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Abstract
We consider scheduling solutions for photolithography, an im-
portant sub-task in semi-conductor production, where patterns
are transferred to wafers using reticles. The problem can be
modelled as job scheduling on unrelated parallel machines
with sequence-dependent setup times and release dates. The
reticles add auxiliary-resource constraints for processing jobs.
Equipping machines with the right reticles using transport
robots from stockers in time renders this problem extremely
difficult for exact solvers that use a declarative model. The lat-
ter would be attractive as such models tend to be compact and
easy to maintain. We present a solver-independent MiniZinc
model and provide 500 new benchmark instances. However,
only small instances can be solved with state-of-the-art MIP
and CP solvers. Consequently, we present this problem as
an open challenge with considerable potential for driving im-
provements towards industrial applications.

1 Introduction
Semi-conductor production involves a number of rather com-
plicated processing steps. A crucial sub-task is photolitho-
graphy, where patterns are transferred to a wafer using pho-
tomasks, also called reticles, by exposing them to UV-light.
This is often a bottleneck for production due to the limited
number of machines, the expensive equipment that is re-
quired, and the large number of wafers.

We are interested in scheduling solutions for photolitho-
graphy to improve throughput by minimising the makespan
of the schedule, i.e., the completion time of the last job on
any machine. This problem can be modelled as job schedul-
ing on unrelated parallel machines with machine dedication,
sequence-dependent setup times, and release dates. Each job
needs to be non-preemptively processed by exactly one ma-
chine that is capable of doing so (machine dedication). Every
job has a release date, which is its earliest start time, and a
duration. Also, each job requires a setup that depends on the
previous job on the machine, which we model with sequence-
dependent setup times. All times are machine dependent.

The problem so far is already quite challenging as we need
to simultaneously solve an assignment and a sequencing prob-
lem. A further complication are the required reticles, which
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represent additional auxiliary-resource constraints: every job
needs a specific reticle to be processed. As reticles are ex-
pensive, their number is limited, and jobs that require the
same reticle cannot be processed at the same time. While
there is some work on this problem, cf. the article by Bitar,
Dauzère-Pérès, and Yugma (2021) and the literature review
therein, a common assumption is that reticles can be moved
individually between machines. This is not realistic in larger
workcenters as reticles are quite fragile and often transporta-
tion systems for groups of reticles are in place. Our problem
has, to the best of our knowledge, not been studied yet: we
assume that pods of fixed size are used to safely store and
transport reticles to machines. Transport robots are used for
equipping entire pods with the right reticles from reticle
stockers in time. As robots move slowly and pod changes
are costly, jobs need to be carefully batched into groups on
machines that only require reticles from a single pod.

Exact constraint programming (CP) or mixed-integer pro-
gramming (MIP) solvers that use a declarative model are
attractive as such models tend to be compact and easy to
maintain when requirements change. Furthermore, valuable
knowledge about the application is explicitly represented.
We present a first solver-independent MiniZinc model for
this problem, which is a high-level modelling language for
constraint satisfaction and optimisation problems that can be
used by a wide range of solvers (Nethercote et al. 2007). We
evaluate this model on a new benchmark set consisting of
500 randomly generated instances of realistic structure.

Unfortunately, the requirements around reticles and their
transportation renders this problem extremely difficult for
state-of-the-art MIP and CP solvers (we used IBM CP Op-
timizer, IBM CPLEX, and Google OR-Tools in our exper-
iments), and it turns out that only small instances can be
solved. Consequently, we present this problem together with
the benchmark instances as an open challenge. We believe
that making progress on it has considerable potential for driv-
ing improvements in optimisation-based scheduling for this
relevant industrial problem.

2 Related Work
For an overview on scheduling problems in semi-conductor
manufacturing, we refer to the survey article by Mönch et al.



(2011). The problem of unrelated parallel machine schedul-
ing with setup times and no reticles as auxiliary resources has
been studied rather extensively (Allahverdi 2015). The bench-
mark instances we introduce in this work extend previous
ones from recent work (Eiter et al. 2021) on a job scheduling
problem with setup times but without reticle batching.

A problem quite similar to ours has been studied by Bitar,
Dauzère-Pérès, and Yugma (2021). They considered setup
times as well as auxiliary resource constraints, but reticles
can be moved individually between machines. In particular,
they modeled moving an auxiliary resource from one ma-
chine to another with a unitary transport time. Furthermore,
release dates were not considered. One of their objectives
is to minimise the number of jobs completed before a fixed
horizon, and they provide a respective ILP model. A memetic
algorithm for this problem has been introduced in previous
work (Bitar et al. 2016).

An approach with dispatching rules and MIP for a prob-
lem similar to ours with auxiliary constraints and release
dates but on identical machines is due to Cakici and Mason
(2007). They minimised the weighted sum of completion
times as the objective. A MILP model for unrelated parallel
machine scheduling with unspecific resources for minimising
makespan but without release dates was studied by Fanjul-
Peyro (2020). Soares and Carvalho (2022) used a hybrid
evolutionary algorithm for makespan minimisation on identi-
cal machines, but also without release dates.

Ham and Cho (2015) integrated real-time dispatching rules
with linear programming techniques to solve photolithogra-
phy scheduling problems. Their approach proceeds in two
stages: first, they find the least-cost assignment of jobs to
reticles and machines using a transportation model and MIP.
Second, a sequencing module uses dispatching business rules
to provide sequencing decisions.

To the best of our knowledge, considering pods of limited
capacity for reticle storage and transportation from stockers
is a novel and practically important aspect of this work that
has not been addressed for exact solvers so far.

3 Formal Problem Statement
We study the following scheduling problem. Given m ma-
chines and n jobs, every job needs to be processed by a single
machine, and every machine can process at most one job at
a time; preemption is not allowed. Some machines can only
handle certain jobs, such that from the view of the latter,
cap(j) is the set of machines that can process job j.

We assume that a release date αj,k is specified for every
job j and machine k as a non-negative integer. Release dates
are machine dependent because transportation times for jobs
to the machines depend on the transport system and their
location. No job can start before its release date.

A specified amount of time may be required to change
from one job to the next one. Specifically, we assume that
βi,j,k is the time needed to set up job j directly after job i
on machine k. Consequently, these times are referred to as
sequence-dependent setup times. Every job j has a positive
duration dj,k that depends on the machine k it is assigned to.

Furthermore, we consider o reticles and l stockers. Each
reticle i is assigned to a stocker, denoted by stk i. For each

stocker i and machine k, we assume a transportation time ti,k.
Reticles are auxiliary resources required by jobs. Each job i
requires exactly one reticle denoted by ri. Finally, we also
assume a pod capacity b denoting the number of different
reticles that can be held by any machine and a pod change
time γk for each machine k.

A schedule S for a problem instance is defined by:
1. An assignment a that maps each job j to a machine k ∈

cap(j) capable of processing it;
2. A start time st i for each job i. For each machine k, the

start times of the jobs J assigned to k via a determine a
total order ⪯k on J . Relation ⪯k determines the sequence
in which the jobs in J are processed on k;

3. For each machine k, an equivalence relation ∼k on the
set Jk of jobs assigned to the machine via a such that
whenever j1 ∼k j2 then there is no i ̸∼k j1 such that
j1 ⪯k i ⪯k j2.

The equivalence classes of ∼k are also called the batches
of machine k. Informally, a batch is a group of jobs that
can be processed consecutively without having to change
the reticle pod. For a batch i, the set of its reticles is given
by ret(i) := {rj | j ∈ i}. We enforce the pod capacity by
requiring that |ret(i)| ≤ b for each batch i. Additionally, we
require that all reticles in a batch come from the same stocker,
i.e, stkr1 = stkr2 for each r1, r2 ∈ ret(i).

Assume that j1 ⪯k . . . ⪯k jl is the processing sequence
of the jobs assigned to machine k in a given schedule. The
processing time pji of a job ji is its duration plus the setup
time for its predecessor (if one exists); i.e., pj1 = dj1,k and
pji = βji−1,ji,k+dji,k, for i > 1. The completion time cji of
job ji is then stji + pji . We require that each job starts after
its predecessor, i.e., stji ≥ cji−1 for i > 1. Furthermore, to
ensure each job starts after its release date on k, stji ≥ αji,k

has to hold.
For the schedule to be feasible, we also need to ensure

that batches using the same reticle do not overlap and that
the respective transportation times for reticles are considered.
By abuse of notation, let st i := min({stj | j ∈ i}) and
ci := max ({cj | j ∈ i}) denote the start and the completion
time of a batch i, respectively. Then, for any batches i1 ̸= i2
where ret(i1) ∩ ret(i2) ̸= ∅, it holds that either st i1 ≥
ci2 + tstk ,k2 + tstk ,k1 or st i2 ≥ ci1 + tstk ,k1 + tstk ,k2 , where
k1 and k2 are the machines of i1 and i2 respectively, and stk
is the reticle stocker containing the reticles of both batches.
Furthermore, for consecutive batches on the same machine,
we enforce a pod change time between them. Formally, for
any two batches i1 ̸= i2 on machine k, either st i1 ≥ ci2 +γk
or st i2 ≥ ci1 + γk.

4 MiniZinc Model
We implemented a solver-independent model for schedule
optimisation in the well-known high-level modelling lan-
guage MiniZinc for constraint satisfaction and optimisation
problems (Nethercote et al. 2007). MiniZinc models, after
being compiled into FlatZinc, can be used by a wide range of
solvers. Our model of the problem statement from Section 3
and the objective function are as follows.

For each job i ∈ {1, . . . , n}, we use the following deci-
sion variables: ai ∈ {1, . . . ,m} for its assigned machine,



pi ∈ {1, . . . , n}∪{−k | 1 ≤ k ≤ m} representing its prede-
cessor or its negative machine assignment if it has none, and
ci ∈ {0, . . . , h} denoting its completion time, where h is the
scheduling horizon, i.e., the latest considered timepoint.

Furthermore, we utilize some auxiliary decision variables:
si ∈ {1, . . . , n} ∪ {−k | 1 ≤ k ≤ m} represents a job’s
successor or its negative machine assignment if it has none,
σi ∈ {0, 1} indicates whether a job starts a batch, and ρi,k ∈
{0, 1} denotes that reticle k is used in the batch of job i.

The constraints of the MiniZinc model are given in Fig. 1.
The global constraint (1) ensures that no two jobs have the
same predecessor, and the next constraint (2) enforces that
a job and its predecessor are assigned to the same machine.
First jobs on machines which have no predecessor have their
negative machine assignment as a dummy predecessor as
required by constraint (3). Thus, those jobs do not interfere
with constraint (1). Constraints (4) and (5) link the successor
and predecessor variables. Constraint (6) expresses that no
job is its own predecessor, while (7) ensures that every job
is assigned to a capable machine. Constraint (8) ensures that
each job starts after its predecessor, and (9) enforces that
every job starts after its release date.

Batching is modelled by pod changes and blocked reticles.
Constraint (10) enforces that the required reticle of a job is
always blocked by said job. Whenever a job does not start a
batch, its blocked reticles are passed on to its predecessor; this
is modelled by constraint (11). Similarly, by constraint (12)
blocked reticles are passed forward if the successor of a job
does not start a batch. Maximum pod capacity is constrained
by (13), and constraint (14) defines the three cases when a
pod change is required. Namely (i) whenever a job is the first
on its machine, (ii) the required reticle of the predecessor
comes from a different stocker, or (iii) the preceding job
already blocks the maximum number of reticles that can be
in a batch, and the current one requires a new reticle.

To ensure that no reticle is used by multiple jobs at the
same time, we use a global cumulative constraint (15). It
takes as input the start times, durations, and resource re-
quirements of a list of jobs and ensures that their resource
assignments never exceed the given bound of 1. To ensure
that idle times in a batch still block all reticles, batchStart(i)
is defined as the completion of the predecessor unless the job
i starts the batch. For transportation, batchDuration(i) adds
the respective time for the first and last jobs of a batch.

The objective min max 1≤i≤n(ci) expresses the standard
makespan objective for the scheduling problem.

5 Experiments
Next, we present an evaluation of different solvers with our
MiniZinc model on a set of randomly generated benchmark
instances. The instance generator, the MiniZinc model, as
well as the logs from our experiment are available online.1

Problem Instances
To create our benchmark suite, we amended instances pre-
viously introduced for the related problem of scheduling
jobs on unrelated parallel machines with release dates and

1http://www.kr.tuwien.ac.at/research/projects/bai/keps22.zip.

Solver #feasible #best #optimal

Google OR-Tools 45 45 26
CP Optimizer 55 39 23
CPLEX 36 16 14

Table 1: Number of instances for which feasible, best, and
optimal solution were found for each solver with 15 minutes
time limit per instance.

sequence-dependent setup times but without batching require-
ments (Eiter et al. 2021). The 500 benchmark instances for
that problem have different sizes and were generated ran-
domly but reflect relevant properties of the real instances.

The machine capabilities were assigned uniformly at ran-
dom for half of the instances: for each job, a random number
of machines were assigned as capable. For the other half,
we assigned the capabilities such that 80% of the jobs can
only be performed by 20% of the machines. The latter setting
reflects high machine dedication and the former models low
machine dedication.

For each job j and any machine k, the duration dj,k, setup
time βj,i,k for any other job i, and release date αj,k were
drawn uniformly at random from [10, 500], [0, 100], and
[0, rmax ], respectively, where

rmax =
1

m

∑
1≤j≤n

1

|cap(j)|
( ∑
k∈cap(j)

dj,k+
∑

1≤j′≤n,k∈cap(j′)

βj′,j,k

)
.

We then set the number of reticles to o = ⌈0.8n⌉ and the
number of stockers to l = ⌈0.4m⌉. The required reticle of a
job as well as the stocker of a reticle are assigned uniformly
at random. Lastly, for each stocker i and machine k, the
transportation time ti,k was drawn uniformly from [10, 100],
the pod capacity of an instance was taken from [5, 10], and
the pod change times from [50, 100].

Preliminary Results
We conducted all experiments on a cluster with 13 nodes,
where each node has two Intel Xeon CPUs E5-2650 v4
(max. 2.90GHz, 12 physical cores, no hyperthreading) and
256GB RAM. For each run, we set a memory limit of 20GB,
and all solvers only used one solving thread.

To solve our model we used the CP solvers IBM CP Opti-
mizer 20.12, Google OR-Tools 7.83, as well the MIP solver
IBM CPLEX 12.104.

Table 1 gives an overview of the results for all 500 in-
stances with a time limit of 15 minutes per instance. This
rather short time limit is required by the workcenter because
they need to reschedule frequently to react to incoming jobs
or machine failures. Our experiments indicate that this is in-
deed a hard scheduling problem: no solver could find feasible
solutions for more than 59 instances and at most 26 could
be optimally solved. The largest instance any solver could

2https://www.ibm.com/analytics/cplex-cp-optimizer.
3https://developers.google.com/optimization.
4https://www.ibm.com/analytics/cplex-optimizer.



alldifferent(⟨pi⟩1≤i≤n) (1)
pi > 0 → ai = api

1 ≤ i ≤ n (2)
pi < 0 → pi = (−1) · ai 1 ≤ i ≤ n (3)
pi = j ↔ sj = i 1 ≤ i, j ≤ n, i ̸= j (4)
si < 0 → si = (−1) · ai 1 ≤ i ≤ n (5)
pi ̸= i 1 ≤ i ≤ n (6)
ai ∈ cap(i) 1 ≤ i ≤ n (7)
ci ≥ (max (cj , αi,ai) + βj,i,ai + di,ai + (γi · [σi = 1])) · [pi = j] 1 ≤ i, j ≤ n, i ̸= j (8)
ci ≥ αi,ai

+ di,ai
1 ≤ i ≤ n (9)

ρi,ri = 1 1 ≤ i ≤ n (10)
(σi = 0 ∧ ρi,k = 1) → ρpi,k = 1 1 ≤ i ≤ n, 1 ≤ k ≤ o (11)
(pj = i ∧ σi = 0 ∧ ρi,k = 1) → ρj,k = 1 1 ≤ i, j ≤ n, i ̸= j, 1 ≤ k ≤ o (12)∑
1≤k≤o

ρi,k ≤ b 1 ≤ i ≤ n (13)

(
pi<0 ∨ (pi>0 ∧ stkri ̸=stkpi) ∨ (pi > 0 ∧

∑
1≤k≤o

ρpi,k= b ∧ ρpi,ri = 0)
)
↔ σi = 1 1 ≤ i ≤ n (14)

cumulative(⟨batchStart(i)⟩1≤i≤n, ⟨batchDuration(i)⟩1≤i≤n, ⟨ρi,k⟩1≤i≤n, 1) 1 ≤ k ≤ o (15)

batchStart(i) :=

{
ci − di,ai

− [pi > 0] · βpi,i,ai
if σi = 1,

cpi otherwise.

batchDuration(i) :=

{
di,ai

+ tlri ,ai
+ βpi,i,ai

if (σi = 1 ∧ pi > 0) ∨ si < 0 ∨ σsi = 1,

di,ai
+ [pi > 0] · βpi,i,ai

otherwise.

Figure 1: Solver-independent MiniZinc model (for a proposition P , [P ] = 1 if P is true, and [P ] = 0 otherwise).

find solutions for contains only 24 jobs. A similar picture
was obtained when using a run time limit of one hour on a
representative selection consisting of 10% of the instances.

It seems that modelling that batches which use the same
reticle do not overlap is difficult and has a big impact on both
model compilation and search performance. For example, our
way of modelling blocked reticles with an auxiliary variable
for each job appears to be costly in terms of the number of
constraints it generates. This leads to memory outage for
bigger instances. The cumulative constraint (15) does not
contribute to problems in compilation, but our intuition is that
it makes it significantly harder for solvers to find solutions.

6 Discussion
We deal with optimisation-based scheduling for the practi-
cally relevant photolithography problem. Besides machine
dedication, sequence-dependent setup times, and release
dates, a characteristic feature that makes this problem chal-
lenging are auxiliary-resource constraints in the form of ret-
icles. We study this problem under the realistic assumption
that reticles need to be transported together such that given
pod capacities are respected. In particular, we (i) present a
formal problem description, (ii) give a solver-independent

MiniZinc model, and (iii) provide new benchmark instances
for this problem. Our experiments with MIP and CP solves
confirm that the problem is hard for exact solvers, and we
present it consequently as an open challenge.

Fur future work, there are different possible paths forward
to address this challenge. Meta-heuristics, like simulated
annealing or tabu search, are often successful for machine
scheduling. However, if we want to use declarative models,
options are more limited. Direct encodings instead of the
MiniZinc model, other models as well as optimising solver
settings might result in some improvements. Another direc-
tion is to rephrase the problem as online scheduling and use
stream reasoning over a sliding time window to only sched-
ule newly arriving jobs. Alternatively, we can use a selection
strategy to schedule only a subset of jobs within a limited
horizon. Also, a two-phase approach where we separate the
model for machine assignments and reticles from the sequenc-
ing of jobs as in related work by Ham and Cho (2015) may
be promising. Another idea is to use a large-neighbourhood
search on top of a declarative model, possibly together with a
greedy construction heuristic to start search, as demonstrated
for a similar problem (Eiter et al. 2022).
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