipj | 1 ≤ j ≤ n},
where:

– There is an aij action for every action a in the original
task and consecutive positions i, j = i + 1, which is
defined as follows:

pre(aij) = pre(a) ∪
{lasti, nexti,j , planact aj}

add(aij) = add(a) ∪ {lastj}
del(aij) = del(a) ∪ {lasti}

– There is a skipj action for every possible plan position
j. These actions allow to skip the action in position j
from the original plan. skipj are defined as follows:

pre(skipj) = {lasti, nexti,j}
add(skipj) = {lastj}
del(skipj) = {lasti}

• I ′ = I ∪ {last0} ∪ {nexti,i+1 |0 ≤ i < n} ∪
{planact ai | ai ∈ π}

The skipj actions have zero cost. The cost of the other
actions depends on the type of action elimination to be per-
formed. This will be addressed later in the paper.

Actions aij in A′ will only be applicable if there is an
occurrence of action a ∈ A in the original plan π at posi-
tion j. For that, facts of type planact ai are included in I ′,
representing the plan π. There is one of such facts per plan
action, indicating π contains an occurrence action a ∈ A
at position i. Thus, when Πskip is solved, the resulting plan
will only contain the actions in the original plan that have
not been skipped without altering the order.

Solutions plans for Πskip are not directly plans for Π, due
to the possible occurrence of skip actions and additional ac-
tion parameters related to the positions i and j in actions aij .
However, it is quite straightforward to transform them into
valid plans for Π, just by removing those skip actions from
the plan and those parameters from the remaining actions.
The resulting plan of eliminating skip actions and extra pa-
rameters from will be denoted as π′.
Definition 4. Let π′ be a valid plan of Πskip. Then, the com-
piled back plan for Π is π′′ = {a | a ∈ π ∧ aij ∈ π′}.

This means that every aij action is replaced by its original
action a and skip actions are not included.
Proposition 1. The plan π′′ obtained from any valid plan π′

for Πskip is a valid plan for Π.
Proof sketch. A plan π that induces the state sequence Sπ =
⟨s0, . . . , sn⟩ is valid if all of its actions are applicable in the
state they are applied and G ⊆ sn. Since the goals of both Π
and Πskip are the same, if π′ is valid for Πskip, then it will
also achieve all the goals in Π by definition. Since pre(a) ⊂
pre(ai,j) for every ai,j ∈ A′, if ai,j is applicable in a state,
then the corresponding action a ∈ A is also applicable in
that state. We know that π′ is valid, so, starting from I all of
its actions are applicable. Since I ⊂ I ′, all actions in π′′ are
in turn applicable starting from I. The goals are met and all
actions are applicable, so π′′ is a valid plan for Π.

Enhanced compilation with skip actions Identifying if
all actions in a plan are necessary is NP-hard. This does
not mean that some actions cannot be easily identified as
necessary (their elimination would render the plan invalid).
Actions that have a goal proposition in their add list are
paramount for the plans’ success. In particular, if a goal
proposition is achieved by a single action in a plan, we can
assure that the removal of that action would generate an
invalid plan (goals not achieved). Even more, if some pre-
conditions of that action are also achieved by single actions,
then those actions are also clearly necessary. With this idea,
we define trivially necessary actions.
Definition 5 (Trivially necessary actions). Let Π =
(F ,A, I,G) be a planning task and π = (a1, ..., an) a
valid a plan. An action ai ∈ π is trivially necessary if:
(a) ∃g ∈ G such that g ∈ add(ai) and ∄aj ∈ π, j ̸= i
such that g ∈ add(aj); or (b) there is a necessary ac-
tion aj , i < j, such that ∃p ∈ pre(aj) ∩ add(ai) and
∄ak ∈ π, k < j, k ̸= i, such that p ∈ add(ak).

Trivially necessary actions cannot be skipped from the
plan without affecting its’ validity. We denote the remain-

ing actions which can potentially be skipped as As =
{i | ai is not trivially necessary}. The proposed AP compi-
lation (Πskip) is enhanced to consider this information. For
that, we introduce the additional (static) facts Fskippable =
{skippablei | i ∈ As} into F ′. Then, the skip actions and
the initial state are modified as follows:
• Skip actions have an additional precondition to be appli-

cable only in the case that the action is skippable:

pre(skipj) = {lasti, nexti,j , skippablej}
add(skipj) = {lastj}
del(skipj) = {lasti}

• The initial state contains all propositions that identify
skippable actions: I ′ = I ∪ {last0} ∪ {nexti,i+1 |0 ≤
i < n} ∪ {planact ai | ai ∈ π} ∪ {skippablei|i ∈ As}

With the compilation enhanced with skip actions the num-
ber of applicable skip actions can be reduced, which should
speed up the planning process.

Compilation without skip actions There is another com-
pilation which does not require the use of skip actions. It
consist of encoding the planning task in a way that allows
to include any action occurring in the original plan after the
last action that was previously included. We achieve this by
creating an order relation between the actions in π. More
formally, given the planning task Π and a solution plan π we
define Πorder = (F ′,A′, I ′,G) as follows:
• F ′ = F ∪ Flast ∪ Forder ∪ Fplanact, where Flast and
Fplanact have the same definition as before and Forder =
{orderi,j | 0 ≤ i ≤ n, 1 ≤ j ≤ n} are static facts to
encode that position i is before position j.

• A′ = {ai,j | a ∈ A, 0 ≤ i ≤ n, 1 ≤ j ≤ n}, where there
is an ai,j action for every action a in the original task and
combination of positions i, j, defined as follows:

pre(aij) = pre(a) ∪
{lasti, orderi,j , planact aj}

add(aij) = add(a) ∪ {lastj}
del(aij) = del(a) ∪ {lasti}

• I ′ = I ∪ {last0} ∪ {orderi,j | 0 ≤ i, j < n, i < j} ∪
{planact ai | ai ∈ π}.

There are only a few differences between this and the pre-
vious compilation. One of them is that nexti,j propositions
have been replaced by orderi,j propositions. next repre-
sented pairs of consecutive positions, while order represents
pairs of positions such that one is before the other, but they
are not necessarily consecutive. Another difference is that
now last refers always to a position that correspond to the
last included action. Thus, the preconditions of ai,j actions
check that the action being included at position j, occurs in
the original plan before the last included action with posi-
tion i. Finally, I ′ sets the relation order between the actions
in π, where there is a fact order0,j for every position j in the
plan, which allows the application of any action of the plan.

Solution plans π′ for Πorder are compiled back as in Def-
inition 4. This transformation also yields valid plans for the
original task.

Proposition 2. The plan π′′ obtained from any valid plan π′

for Πorder is a valid plan for Π.

The proof is analogous to the proof of Proposition 2, but
without considering skip actions. It is omitted to avoid un-
necessary repetition.

Theoretical Properties
This section shows the type of plans that are obtained from
solving the compiled planning tasks. In particular, we show
that the set of valid plans for the compilations is the set of
valid reduced plans of the original task.

Let PΠ be the set of valid plans for a planning task Π. Two
planning tasks Π, Π′ are equivalent if they have the same
sets valid plans, PΠ = PΠ′ . For two plans π−, π we say that
π− is a subset of π, π− ⊂ π if π− can be generated from
eliminating actions from π. Since both compilations only
allow for the execution of actions in the original plan or for
their (implicit or explicit) elimination, the set of valid plans
for both Πskip, Πorder contain exactly all the valid plans
that can be generated from eliminating subsets of actions
from the original task if their corresponding transformations
as defined in 4 are considered. More formally:
Proposition 3. Let Π be a planning task and π =
⟨a1, ..., an⟩ a valid plan for Π. Let Pskip be the set of
compiled-back valid plans for Πskip. Then Pskip = {π− ⊆
π |π− ∈ PΠ}.

Proof sketch. We have to show that (i) any plan in Pskip is
in {π− ⊆ π |π− ∈ PΠ}, and that (ii) any plan in {π− ⊆
π |π− ∈ PΠ} is in Pskip:
(i) Let π′ = ⟨b1, ..., bm⟩ ∈ Pskip be any compiled-back valid
plan for Πskip. Since all aij belonging to Πskip have in their
precondition planact aj , only actions in π can be in π′. It
is trivial to show that only one lasti proposition is true in
each state. In I only last0 is true. Because of Πskip encod-
ing, only a1 or skip are applicable initially, so the first ac-
tion in the plan can be either applied or eliminated. Both of
them delete last0 and add last1. Continuing this process un-
til lastn is true it is easy to see that π′ can only have actions
in π respecting their order, where some of them might be
skipped. By Proposition 2, π′ ∈ PΠ. Therefore, it is proven
that (∀π′, π′ ∈ Pskip =⇒ π′ ⊆ π ∧ π′ ∈ PΠ).
(ii) Let π = ⟨b1, ..., bm⟩ ∈ {π− ⊂ π |π− ∈ PΠ}. Follow-
ing similar reasoning we can prove that (∀π, π ∈ {π− ⊆
π |π− ∈ PΠ} =⇒ π ∈ Pskip). This is omitted for space
reasons. Therefore Pskip = {π− ⊆ π |π− ∈ PΠ}.
Proposition 4. Let Π be a planning task and π =
⟨a1, ..., an⟩ a valid plan for Π. Let Porder be the set of
compiled-back valid plans for Πorder. Then Porder =
{π− ⊆ π |π− ∈ PΠ}.

The proof is similar to the one of Proposition 3.
When comparing the two compilations, the clear differ-

ence is the skip actions. In the first compilation, Πskip, to
eliminate m consecutive actions, m consecutive skip actions
must be applied. In cases where a plan has large sets of
unnecessary actions, this might affect the performance of
the planning engine. By contrast, in the second compila-
tion, Πorder, the elimination of actions occurs without the

need of any virtual action, and any number of actions can be
eliminated with a single action. On the other hand, the first
compilation has a branching factor of exactly 2 in each step:
either the current action or the skip action can be applied. On
the second compilation, the branching factor can be as high

as |π| = n, and (
n−1∑
i=1

i) before propositions must be created.

When original plans are particularly long, this might become
an issue.

Minimal and Minimal Length Reductions
We want to solve MR and MLR (Balyo, Chrpa, and Ki-
lani 2014) using the planning compilations presented in this
work. We have already shown in Proposition 3 that the com-
pilations are equivalent, and that their set of valid plans is
the set of valid plans that can be obtained from eliminating
actions from the original plan.

To solve MR with Πskip and Πorder all that should be
done is to set the cost of all the actions in the compilations
to their corresponding cost in the original task. In Πskip the
cost of skip actions is set to 0. To solve MLR, all actions
costs should be 1, and the cost of skip actions are also 0.

With these costs defined, it becomes clear that using an
optimal planner guarantees finding a least-cost plan in the
case of MR, and a plan of minimum length in the case of
MLR.

Evaluation
In this section we present an empirical comparison and anal-
ysis of different techniques used to remove unnecessary
actions from plans. We generate plans from instances of
the satisficing track of the International Planning Compe-
tition (IPC) using the Fast-Downward (FD) planning sys-
tem (Helmert 2006), which is a state-of-the-art planner. We
compared the results of using the planning compilations to
solve both MR and MLR with SAT based approaches and
the greedy approach proposed by Balyo, Chrpa, and Ki-
lani [2014].2

Evaluation Setting
To test the algorithms, we need as input a set of planning
tasks and plans that solve them. To generate them, we con-
figured FD to find one plan as fast possible on several tasks
from the IPC. In this stage, we set a time limit of 10 minutes
to find plans.

We tested the following methods for eliminating unneces-
sary actions:

• Our implementation of the Πskip compilation. This im-
plementation takes as input a planning task (in PDDL
format) and a plan and generates the Πskip task (also in
a PDDL format). FD was configured to find an optimal
solution for this task using A* as a search algorithm and
the hmax heuristic (Bonet and Geffner 2001). We set
a time limit of 10 minutes and a memory limit of 8GB
for each instance. With these configurations, we solve

2Our code will be made publicly available upon publication.

Domain Plans Πorder ALL Πskip ΠskipE−BLIND ΠskipE SAT-MR
Cost Avg # diff Ratio Time(s) # diff Ratio Time(s) Time(s) Time(s) Time(s)

elevator 19 25934 1365 19 1404 6.28% 11.2(5.4)±13.7 19 1404 6.28% 0.2(0.0)± 0.1 0.2(0.0)± 0.1 0.2(0.0)± 0.1 0.3±0.1
barman 20 7721 386 20 903 10.86% 11.3(6.4)±9.6 20 903 10.86% 0.3(0.1)±0.1 0.3(0.1)±0.1 0.2(0.0)± 0.0 0.4±0.1
floor-tile 10 1347 135 10 113 8.63% 0.4(0.0)±0.2 10 113 8.63% 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.1± 0.0

no-mystery 20 715 36 20 0 0.00% 0.6(0.0)±0.4 20 0 0.00% 0.5(0.0)±0.3 0.5(0.0)±0.3 0.6(0.0)±0.4 0.1± 0.0
parking 20 1537 77 20 23 1.50% 0.6(0.0)±0.1 20 23 1.50% 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.3±0.0

peg-solitaire 20 291 15 20 0 0.00% 0.1(0.0)±0.0 20 0 0.00% 0.1(0.0)±0.0 0.1(0.0)±0.0 0.1(0.0)±0.0 0.1±0.0
scanalyzer-3d 20 1837 92 20 60 3.35% 0.3(0.0)±0.2 20 60 3.35% 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.3±0.2

sokoban 17 1079 63 17 24 1.68% 10.0(2.1)±9.5 17 24 1.68% 0.2(0.0)± 0.1 2.3(2.1)±3.9 0.2(0.0)± 0.1 0.3±0.2
visit-all 19 27036 1423 13 120 0.92% 251.4(49.5)±385.6 19 216 0.87% 4.0(3.3)±7.7 1.9(1.2)± 4.0 2.5(1.9)±4.3 8.2±9.2

woodworking 20 35100 1755 20 2120 4.95% 9.3(8.1)±30.1 20 2120 4.95% 0.2(0.0)± 0.1 4.5(4.3)±18.8 0.2(0.0)± 0.0 0.3±0.1

Table 1: Results of different methods for the minimal reduction (MR) problem

Domain Plans Πorder ALL Πskip ΠskipE−BLIND ΠskipE SAT-MLR
Cost Avg # diff Ratio Time(s) # diff Ratio Time(s) Time(s) Time(s) Time(s)

elevator 19 25934 1365 19 97 2.2% 11.4(5.4)±13.0 19 97 2.2% 0.2(0.0)± 0.1 0.2(0.0)± 0.1 0.2(0.0)± 0.1 0.3±0.1
barman 20 7721 386 20 606 15.3% 11.8(6.6)±8.9 20 606 15.3% 0.3(0.1)±0.1 0.3(0.1)±0.1 0.2(0.0)± 0.0 0.4±0.1
floor-tile 10 1347 135 10 41 7.4% 0.4(0.0)±0.2 10 41 7.4% 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.1± 0.0

no-mystery 20 715 36 20 0 0.0% 0.6(0.0)±0.4 20 0 0.0% 0.6(0.0)±0.3 0.5(0.0)±0.3 0.6(0.0)±0.4 0.1± 0.0
parking 20 1537 77 20 23 1.5% 0.6(0.0)±0.1 20 23 1.5% 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.3±0.0

peg-solitaire 20 291 15 20 0 0.0% 0.1(0.0)±0.0 20 0 0.0% 0.1(0.0)±0.0 0.1(0.0)±0.0 0.1(0.0)±0.0 0.1±0.0
scanalyzer-3d 20 1837 92 20 24 3.2% 0.3(0.0)±0.2 20 24 3.2% 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.1(0.0)± 0.0 0.2±0.2

sokoban 17 1079 63 17 116 2.0% 10.4(2.0)±9.6 17 116 2.0% 0.2(0.0)± 0.1 2.6(2.4)±4.4 0.2(0.0)± 0.1 0.4±0.2
visit-all 19 27036 1423 11 88 1.0% 110.9(59.2)±168.1 19 216 0.9% 4.2(3.5)±8.1 1.5(0.9)± 2.8 2.4(1.8)±4.2 7.7±8.3

woodworking 20 35100 1755 20 100 5.2% 6.7(5.6)±19.5 20 100 5.2% 0.2(0.0)±0.1 4.7(4.5)±19.3 0.2(0.0)± 0.0 0.3±0.1

Table 2: Results of different methods for the minimal length reduction (MLR) problem.

the minimal reduction and the minimal length reduction
problems.

• Our implementation of the Πorder compilation, follow-
ing the same procedure.

• Our implementation of the ΠskipE compilation. For this
compilation we also report results obtained running blind
search.

• The SAT compilations of MR and MLR implemented
by Balyo, Chrpa, and Kilani [2014]. This compilation is
written in Java, and the CNF formula can be solved us-
ing any MaxSAT solver. We used the Sat4J (Le Berre and
Parrain 2010) MaxSAT solver. We are aware that there
are faster MaxSAT solvers, but we used SAT4J for its
availability and convenience, since it is implemented in
the same language as the SAT compilations. Our inten-
tion is to check to what extent the different approaches
are comparable.

• Finally, we compare sub-optimal results obtained from
solving Πskip with a satisficing configuration of FD and
compare them with sub-optimal results obtained from
the Greedy Action Elimination (GAE) algorithm (Balyo,
Chrpa, and Kilani 2014). 3

All the experiments were executed on a computer with
16GB of ram and an 11th Gen Intel(R) Core(TM) i5-1135G7
@ 2.40GHz processor.

Results
Table 1 shows the results to the MR (Minimal Reduction)
problem. First three columns in this table represent the num-
ber of input plans (#), their cost and average cost. For Πorder

3We use directly the author’s implementation, provided by per-
sonal communication.

we show the number of solved instances (10m time limit),
the sum of the cost reductions obtained (diff), the average
ratio of reduction and the average/stdev time to solve. For
Πskip, ΠskipE (enhanced Πskip) and SAT-MR we group the
cost reduction and ratios in a single column because they
get the same results (except for the time needed to solve).
Πorder results are shown separately because it is the only
method that did not manage to solve all instances in the time
limit. In the Time(s) column we show the average time to
get a solution, and in parentheses, for AP-based approaches,
the actual time the planner spent doing search (the rest of
the time is for preprocessing). As it can be seen, the prepro-
cessing time of Πorder proved to be too costly, taking more
time than the actual search in many cases. This is due to
the instantiation, and might be alleviated if the compilation
generates instantiated actions instead of PDDL files.

In general, Πorder performed worse than the other ap-
proaches, even failing to solve instances of the visit-all
domain. Plans in this domain can have thousands of ac-
tions, and the number of before propositions has a quadratic
growth w.r.t the plan length. Πskip and SAT-MR manage to
solve most instances in tenths of a second, except for the
visit-all domain where Πskip and its’ enhancement show
better results. It is interesting to note that ΠskipE shows
competitive results even when the planner performs blind
search. This confirms the intuition that the introduction
of the skippable predicates greatly reduces the size of the
search space.

MLR (Minimal Length Reduction) results are on Table 2.
Here, the diff column is the total length reduction instead
of the cost reduction. Again, Πorder has the worst results in
general, with a similar behaviour to the MR results. Πskip,
ΠskipE and SAT-MR show similar results to the ones for
MR.

Domain Plans GAE Satisficing ΠskipE

Cost Avg # diff Ratio Time(s) # diff Ratio Time(s)
elevator 19 25934 1365 19 1404 6.28% 0.2±0.1 19 1404 6.28% 0.2(0.0)±0.1

barman 20 7721 386 20 703 8.65% 0.4±0.1 20 903 10.86% 0.2(0.0)± 0.0
floor-tile 10 1347 135 10 113 8.63% 0.1±0.0 10 95 7.28% 0.1(0.0)±0.0

no-mystery 20 715 36 20 0 0.00% 0.1± 0.0 20 0 0.00% 0.5(0.0)±0.3

parking 20 1537 77 20 23 1.50% 0.3±0.1 20 23 1.50% 0.1(0.0)± 0.0
peg-solitaire 20 291 15 20 0 0.00% 0.0± 0.0 20 0 0.00% 0.1(0.0)±0.0

scanalyzer-3d 20 1837 92 20 60 3.35% 0.2±0.2 20 60 3.35% 0.1(0.0)± 0.0
sokoban 17 1079 63 17 12 0.81% 0.2±0.1 17 24 1.68% 0.2(0.0)±0.1

visit-all 19 27036 1423 19 216 0.87% 7.7±8.5 19 214 0.86% 0.7(0.1)±0.6

woodworking 20 35100 1755 20 2050 4.77% 0.3±0.1 20 2100 4.89% 0.2(0.0)±0.0

Table 3: Results for two sub-optimal action elimination methods.

Table 3 shows results for GAE and ΠskipE with a satisfic-
ing configuration (weighted A* with w=3 and hmax). Time
results are low and similar in both cases. The reduction ratio
is similar for both approaches, coming close to the optimal
solution in many instances. For really large plans, the AP ap-
proach with a satisficing planner finds good solutions really
fast. For the visit-all domain, while GAE takes on average 7
seconds to solve an instance, ΠskipE takes less than a sec-
ond.

Conclusions and Future Work
In this work we proposed two Automated Planning ap-
proaches to find an eliminate unnecessary actions from
plans. In particular, given a plan we show how to create
planning tasks to solve the MR problem and the MLR prob-
lem. The experiments done show that the results of solving
MR and MLR with these compilations are comparable in
time to other state-of-the algorithms to eliminate unneces-
sary actions. When dealing with particularly large plans, the
proposed approaches outperform their SAT-based counter-
parts under the specified configurations (the usage of differ-
ent SAT solvers or planners might affect this result).

In future work, we plan to experiment with a wider range
of domains and instances. In particular, we wish to identify
situations where the proposed AP approaches to action elim-
ination might outperform SAT-based approaches and vice-
versa. We also want to incorporate unnecessary action elim-
ination on settings where it might be important, such as top-k
planning and plan recognition.

Acknowledgments
This work has been partially funded by FEDER/Ministerio
de Ciencia, Innovación y Universidades - Agencia Estatal
de Investigación/TIN2017-88476-C2-2-R, RTC-2016-5407-
4, and the Madrid Government (Comunidad de Madrid-
Spain) under the Multiannual Agreement with UC3M in the
line of Excellence of University Professors (EPUC3M17),
and in the context of the V PRICIT (Regional Programme
of Research and Technological Innovation).

References
Balyo, T.; Chrpa, L.; and Kilani, A. 2014. On different
strategies for eliminating redundant actions from plans. In

Seventh Annual Symposium on Combinatorial Search.
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of Action Generation for Cyber Security Using Clas-
sical Planning. In ICAPS 2005, 12–21.
Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence, 129(1-2): 5–33.
Celorrio, S. J.; Haslum, P.; Thiebaux, S.; et al. 2013. Pruning
bad quality causal links in sequential satisfying planning.
Chakraborti, T.; Fadnis, K. P.; Talamadupula, K.; Dholakia,
M.; Srivastava, B.; Kephart, J. O.; and Bellamy, R. K. E.
2018. Visualizations for an Explainable Planning Agent. In
IJCAI 2018, 5820–5822.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012a. Deter-
mining redundant actions in sequential plans. In 2012 IEEE
24th International Conference on Tools with Artificial Intel-
ligence, volume 1, 484–491. IEEE.
Chrpa, L.; McCluskey, T. L.; and Osborne, H. 2012b. Op-
timizing plans through analysis of action dependencies and
independencies. In Twenty-Second International Conference
on Automated Planning and Scheduling.
Corrêa, A. B.; Pommerening, F.; Helmert, M.; and Frances,
G. 2020. Lifted successor generation using query optimiza-
tion techniques. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 30,
80–89.
Eifler, R.; Steinmetz, M.; Torralba, Á.; and Hoffmann, J.
2020. Plan-Space Explanation via Plan-Property Dependen-
cies: Faster Algorithms & More Powerful Properties. In IJ-
CAI 2020, 4091–4097.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4): 189–208.
Fink, E.; and Yang, Q. 1992. Formalizing plan justifications.
Fox, M.; Gerevini, A.; Long, D.; and Serina, I. 2006. Plan
Stability: Replanning versus Plan Repair. In ICAPS 2006
- Proceedings, Sixteenth International Conference on Auto-
mated Planning and Scheduling, volume 2006, 212–221.
Fuentetaja, R.; and de la Rosa, T. 2016. Compiling irrelevant
objects to counters. special case of creation planning. AI
Communications, 29(3): 435–467.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.

Katz, M.; Sohrabi, S.; and Udrea, O. 2020. Top-Quality
Planning: Finding Practically Useful Sets of Best Plans. In
AAAI 2020, 9900–9907.
Katz, M.; Sohrabi, S.; Udrea, O.; and Winterer, D. 2018.
A Novel Iterative Approach to Top-k Planning. In ICAPS
2018, 132–140.
Le Berre, D.; and Parrain, A. 2010. The Sat4j library, re-
lease 2.2. Journal on Satisfiability, Boolean Modeling and
Computation, 7(2-3): 59–64.
Muise, C.; Beck, J. C.; and McIlraith, S. A. 2016. Optimal
partial-order plan relaxation via MaxSAT. Journal of Artifi-
cial Intelligence Research, 57: 113–149.
Nakhost, H.; and Müller, M. 2010. Action Elimination and
Plan Neighborhood Graph Search: Two Algorithms for Plan
Improvement. In Brafman, R. I.; Geffner, H.; Hoffmann,
J.; and Kautz, H. A., eds., Proceedings of the 20th Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2010, Toronto, Ontario, Canada, May 12-16, 2010,
121–128. AAAI.
Nebel, B.; Dimopoulos, Y.; and Koehler, J. 1997. Ignoring
irrelevant facts and operators in plan generation. In Euro-
pean Conference on Planning, 338–350. Springer.
Nguyen, T. A.; Do, M. B.; Gerevini, A.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating Diverse
Plans to Handle Unknown and Partially Known User Prefer-
ences. Artif. Intell., 190: 1–31.
Olz, C.; and Bercher, P. 2019. Eliminating redundant ac-
tions in partially ordered plans—a complexity analysis. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, 310–319.
Pereira, R. F. 2016. Landmark-Based Approaches for Plan
Recognition Tasks. M.Sc. Dissertation - Pontificia Univer-
sidade Católica do Rio Grande do Sul (PUCRS).
Ramı́rez, M.; and Geffner, H. 2009. Plan recognition as
planning. In Twenty-First International Joint Conference on
Artificial Intelligence.
Ramı́rez, M.; and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Twenty-
Fourth AAAI Conference on Artificial Intelligence.
Roberts, M.; Howe, A. E.; and Ray, I. 2014. Evaluating di-
versity in classical planning. In Twenty-Fourth International
Conference on Automated Planning and Scheduling.
Say, B.; Cire, A. A.; and Beck, J. C. 2016. Mathematical
programming models for optimizing partial-order plan flex-
ibility. In Proceedings of the Twenty-second European Con-
ference on Artificial Intelligence, 1044–1052.
Siddiqui, F. H.; and Haslum, P. 2015. Continuing plan qual-
ity optimisation. Journal of Artificial Intelligence Research,
54: 369–435.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J.; Lozano-
Perez, T.; and Kaelbling, L. P. 2020. Planning with learned
object importance in large problem instances using graph
neural networks. arXiv preprint arXiv:2009.05613.
Sohrabi, S.; Riabov, A.; and Udrea, O. 2016. Plan Recogni-
tion as Planning Revisited. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence (IJCAI).

Speck, D.; Mattmüller, R.; and Nebel, B. 2020. Symbolic
Top-k Planning. In AAAI 2020, 9967–9974.
Srivastava, B.; Nguyen, T. A.; Gerevini, A.; Kambhampati,
S.; Do, M. B.; and Serina, I. 2007. Domain Independent Ap-
proaches for Finding Diverse Plans. In IJCAI, 2016–2022.
Waters, M.; Padgham, L.; and Sardina, S. 2021. Optimising
partial-order plans via action reinstantiation. In Proceed-
ings of the Twenty-Ninth International Conference on Inter-
national Joint Conferences on Artificial Intelligence, 4143–
4151.
Yen, J. Y. 1971. Finding the k shortest loopless paths in a
network. management Science, 17(11): 712–716.

