
MACQ: A Holistic View of Model Acquisition Techniques

Ethan Callanan*1 Rebecca De Venezia*1 Victoria Armstrong1 Alison Paredes1

Tathagata Chakraborti2 Christian Muise1

1 Queen’s University, 2 IBM Research AI
Contact: christian.muise@queensu.ca

Abstract

For over three decades, the planning community has explored
countless methods for data-driven model acquisition. These
range in sophistication (e.g., simple set operations to full-
blown reformulations), methodology (e.g., logic-based -vs-
planing-based), and assumptions (e.g., fully -vs- partially ob-
servable). With no fewer than 43 publications in the space,
it can be overwhelming to understand what approach could
or should be applied in a new setting. We present a holis-
tic characterization of the action model acquisition space and
further introduce a unifying framework for automated action
model acquisition. We have re-implemented some of the land-
mark approaches in the area, and our characterization of all
the techniques offers deep insight into the research opportu-
nities that remain; i.e., those settings where no technique is
capable of solving.

Project: macq.planning.domains

1 Introduction
Model acquisition has been a hallmark sub-field of auto-
mated planning for decades. From the early approaches to
extracting simple planning models in an automated way
(Shen and Simon 1989) to modern techniques for extract-
ing lifted action theories from state tokens alone (Rodriguez
et al. 2021), the planning community has developed dozens
of approaches to model acquisition for various settings. Si-
multaneously, there have been a few surveys that capture the
status of this rich sub-field and characterize the approach
across many axes (Celorrio et al. 2012; Jilani et al. 2014;
Arora et al. 2018). What is missing from the collective focus
on the suite of techniques available is a unifying framework
that allows researchers to explore both the existing tech-
niques, as well as the gaps in what we are capable of solving.
While the explosion in model learning techniques has dated
past surveys pretty quickly, our open-source approach and
live interface to the repository aims to make MACQ the one-
stop-shop for learning planning models.

In this work, we present the first major step towards such
a unified framework. Both from a theoretical standpoint –
characterizing model acquisition techniques in terms famil-
iar to the planning community – and from the practical

*These authors contributed equally.

standpoint with growing implementation of the core algo-
rithms. Our contribution goes substantially further than just
a survey of the existing techniques. By integrating them un-
der a single theoretical framework and implementation, we
effectively open the door to systematically characterizing the
entire sub-field of research.

We accomplish this characterization by identifying the
key properties that distinguish model acquisition techniques
and then applying knowledge compilation techniques to map
out what is known from the field. We are thus able to holis-
tically view what is possible theoretically (i.e., papers exist
to address the setting), what is possible practically (an im-
plementation exists in the framework), and what remains an
open research question.

Finally, having the suite of tools for state trace generation,
modification, and analysis all under a single framework al-
lows us to rapidly test different approaches to a specific set-
ting. New use-cases for model acquisition can leverage the
growing library of implemented techniques for model acqui-
sition, and this provides tangible benefits to those outside the
planning community who wish to apply planning techniques
in their domain of expertise.

2 MACQ Framework
There are three core components to the MACQ framework:
(1) trace generation; (2) observation tokenization; and (3)
model extraction. Not all of these are mandatory, but each
complements the others to offer a rich array of functionality.
We discuss each of them in turn in Section 2, but lead this
section with a discussion of key features and assumptions of
concern in describing a model learning task.

2.1 Feature Analysis
A model learning task involves three key considerations –
1) what are the features of the agent whose model is being
learned; 2) what are the features of the model being learned;
and 3) what are the features of the data from which the
model is being learned. Note the distinction between (2) and
(3). This separation of features allows our framework with
the flexibility to provide the user with the choice of what
kind of model to learn from what kind of data. For exam-
ple, a user can choose to use a stochastic model extraction
technique on noisy data instead of modelling noise directly.
More on this “token casting” feature later in Section 2.3.

macq.planning.domains


Agent Features

• Rationality The primary consideration here is whether
the observed agent is rational or not. By default, we as-
sume that this is unknown or that there is no assumption
of rationality in an extraction technique. If there is, we
allow for two types of rationality – optimal traces (in the
classical sense) or causally relevant traces where there
are no redundant actions in a plan i.e. there are no (sub-
sets of) actions that can be removed from the trace and
the agent can still reach its goal.

Model Features

• Uncertainty The first feature of interest is whether un-
certainty is captured by the model – a model can take
three forms: 1) deterministic, 2) non-deterministic, and
3) probabilistic. Note that (3) implies (2)and (1); and (2)
implies (1). Thus, a model can have at least one and at
most one of these features – this is generally not true for
the rest of the features.

• Parameterization These features capture whether ac-
tions (as well as predicates) in the model are parame-
terized by the objects they operate on and whether those
objects in turn are typed or atomic.

Data Features

• Observability One of the primary features of concern in
a model learning task is how much of the environment
is observable. The fluents describing the state may be 1)
fully or 2) partially observable or 3) not observable at all.
Similar to the discussion on model uncertainty, the ability
of a model extraction technique to deal with (2) implies
(1); but (3) implies neither of (1) or (2).

• Action Observability In addition to whether the fluents
are observable, an additional consideration is whether
the action labels and parameters are known and whether
there is a seed model, to begin with.

• Parameterization This mirrors the model features by the
same names. Additionally, it also includes the possibility
to have action costs.

• Noise Noise in data may manifest either as noise in fluent
observations or noise in observed action labels.

• Access to the initial and goal state of a trace.

• Trace Finally trace-level features include whether there
is access to the cost of the plan and to what extent (full
or partial) the trace is observable i.e. whether there are
missing actions or not.

2.2 Trace Generation
Plan traces may be sourced from a variety of sources, and the
first component (trace generation) serves as both a rich set of
techniques to generate planning traces as well as a suite of
tools to parse and process existing data for model extraction.
Here, we describe some of the highlights in functionality for
the “trace generation” part of the MACQ ecosystem (one of
which is currently under development).

CSV Processing As a trivial baseline for trace generation,
the MACQ library offers functionality to load and package up
simple CSV files. Columns with the values 0 or 1 will be
retained (presumed to be boolean fluents), and a single spe-
cially designated column for the “action” label is required.
This does not cover the full set of data format assumptions
(e.g., parameterized actions), but is nonetheless a common
starting point for many model acquisition tasks.

Statespace Sampling Given any valid classical planning
problem, MACQ has the ability to generate random states-
pace trajectories. The PDDL model supplied (either as raw
PDDL, pointers to existing files, or a reference to the
api.planning.domains problem ID (Muise 2016)) is parsed
by the TARSKI library (Francés, Ramirez, and Collabora-
tors 2018), and actions are selected (uniformly at random)
starting in the initial state. The goal is ignored in this case,
and MACQ will generate the predefined number of traces at
a given length. As an added feature, we have also incorpo-
rated the methodology adopted by the FastDownward sys-
tem (Helmert 2006) to perform random state sampling to a
depth based on heuristic computation.1

Goal-Oriented Sampling Another approach for generat-
ing a single trace is to compute a plan for the given do-
main/problem pair. However, as a generation technique, it is
limited to generating just a single trace. MACQ has expanded
on this by allowing for random goal sampling. The approach
works as follows:

1. Use the statespace sampling to compute a sequence of
actions/states of length k.

2. Sample subsets of fluents of size g from the final state in
this sequence such that,

(a) It reflects the same type of fluents in the original goal.
(b) It is not easily achieved from the original initial state.

3. Use those sampled subsets as goals for computing a plan.

There are several design decisions to be made: user-
selected values for k and g (which may be domain-specific);
sampling procedure in step 2 to adhere to 2(a); measuring
the quality of a goal candidate in step 2(b); etc. MACQ cur-
rently includes a preference to use fluents corresponding to
the goal predicates for step 2(a), and uses a computed plan
as a proxy for 2(b) – the closer the found plan is to length k,
then the better the goal candidate is. This technique provides
a rich mechanism for data generation given a single seed
planning problem. Not only is it useful for exploring model
extraction techniques, but we predict it may have wider use
in the area of planning and learning.

2.3 Observation Tokenization
There is a vast array of model acquisition techniques that ex-
ist (some surveys on the space are discussed in Section 1). In
an effort to provide a common foundation for a library that
encompasses this rich variety, we appeal to the notion of ob-
servation tokens (Geffner and Bonet 2013). To unify various

1Details: https://github.com/aibasel/downward/blob/main/src/
search/task utils/sampling.cc

https://api.planning.domains/
https://github.com/aibasel/downward/blob/main/src/search/task_utils/sampling.cc
https://github.com/aibasel/downward/blob/main/src/search/task_utils/sampling.cc


approaches for planning with partial observability, Geffner
and Bonet introduces a notion of an observation token. It
succinctly captures what the agent sees and can act upon.
At times, this may be an indication of a sensing outcome.
At other times, it may capture the partial state information
viewable by the agent. We adopt this concept wholeheart-
edly for use in MACQ.

Every extraction method works on a set of observa-
tion token lists of a specific token type.

Observation Token Types Driven by the variety of ex-
traction methods captured by MACQ, we have identified sev-
eral useful forms of observation tokens. These include:

• IDENTITY: Full state / action information is provided.
• PARTIALSTATE: Some fluents are masked as unknown.
• STATE ID: No action or fluent information is provided –

same states correspond to the same token.
• NOISYSTATE: Some fluents may be incorrectly assigned.
• ACTIONONLY: No state information is provided.

This list, although not exhaustive, provides a sense of the
variety embedded within MACQ. Each extraction method will
designate the token types it is capable of processing, and this
allows for the automatic discovery of methods applicable to
data of a particular form. This means that MACQ has the abil-
ity to automatically suggest the extraction methods that can
work with a particular source of trace data.

Tokenization To explore the effectiveness of extraction
techniques, every form of observation token has the func-
tionality to “tokenize” ground-truth data. For example, PAR-
TIALSTATE tokens can be created by specifying the likeli-
hood of masking a fluent, along with the set of fluents that
are eligible (defaulting to the entire state).

This functionality is essential for the development of new
extraction methods, as well as testing pre-existing ones.
Combined with the methods for trace generation in MACQ,
this provides a robust means for data generation in the model
acquisition space.

Token Casting The extraction techniques are tightly cou-
pled with the type of representations they can handle. An
approach for partially observable states will only operate on
the appropriate class of PartiallyObservable token
types for the trace. To extend this, we allow for “token cast-
ing”, which will (if possible) transform tokens of one type to
another. Taking our example further, if we have fully observ-
able states and we wanted to test a technique implemented
in MACQ dedicated to partially observable state spaces (be-
cause of other functionality it offers), we can “token cast”
the trace data to partially observable tokens.

Token casting is not always feasible, but the MACQ frame-
work is set up such that finding these casting paths is nat-
urally available. Every contribution to the space of model
acquisition is characterized by the limited scope of the
paper/work. Through methods like tokenization and token
casting, we open the door to applying techniques in a richer
variety of settings, not originally envisioned by the authors.

2.4 Action Model Extraction
The bulk of the MACQ project is dedicated to the extrac-
tion of action theories. At the time of writing, we have re-
implemented a representative sample of model acquisition
techniques spanning several features discussed in Section
2.1 to demonstrate the potential of the MACQ system:

• OBSERVER (Wang 1994): One of the first and most sim-
ple methods for model acquisition, this technique as-
sumes full observability, noise-free data, and determin-
istic actions. The extracted theories are in STRIPS form,
and the methods are mostly set-based.

• ARMS (Yang, Wu, and Jiang 2005, 2007a): This line
of work handles partially observable states (fluents are
hidden) as well as traces (entire states may be missing).
There is an assumption that the goal and initial states are
known, and while the actions and predicates are parame-
terized, they are not typed. The technique uses MaxSAT
to solve a particular encoding for model extraction.

• SLAF (Amir and Chang 2008): This method also fo-
cuses on partially observable state traces and appeals to
a logical encoding to extract the action theories. It is ca-
pable of producing one action theory, or several that fit
the data. It operates by iteratively calling a SAT solver to
find the entailments that lead to a valid theory (i.e., one
that adheres to the observations). The input traces are as-
sumed to be noise-free.

• AMDN (Zhuo, Peng, and Kambhampati 2019): This
technique relies on MaxSAT to find the most likely ac-
tion models given potentially disordered and noisy plan
traces (here, noise means actions may be out of order).
Further, the states may be partially observable and noisy,
and the actions occur in parallel.

A common element of these approaches is the heavy re-
liance on SAT or MaxSAT technology. Because of this com-
monality, several elements of functionality have been in-
cluded in the MACQ project for extraction techniques to make
use of. These include model building, solving with wrapped
binaries, and solution extraction. Specifically, the project re-
lies on the Bauhaus (Daga and Muise 2021), python-nnf
(Verbeek, de Haan, and Muise 2022), and PySAT (Ignatiev,
Morgado, and Marques-Silva 2018) libraries, as well as the
kissat (Biere et al. 2020) and RC2 (Morgado, Dodaro, and
Marques-Silva 2014) SAT / MaxSAT solvers. While the cur-
rent focus is SAT-based, the full scope of model acquisition
techniques are planned for eventual implementation.

Finally, custom and flexible representations for learned
actions and fluents are shared across the approaches. This
allows for a uniform treatment of what is produced – re-
gardless of extraction technology – and further allows us
to efficiently generalize the serialization of the action theo-
ries. This final step (writing to PDDL) is achieved using the
Tarski library (Francés, Ramirez, and Collaborators 2018).

3 MACQ in Action
Here, we briefly showcase some of the interface for the
toolkit, as well as the summary view of the work.



1 from macq import generate, extract

2 from macq.trace import PlanningObject, Fluent, TraceList

3 from macq.observation import PartialObservation

4

5 def get_fluent(name: str, objs: list[str]):

6 objects = [PlanningObject(o.split0[0], o.split()[1])

7 for o in objs]

8 return Fluent(name, objects)

9

10 traces = TraceList()

11 generator = generate.pddl.TraceFromGoal(problem_id.1801)

12

13 generator.change_goal({

14 get_fluent(

15 "communicated_soil_data",

16 ["waypoint waypoint2"]

17 ),

18 get_fluent(

19 "communicated_rock_data",

20 ["waypoint waypoint3"]

21 ),

22 get_fluent(

23 "communicated_image_data",

24 ["objective objective)", "mode high_res"]

25 ),

26 })

27 traces.append(generator.generate_trace())

28

29 generator.change_goal({

30 get_fluent(

31 "communicated_soil_data",

32 ["waypoint waypoint3"]

33 ),

34 get_fluent(

35 "communicated_rock_data",

36 ["waypoint waypoint2"]

37 ),

38 get_fluent(

39 "communicated_image_data",

40 ["objective objective)", "mode high_res"]

41 ),

42 })

43 traces.append(generator.generate_trace())

44

45 observations = traces.tokenize(

46 PartialObservation,

47 percent_missing = 0.60

48 )

49 model = extract.Extract(

50 observations,

51 extract.modes.ARMS,

52 upper_bound = 2,

53 min_support = 2,

54 action_weight = 110,

55 info_weight = 100,

56 threshold = 0.6,

57 info3_default = 30,

58 plan_default = 30,

59 )

60 print(model.details())

Figure 1: MACQ usage

Actions:

(communicate_soil_data waypoint

lander

rover

waypoint):

precond:

at rover waypoint

add:

at_rock_sample waypoint

have_rock_analysis rover waypoint

communicated_soil_data waypoint

channel_free lander

at_soil_sample waypoint

delete:

(communicate_image_data lander

waypoint

rover

objective

mode

waypoint):

precond:

calibrated camera rover

communicated_rock_data waypoint

at_rock_sample waypoint

have_soil_analysis rover waypoint

channel_free lander

at rover waypoint

add:

have_image rover objective mode

calibrated camera rover

communicated_image_data objective mode

delete:

calibrated camera rover

(drop store rover):

precond:

have_image rover objective mode

have_soil_analysis rover waypoint

available rover

calibrated camera rover

at rover waypoint

add:

have_image rover objective mode

calibrated camera rover

delete:

...

Figure 2: Sample of the output from the ARMS extraction.

3.1 Library Usage

Corresponding to the three main components detailed in
Section 2 – trace generation, observation tokenization, and
model extraction – the MACQ library offers a range of func-
tionality for each. Usage of MACQ also follows this natural
order of first generating or loading traces, then optionally
applying tokenization, and then doing the model extraction.

Figure 1 shows the code required to (1) generate traces
for a problem found in the online repository at api.planning.
domains, (2) tokenize by removing 60% of the fluents seen,
and (3) apply the ARMS algorithm to extract potential ac-
tions. A portion of the output is shown in Figure 2.

api.planning.domains
api.planning.domains


Figure 3: MACQ treemap view.

Figure 4: MACQ hierarchical view.

As long as the type of tokens in a trace allows for it2,
various extraction techniques can be substituted and com-
pared. Similarly, various data sources (from generative to
pre-existing) can be used to seed the entire approach.

The MACQ library was built from the ground up to be (1)
extensible and generalizable to all of the common model ac-
quisition techniques; (2) serve as a rich resource for practi-
tioners looking to apply model acquisition; and (3) provide a
foundation for new research in the area of model acquisition.

3.2 Visual Interface
The MACQ library also comes with a visual interface for
users to explore the available papers on the topic through
various lenses. The primary view provides a taxonomic ac-
count of the various topics identified in the field and how
papers are classified along those topics – for us, these topics
correspond to the features discussed in Section 2.1. This is
shown in Figures 3 and 4.

The next view displays the papers in MACQ’s knowledge
in the latent space of features. This document embedding
is computed according to the approach in (Cohan et al.
2020), inspired by a similar application in (Rush and Stro-
belt 2020). In this view, the user can select subsets of papers
in feature space, filter by features by clicking on the tags and

2See the Section on “Token Casting” for details on how traces
can be transformed to different types.

Figure 5: Exploring papers written by Hankz Hankui Zhuo,
a prominent author in the field of model acquisition, in fea-
ture space. Top right inset illustrates simulation of his over
time while feature tags (sized and colourized by frequency)
summarize salient topics in his papers.

Figure 6: Exploring the influence network in MACQ– this
particular cluster being hovered over belongs to (Amir and
Chang 2008), one of the seminal papers in the field.

even simulate the evolution of the feature space over time.
Figure 5 provides an illustration of the same.

Finally, from the PDF documents of the papers, we also
automatically extract a citation network to illustrate the most
influential hubs in the world of MACQ. This is shown in Fig-
ure 6. As in the case of the similarity view, here too the user
can modify the network view using the feature space as well
as simulate how the network evolves over time.



4 Research Recommendations
As a research field matures, our understanding of the gaps
in our knowledge dwindles. Our efforts include not only a
taxonomy of existing techniques for model acquisition (and
an implementation of some of the most popular ones) but
also a mechanism for exploring the research space as well.
For every work documented by the MACQ project, we have
a feature vector that characterizes the technique. These are
detailed above in Section 2.1. Further, we have a growing set
of semantic constraints over this taxonomy.

For example, “if a technique can operate on partially ob-
servable traces, it must be able to work on fully observable
traces” and “every technique must have full, partial, or no
observability”. Specifying these constraints has one imme-
diate benefit: it allows us to systematically verify the docu-
mented features of the existing approaches. This has led to
several “bug fixes” of the data collected already. However,
the true power lies in the potential for viewing the research
field both holistically and logically.

Alongside MACQ, and in collaboration with the visualiza-
tion project used to exhibit the research area, we have devel-
oped a logical theory that corresponds to the valid space of
research according to the features detailed in Section 2.1 and
manually specified constraints over them. All of the model
acquisition techniques are validated but further encoded as
constraints themselves (their features being converted to a
conjunction of Boolean variables or their negation).

4.1 Logical Encoding of Research Potential
Given the conjunction of constraints on the features, and
the negation of the disjunction on the pre-existing literature
(thus ruling out existing feature profiles), we have a logical
theory where a satisfying assignment corresponds to a valid
selection of features/assumptions about a model acquisition
technique, and further is one that has not yet been explored
in the known literature. Further preferences on specific fea-
tures (e.g., wanting to only handle settings without parame-
ters) can be included as unit clauses to further constrain the
space of satisfying research configurations.

While this is a seemingly simple concept, there is tremen-
dous potential in taking this viewpoint. We have imple-
mented the above encoding and found that modern SAT
solvers and knowledge compilers are readily capable of han-
dling the theory. We further developed a novel research rec-
ommendation procedure for the space of model acquisition
techniques. Making use of a knowledge compiler and re-
peated logical conditioning, the procedure is as follows:

1. Encode the constraints and existing techniques into a log-
ical theory T .

2. Define a full set of soft preferences P over the features
that stipulate “simple” or “nominal” settings (e.g., fully
observable over partially observable).

3. Run a full knowledge compilation on T , to get a d-DNNF
representing all possible solutions S.

4. Iterate over p ∈ P , and if p is consistent with S, enforce
p by setting S = S ∧ p.

At the end of this procedure, we will have a single assign-
ment to the full set of features that (1) adheres to a maximal
number of preferences; and (2) differs from every other ex-
isting approach. Different orders for step 2 will potentially
result in different final outcomes, and we will see one such
example later on in this paper.

Finally, with a candidate area of unexplored research in
hand, we can perform a matching algorithm to find the clos-
est existing approaches to the one being proposed. Our sys-
tem limits this to 3 and displays the core differences between
the existing work and the newly proposed one. An example
of this functionality is also provided below.

4.2 Unwritten Paper Recommendations
Figure 7 illustrates this process in action on the MACQ vi-
sual interface, introduced in Section 3.2. The visualization
unfolds in three sections:

- The first part of the exposition describes the features of
this newly imagined paper in terms of its features. The
tag hierarchy is displayed.

- The hypothetical paper is now visualized in feature
space: this view shows where it belongs when all the pa-
pers known to MACQ are projected onto a latent space
only3 consisting of the features from Section 2.1.

- Finally, and perhaps most interestingly, the above visual
leads into neighbouring (in feature space) papers that the
user can tap into as the state of the art closest to this
new imagined paper. In addition to the metadata of the
neighbouring papers, MACQ surfaces the features of those
neighbours that need to change (either relaxed or ex-
tended) in order to make a hop from a known relevant
paper to this non-existent paper.

Currently, we are working on making this interface more
interactive so the user can query the system with a partial
selection of papers and features of interest; and iteratively
make hops to the next imagined paper. With this feature im-
plemented, we intend to do pilot studies on how quickly we
can onboard new students into a field using this exposition
and exploration technique over survey data.

5 Open Research Questions
Given the holistic analysis of the field that MACQ offers, we
have identified several promising areas for further research.
Here, we highlight just a few of them.

5.1 Operationalizing MACQ
Most of the existing approaches to model learning deal with
a one-time model learning task while not taking into ac-
count the operational considerations of deploying a system
with that model. In reality, models are deployed and main-
tained over time. As such, such models drift (Bryce, Benton,
and Boldt 2016) and thus systems require a certain level of

3This view is slightly different from the similarity view de-
scribed Section 3.2. There, a document includes these features but
also all the rest of the paper metadata in terms of authors, title,
abstract, venue, and so on.



Figure 7: Imagining future KEPS papers on the MACQ visual interface.

hand-holding in terms of how to deal with such evolution
of models they are deployed with. For learning systems, this
is increasingly becoming a trend (Elle O‘Brien 2020), with
approaches that try to reconcile new models with past deci-
sions (Bansal et al. 2019) thereby offering a certain level of
consistency. We envisage similar processes to dovetail with
the core MACQ functionality when systems are deployed on
top of model learning tools in their portfolio.

5.2 XAIP Crossover
Interestingly, most of the models learned from data are un-
derdetermined – i.e. there are many equivalent models that

can “explain” a set of observed circumstances. This also
holds for iterative or “online” approaches with a domain
writer in the loop. In fact, some approaches e.g. (Yang, Wu,
and Jiang 2007b) specifically looked at pattern mining tools
to bias the learning approaches towards more likely models.
Even so, the decisions made by the model learning algorithm
remain rather opaque and it may well be the case that some
models rejected by it could have made more sense when
presented to the domain writer. We are currently exploring
the possible adoption of model-space reasoning techniques
from the emerging field of explainable AI planning or XAIP
(Chakraborti, Sreedharan, and Kambhampati 2020) to en-



gage in a more transparent model learning interface where
the domain writer can be empowered to query and explore
the trade-offs made among the equivalence class of models
that satisfy a set of observed behaviours.

5.3 Will AI write the papers of the future?
In her presidential address (Gil 2022) at AAAI 2020,
Yolanda Gil, one of the early pioneers (Carbonell and Gil
1990; Gil 1994) in the field of model learning for automated
planning, asked: “Will AI write scientific papers in the fu-
ture?”. The question was posed to facilitate an exploration
of the influence that AI algorithms, from process manage-
ment to knowledge discovery, increasingly have on our sci-
entific endeavours. As we demonstrated in Section 3.2, the
set of exploratory features made available by MACQ also be-
longs to this emerging theme of collaboration between AI
and the scientist: not to synthesize the papers directly, but
rather to provide the automated insights necessary for re-
searchers to know where next to look. To the extent that that
question applies to the KEPS community, MACQ is most cer-
tainly going to (help) write the papers of the future!

References
Amir, E.; and Chang, A. 2008. Learning Partially Observ-
able Deterministic Action Models. Journal of Artificial In-
telligence Research, 33: 349–402.

Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty,
S. 2018. A review of learning planning action models. The
Knowledge Engineering Review, 33: e20.

Bansal, G.; Nushi, B.; Kamar, E.; Weld, D.; Lasecki, W.;
and Horvitz, E. 2019. A case for backward compatibility for
human-ai teams. arXiv:1906.01148.

Biere, A.; Fazekas, K.; Fleury, M.; and Heisinger, M. 2020.
CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling
Entering the SAT Competition 2020. In Proceedings of SAT
Competition – Solver and Benchmark Descriptions.

Bryce, D.; Benton, J.; and Boldt, M. W. 2016. Maintaining
evolving domain models. In IJCAI.

Carbonell, J. G.; and Gil, Y. 1990. Learning by experimen-
tation: The operator refinement method. Machine learning,
191–213.

Celorrio, S. J.; de la Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review,
27(4): 433–467.

Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The Emerging Landscape of Explainable AI Planning and
Decision Making. In IJCAI.

Cohan, A.; Feldman, S.; Beltagy, I.; Downey, D.; and Weld,
D. S. 2020. SPECTER: Document-level Representation
Learning using Citation-informed Transformers. In ACL.

Daga, K.; and Muise, C. 2021. Bauhaus: a library for build-
ing logical theories on the fly with Python. https://github.
com/qumulab/bauhaus.

Elle O‘Brien. 2020. How machine learning ops
works with GitLab and continuous machine learn-
ing. https://about.gitlab.com/blog/2020/12/01/continuous-
machine-learning-development-with-gitlab-ci. GitLab.
Francés, G.; Ramirez, M.; and Collaborators. 2018. Tarski:
An AI Planning Modeling Framework. https://github.com/
aig-upf/tarski.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.
Gil, Y. 1994. Learning by experimentation: Incremental re-
finement of incomplete planning domains. Machine Learn-
ing, 87–95.
Gil, Y. 2022. Will AI write scientific papers in the future?
AI Magazine, 42(4): 3–15.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Ignatiev, A.; Morgado, A.; and Marques-Silva, J. 2018.
PySAT: A Python Toolkit for Prototyping with SAT Oracles.
In SAT, 428–437.
Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M.
2014. Automated Knowledge Engineering Tools in Plan-
ning: State-of-the-art and Future Challenges. In ICAPS
Workshop on Knowledge Engineering for Planning and
Scheduling (KEPS).
Morgado, A.; Dodaro, C.; and Marques-Silva, J. 2014. Core-
Guided MaxSAT with Soft Cardinality Constraints. In
O’Sullivan, B., ed., CP.
Muise, C. 2016. Planning.Domains. In ICAPS System
Demonstrations Track.
Rodriguez, I. D.; Bonet, B.; Romero, J.; and Geffner, H.
2021. Learning First-Order Representations for Planning
from Black-Box States: New Results. arXiv:2105.10830.
Rush, A. M.; and Strobelt, H. 2020. MiniConf – A Virtual
Conference Framework. arXiv:2007.12238.
Shen, W.-M.; and Simon, H. A. 1989. Rule Creation and
Rule Learning Through Environmental Exploration. In IJ-
CAI.
Verbeek, J.; de Haan, R.; and Muise, C. 2022. NNF: a
Python Package for Reasoning with NNF Sentences. https:
//github.com/qumulab/python-nnf.
Wang, X. 1994. Learning Planning Operators by Observa-
tion and Practice. In Hammond, K. J., ed., AIPS.
Yang, Q.; Wu, K.; and Jiang, Y. 2005. Learning Actions
Models from Plan Examples with Incomplete Knowledge.
In Biundo, S.; Myers, K. L.; and Rajan, K., eds., ICAPS.
Yang, Q.; Wu, K.; and Jiang, Y. 2007a. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifical
Intellence Journal, 171(2-3): 107–143.
Yang, Q.; Wu, K.; and Jiang, Y. 2007b. Learning action
models from plan examples using weighted MAX-SAT. Ar-
tificial Intelligence, 171(2-3): 107–143.
Zhuo, H. H.; Peng, J.; and Kambhampati, S. 2019. Learn-
ing Action Models from Disordered and Noisy Plan Traces.
arXiv:1908.09800.

https://github.com/qumulab/bauhaus
https://github.com/qumulab/bauhaus
https://about.gitlab.com/blog/2020/12/01/continuous-machine-learning-development-with-gitlab-ci
https://about.gitlab.com/blog/2020/12/01/continuous-machine-learning-development-with-gitlab-ci
https://github.com/aig-upf/tarski
https://github.com/aig-upf/tarski
https://github.com/qumulab/python-nnf
https://github.com/qumulab/python-nnf

	Introduction
	MACQ Framework
	Feature Analysis
	Trace Generation
	Observation Tokenization
	Action Model Extraction

	MACQ in Action
	Library Usage
	Visual Interface

	Research Recommendations
	Logical Encoding of Research Potential
	Unwritten Paper Recommendations

	Open Research Questions
	Operationalizing MACQ
	XAIP Crossover
	Will AI write the papers of the future?


