
Planning-Based Approach for Silent Proactive Assistance

José G-Barroso, Raquel Fuentetaja, Susana Fernández
Department of Computer Science and Engineering

Universidad Carlos III de Madrid,
Avda. de la Universidad 30, 28911,

Leganés, Madrid, Spain
jgbarros@pa.uc3m.es, {rfuentet, sfarregu}@inf.uc3m.es

Abstract

This paper focuses on multi-agent systems where the goal of
some agents is to provide assistance to some other agents in
a silent and proactive way. We assume contexts in which ex-
plicit inter-agent communication can not take place, so that
the kind of assistance provided is non-cooperative and, there-
fore, non-intrusive. Agents are not aware that there are assis-
tants. Assistant agents perform changes in the environment
that are then perceived by the other agents, which can modify
their original plan accordingly. We propose a decision algo-
rithm for assistant agents based on classical planning, where
the assisted agent behaviour is simulated to determine how
the assistant can open an opportunity for it to improve its plan.
To evaluate the approach we have defined several new plan-
ning domains where silent proactive assistance can be useful.
Results show that the approach is effective with some limita-
tions that depend on domain characteristics.

Introduction
A recurrent framework in the area of autonomous systems
consists on two or more agents acting in a shared environ-
ment. We are interested in tackling the problem of proactive
assistance, where an agent S (say, a supporter or assistant
agent) tries to help an agent P (say, a prime agent), while
P is unaware of S’s purpose. In this area, communication
is an important tool for the different agents to coordinate
with each other (Geib et al. 2016). However, it may some-
times not be possible. For example, when we need to help
elderly and the communication is not precise, or when we
need to assist busy people, who are performing tasks that
require their full attention, without being too intrusive. In
contrast to those approaches, in our case there is no com-
munication between agents. Then, the assistance would be
based on changes made by S in the shared environment, so
that P can observe these changes and act consequently to
improve its plan. On the other hand, other works that carry
on proactive assistance where communication is not possi-
ble also apply techniques to recognise the objective/goal of
the assisted agent (goal recognition). However, these works
focus more on recognising goals correctly rather than cre-
ating a generic assistant agent able of helping to achieve
such goals properly (Freedman and Zilberstein 2017). For

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this reason, we focus on reducing P’s total cost instead of
recognising its goals and action model. We assume that they
are known by S. Inferring them would be complementary to
our approach and can be done in a preliminary phase.

Moreover, S’s cost function is important. Among all pos-
sible ways to help, we are interested in those that require
also the lowest possible cost for the assisting agent (but pri-
oritizing always the assisted agent’s cost) as this cost could
represent energy cost, amount of resources, etc.

In order to carry out a deliberative and long-term reason-
ing we apply Automated Planning (AP). But, the success of
the assistance depends not only on the way in which S’s ac-
tions are chosen, but also on characteristics of the domain.
Thus, we aim to study different domains and problems in or-
der to empirically evaluate our approach. For this purpose,
we have: (1) built an assisting agent (S) based on AP, (2)
defined several new planning domains where a silent proac-
tive assistance is viable, and (3) evaluated the assistance pro-
vided by that assisting agent in those domains.

Background
Classical Planning
A classical planning task can be defined as a tuple Π =
⟨F ,A, I,G, C⟩; where F is a set of fluents; A is a set of
actions with precondition, add and delete lists pre(a) ⊆ F ,
add(a) ⊆ F , and del(a) ⊆ F , respectively; I ⊆ F is the
initial situation; G ⊆ F is a set of goals; and C is a non-
negative cost function.

A planning task Π defines a state model which states s
are subsets of F . In this model, the initial state is I and the
goal states are those that include the goals G. The actions a
applicable in a state s, denoted as A(s), are those for which
pre(a) ⊆ s. The transition function γ, defined for applicable
actions, specifies the resulting state of applying an action
a ∈ A(s) in a state s as s′ = γ(s, a) = (s\del(a))∪add(a).

A solution or plan for Π is an action sequence π =
⟨a1, . . . , an⟩ that induces a state sequence ⟨s0, . . . , sn⟩ such
that s0 = I and, for each i such that 1 ≤ i ≤ n, ai is ap-
plicable in si−1 and si = γ(si−1, ai) . A plan π solves Π if
G ⊆ sn. Each action a has non-negative cost C(a), so that
the cost of a plan is C(π) =

∑n
i=1 C(ai). A plan π is opti-

mal if it has minimum cost. An optimal plan is represented
by π∗.

Problem Framework
We consider two agents, S (Supporter) and P (Prime), act-
ing in a shared environment. While the objective of P is to
achieve its goals with minimum cost, the purpose of S is just
to proactively assist P on reaching its objectives at a lower
cost than acting alone.

In our setting, P is a rational agent who knows only its
own planning task. However, it is not aware that another
agent wants to help it. On the other hand, S knows its own
actions model, P’s planning task and how P plans, i.e. the
algorithm that it uses to plan. We define both agents using
the classical planning notation.

Definition 1 (Agents) S has an action model MS =
⟨F ,AS, I, CS⟩. P has an associated planning task ΠP =
⟨F ,AP, I,GP, CP⟩. Both agents share a common environ-
ment with states s, such that s ⊆ F .1

At every time step, both agents execute an action. We
consider an interleaved execution, where the first action
from the initial state I is executed by S. Agents interleave
their actions until GP is achieved (infinite loops may occur).
We assume both agents can execute a noop action with a
cost of zero, which represents doing nothing (pre(noop) =
add(noop) = del(noop) = ∅). 2

Definition 2 (Interleaved execution) Given an environ-
ment state s, the execution of an applicable joint action
(aS, aP), where aS ∈ AS(s) (i.e. aS is applicable in s)
and aP ∈ AP(aS(s)) (i.e. aP is applicable in the state
generated from the execution of aS), generates a new state
s′′, such that s′ = aS(s) is the intermediate state and
s′′ = aP(s

′).

Every agent has full observability. Although P ignores the
existence of the other agent, it can observe the changes that
S causes in the environment. The agents decide what action
to execute reasoning from the state reached by the previous
action performed by the other agent. The joint execution of
actions is deterministic, but from the point of every agent,
the execution of its actions is non deterministic, since there
is another agent acting in the same environment.

We assume that P is a rational agent that always executes
the first action of an optimal plan that solves ΠP from the
current state s at each time step. P only executes noop when
it does not find a plan from the current state.

Definition 3 (Silent Proactive Assistance (SPA) problem)
A Silent Proactive Assistance problem is defined by a tuple
⟨MS,ΠP⟩, where MS is the action model of S and ΠP is
the planning task of P.

Definition 4 (SPA problem solution) A solution to a given
SPA problem ⟨MS,ΠP⟩ defines the sequence of actions aSi

that S executes at every time step i, such that:

a) the consecutive execution of the joint actions
(aSi

, aPi
)ni=1 from the initial environment state,

1An action model here is like a planning task but with no goals.
2This assumption can be relaxed, but in that case it would be

necessary to define what the agents do when they have no plan.

where the sequence of actions αPαPαP = ⟨aPi⟩ni=1 consti-
tutes the rational response of P and αSαSαS = ⟨aSi⟩ni=1
is the sequence of actions of S, generates a state s2n
containing P’s goals, GP ⊆ s2n ; and

b) the cost for P is reduced w.r.t. the cost of its optimal plan
if it was acting alone in the environment (i.e. ∀i, aSi

=
noop):

CP(αP) < CP(π∗
P)

In case there is no π∗
P, the assistance problem will only

consist on achieving GP, and CP(π∗
P) = ∞. The optimal

solution to a SPA problem, αS
∗, is a solution with minimum

cost for S among those tha minimize P’s cost.

Centralized Planning
The assumption that P is not aware that there is an assistant
agent trying to help it, makes it impossible to apply central-
ized planning-based approaches that decide the behaviour
of both agents. However, solutions provided by these ap-
proaches can serve as an indicator of what is the best be-
haviour that could be achieved, which is interesting from an
experimental point of view.

A joint planning task can be posed in two ways, either
defining an action model that considers directly joint actions
or defining an action model considering the individual ac-
tions of both agents and alternate turns. In both cases, the
planning task to solve can be defined using some ideas of
Multiple Cost Function (MCF) planning tasks (Katz et al.
2019), but with the peculiarities that there is a secondary
cost function to be also minimized and that there is a unique
bound, which is established over the primary cost function.

Thus, the joint planning task would be Πjoint =
⟨F ,Ajoint, I,GP, Co, C1,C ⟩, where:

• Ajoint = {a ∈ AS×AP | del(aS)∩ pre(aP) = ∅}, and
its actions are defined assuming that S executes first: 3

– pre(a) = pre(aS) ∪ (pre(aP) \ add(aS))
– add(a) = add(aP) ∪ (add(aS) \ del(aP))
– del(a) = del(aP) ∪ (del(aS) \ add(aP))

• C0 = CP is a primary cost function,
• C1 = CS is a secondary cost function, and
• C = {(C0, CP(π∗

P))}, imposes an upper bound on the
primary cost of plans and the cost of P’s optimal plan
when acting alone.

The primary cost of a joint action (aS, aP) is CP(aP)
and its secondary cost is CS(aS). The secondary cost func-
tion would be eliminated if the cost of S is not relevant. In
that case, this model would still be useful from an assistance
point of view.

An operator sequence π∗
joint is an optimal plan for

Πjoint if its application generates GP, minimizes C0(π∗
joint),

minimizes C1(π∗
joint) over all solutions with minimum

C0(π∗
joint) and it is consistent with C0(π∗

joint) < CP(π∗
P).

The joint planning task considers all compatible actions
resulting from the cartesian product. An equivalent alterna-
tive with a smaller number of actions, which also reduces the

3When del(aS)∩ pre(aP) ̸= ∅ the actions are not compatible.

branching factor when planning, is to include turns. Thus,
Πturn = ⟨F ∪ {tS, tP},Aturn, I ∪ {tS},GP, Co, C1,C ⟩,
where:

• The fluents tX ,X ∈ {S,P}, indicate that it is the turn of
the X agent;

• Aturn = A′
S ∪ A′

P, where A′
X , X ∈ {S,P}, are just

the actions of the agents modified to make a turn change,
i.e. pre(a′X) = pre(aX)∪{tX}, add(a′X) = add(aX)∪
{tY }, Y being the other agent, and del(a′X) = del(aX)∪
{tX}; and

• Co, C1 and C are analogous to those defined before for
Πjoint, but the primary cost of S’s actions and the sec-
ondary cost of P’s actions are both zero.

We have chosen to solve the problem using classical plan-
ners. This can be done whenever both the output plans and
the ranking between them established by the cost functions
coincide with those of the defined problem. The former is
achieved using the bound C to prune the paths where P’s
cost exceeds that value. To achieve the latter we define a
unique linear cost function, C = ω × CP + CS, with ω ≥ 1.
C maintains the ranking between plans if for any two plans,
π and π′:

a) It establishes the same ranking as the P’s cost function :
CP(π) < CP(π′) =⇒ C(π) < C(π′); and

b) It solves ties in the P’s cost function by considering
the S’s cost function: (CP(π) = CP(π′) ∧ CS(π) ≤
CS(π′)) =⇒ C(π) ≤ C(π′).

Condition b) always holds with the defined linear func-
tion. The only problematic case for condition a) is when
CP(π) < CP(π

′),CS(π) > CS(π
′) andCS(π)−CS(π

′) ≥
CP(π

′) − CP(π), because in that case the suppporter costs
invert the correct ranking. Then, w should be high enough
to guarantee that CS(π) − CS(π

′) < ω(CP(π
′) − CP(π)).

Theoretically:

w >

max
π,π′

(CS(π)− CS(π
′))

min
π,π′

(CP(π′)− CP(π))
(1)

Obviously, the value of ω depends on the specific problem
to solve and its possible plans. In our experiments we have
selected it empirically considering the specific problems in
our benchmarks.

Solving the SPA Problem
We adopt a planning-replanning strategy at execution time.
Other approaches considering policies would also be pos-
sible. At every time step every agent decides what action
to execute. We assume S decides first, and then P takes its
decision from the resulting state. As defined before, the be-
haviour of P is rational: it takes the first action of an optimal
plan from the current state to the goals. If no plan exists it
will execute noop. In a first approach to the problem, we as-
sume S is able of reproducing the decision algorithm of P,
so that it can compute its exact optimal plan for a given state.

Under the defined conditions, the decision algorithm for S
can be seen as a search process similar to the one for solving

Πturn, with the difference that in P’s turn there is only one
successor generated by the first action of P’s optimal plan,
instead of branching considering all P’s applicable actions.
This would guarantee the optimal solution to the SPA prob-
lem, but involves to compute the optimal plan of P for every
node generated by S’s actions (in the worst case, because it
could sometimes reuse previous optimal plans), which is too
expensive computationally.

In the following sections we propose different and more
feasible alternatives based on planning to approximate the
solution of the problem. We focus on the reasoning process
of S to decide its next actions. The idea is to compile P’s
planning task and S’s action model to a planning task which
solution provides those next actions.

Based on Turns Approach (BTA)

One simple approximation for S to decide its actions consists
on assuming that P will act optimally collaborating with it,
as if P knew about S’s purpose. With this assumption, the
reasoning process of S is not taking in consideration the real
P behaviour (i.e. executing its current optimal plan without
being aware that S wants to help it). But it can still allow
to provide assistance in a reasonable time. In fact, SPAM
(Single-Plan Action Matching) (Freedman and Zilberstein
2017) incorporates the joint compilation to determine the
behaviour of the assisted agent. However, this compilation
does not prevent getting into a loop of noops in execution
time. These loops occurs if S executes noop when the last
action of P was a noop too. To develop this idea, the compi-
lation ΠBTA is proposed. ΠBTA is similar to Πturn, but with
the following changes to avoid infinite loops of noops in ex-
ecution time:

• there is a new fluent canNoopS, which indicates that S
can do noop,

• the current state contains canNoopS when the previous
action of P was different from noop,

• all P’s actions except noop add canNoopS, and

• canNoopS is a precondition of S’s noop.

Optimal plans π∗
BTA from ΠBTA are centralised plans in

which both agents act optimally to achieve P’s goals at min-
imum cost (preventing infinite loops of noops in execution
time), even if that implies collaboration.

As we said before, in execution time P selects noop iff
there is no a plan to achieve its goals. In order to avoid P’s
noops in πBTA and get closer to the real P’s behaviour we
propose BTA2, which is as ΠBTA but the noop action for P
has a very high cost ψ. However, if it is necessary for S to
disable P at a certain state in order to assist it in the future
(so that P can only execute noops from that state), BTA2 will
not be able to find such a assistance.

The main issue with these approaches is that they incor-
rectly approximate the behaviour of P. Also, BTA and BTA2
are very similar to the centralized compilation in SPAM. For
this reason we consider BTA as a baseline approach for com-
parison instead of a contribution of our work.

Compilation Based on Opportunities (CBO)
We propose the Compilation Based on Opportunities (CBO)
with the purpose that S can reason according to a more ac-
curate behaviour of P. The main idea of CBO is to compute
P’s optimal plan only once, just for the current state, and
then simulate its execution, interleaving its actions with S’s
actions until an action of S opens an opportunity for P to
improve its plan. After that, S’s actions can be inhibited at
any time, so that only P’s actions can be applied to the end
of the process.

Definition 5 (Opportunity) A S’s action aS ∈ AS opens
an opportunity for P if there exists a P’s action aP ∈ AP

such that pre(aP) ∩ (add(aS) ∪ del(aS)) ̸= ∅; i.e if S’s
action adds/deletes a precondition of some P’s action.

We opted for a weak definition of opportunity that defines
a potential opportunity without guarantees that it is in fact
an opportunity for P to improve its cost.

Definition 5 allows to divide the set of S’s actions into two
subsets, those openning opportunities, Aopp

S , and those not
openning opportunities A¬opp

S , thus AS = Aopp
S ∪ A¬opp

S .
In CBO, the decision algorithm of S consists of the

following steps: (1) compute P’s (optimal) plan π∗
P =

a1, . . . , an from the current state; (2) solve optimally a plan-
ning task, ΠCBO, to carry out the reasoning described above;
and (3) get αS from the solution of ΠCBO to determine the
next S’s actions. In the following, P’s plan will be denoted
simply as πP, since the fact that it is optimal could be re-
laxed to make the approach more efficient.

We define the planning task ΠCBO = ⟨F ′,A′, I ′,GP, C⟩
as follows:

• F ′ = F ∪{tS, tP, ph1, en ph2} ∪ Fπ
next, where tX ,X ∈

{S,P}, represents the turn; ph1 refers to phase 1 where
P’s initial plan is being simulated, interleaving its actions
with S’s actions; en ph2 indicates that phase 2 is enabled
to start (or continue in case it has already started), i.e.
the phase that only considers P’s actions; and Fπ

next =
{nextai

| 1 ≤ i ≤ |πP|}represents the next action of P
to be simulated in phase 1.

• I ′ = I ∪ {tS, ph1, nexta1
}; and

• A′ = A
′¬opp
S ∪ A

′opp
S ∪ Aph1

P ∪ Aph2

P ;

Actions a ∈ A′X
S , X ∈ {¬opp, opp}, represent S’s ac-

tions and they are defined in terms of aS ∈ AS:

– pre(a) = pre(aS) ∪ {tS}

– add(a) =

{
add(aS) ∪ {tP, en ph2} if X = opp

add(aS) ∪ {tP} otherwise
– del(a) = del(aS) ∪ {tS}
– C(a) = C(aS)

Actions a ∈ Aph1

P represent the (instantiated) actions ai
in P’s current plan:

– pre(a) = pre(ai) ∪ {tP, ph1, nextai}

– add(a) =

{
add(ai) ∪ {tS} if i = |πP|
add(ai) ∪ {tS, nextai+1} otherwise

– del(a) = del(ai) ∪ {tP, nextai
}

– C(a) = ω × C(ai)

Actions a ∈ Aph2

P represent P’s actions aP ∈ AP:
– pre(a) = pre(aP) ∪ {tP, en ph2}
– add(a) = add(aP)

– del(a) = del(aP) ∪ {ph1}
– C(a) = ω × C(aP)

When πP is the empty plan, Fπ
next = ∅, i.e. the planning

task ΠCBO does not contain fluents of type nextai
.

In general, plans for ΠCBO are composed of a sequence
of actions of S interleaved with a sequence of actions of P
(phase 1) followed by a sequence of actions of P (phase 2).
We denote the complete sequence of P’s actions (including
both phases) extracted from a solution plan as α̂P.

When an optimal plan, π∗
CBO, for ΠCBO is computed, three

different scenarios can occur:
1. No assistance has been found. This occurs when π∗

CBO
consists of P’s actions of the computed initial plan in-
terleaved with noop actions of S. Then, C(π∗

CBO) =
C(α̂P) = ω × C(πP). If πP is also the empty plan, π∗

CBO
is also the empty plan.

2. π∗
CBO contains a possible assistance, i.e. C(α̂P) < ω ×

C(πP), and π∗
CBO is composed of S’s actions belonging

to A
′opp
S and to A

′¬opp
S and some P’s actions of its initial

plan Aph1

P . This means that the assistance is provided by
achieving directly some of the goals of P.

3. π∗
CBO contains a possible assistance, i.e. C(α̂P) < ω ×

C(πP), and the last action in π∗
CBO belongs to Aph2

P . This
means that S has found a possible way to open an oppor-
tunity for P to improve its plan.

The sequence of actions for S, αS, is updated directly
from the solution plan π∗

CBO. When the action executed by
P does not match with α̂P or when all actions in αS have
been already executed, S replans from the current state and
update αS. In this way, S will try to provide additional assis-
tances instead of executing noop when αS has been already
executed. This could only occur in the third scenario pre-
sented above.

The P’s behaviour considered by the presented approach
tends to be more similar to the real one in comparison with
BTA, since we assume P does not cooperate with S. P’s ac-
tions in the phase 1 of π∗

CBO belong to its original plan, and
those of phase 2 only contains P’s actions. Therefore, the
assistance is expected to be more effective than with BTA.
However, the decision algorithm for S is focused on detect-
ing the first opportunity for P to improve its plan instead
of simulating completely P’s behaviour. It could be also the
case that the obtained behaviour for S generates the opposite
effect to the desired one. There is a trade-off between effi-
ciency and effectiveness. The proposed approach improves
efficiency at the expense of compromising effectiveness.

Domains
To test the approach, we generated 6 domains in PDDL in
which Silent Proactive Assistance makes sense. For every
domain there are two planning action models, one for S and

one for P. 4 domains were generated from scratch (teleport-
assistance 1 and 2, and car-assistance 1 and 2), while the
other 2 (visitall-assistance and termes-assistance) are based
on IPC 4 domains. All of them are summarised below:

• Teleport-assistance 1 (TEA1). In this domain P has to
reach a target cell in a grid with walls and teleports. A
teleport is a device for changing the position of anything
above it. P can move between adjacent positions. S can
activate just one teleport as origin and another as desti-
nation. S can activate a teleport at any time with a single
action. When both are activated, S can teleport P above
the origin teleport to the destination teleport with another
action. The assistance consists of teleporting P to a posi-
tion closer to the goal.

• Teleport-assistance 2 (TEA2). This domain is a vari-
ant of TEA1 in which there is no destination teleport to
be activated because the actual destination of the tele-
portation is P’s target cell. Also, when S activates the
origin teleport the target cell is blocked and can only be
accessed using teleportation. The assistance consists of
teleporting P to the goal.

• Car-assistance 1 (CA1). In this domain P has to reach a
target cell in a grid with walls. It can move either on foot
(slow) or by car (fast). S has an action model analogous
to P. However, the car can only be occupied by one of
the two agents. The assistance consists of bringing the
car closer to P, so that it can take it to get its goal faster.

• Car-assistance 2 (CA2). This domain is variant of CA1
in which both agents can be inside the car at the same
time, but in that case only P can drive.

• Visitall-assistance (VA). This domain is a variant of the
Visitall domain. The original Visitall domain consists of
an agent who wants to visit all the nodes of a connected
graph. P’s action model and its goals are equivalent to
the original IPC domain. S is able to create unidirectional
connections between nodes of the graph. There are prob-
lems where S’s actions are necessary for P to achieve its
goals, since not all nodes are reachable from each node.
The assistance consists of making it easier for P to tra-
verse all the nodes of the network, preventing P from
passing through the same node twice.

• Termes-assistance (TA). This domain is a variant of the
Termes domain. The original Termes domain consists of
a robot who wants to build a structure of identical blocks
placing them at different positions and heights on a grid.
To do that it can move between adjacent positions, cre-
ate or destroy blocks in the depot, pick up or put down
blocks at the same height as the robot, or climb/descend
to a single block. In this way, the robot has to build a
block ladder to place the blocks at different heights. P’s
action model and goals are equivalent to the original IPC
domain. S is a crane that can lift and deposit P (changing
its position) or any block located in any cell. S is more ef-
ficient than P, because it does not need to move between
4The International Planning Competition (IPC) is a global com-

petition where state-of-the-art planning systems are empirically
evaluates on a number of benchmark problems.

cells in order to place blocks. The assistance consists of
reducing P’s workload.

Experiments
We execute CBO, BTA, BTA2 (with ψ = 1000000) and no
assistance, i.e. S just performs noop. The parameter ω used
to prioritise the P’s cost over S’s cost is set to 1000 which
is an upper bound for the minimum ω as defined in Equa-
tion 1. A lower bound for the minimum difference between
P’s plans is 1, and an upper bound for the maximum differ-
ence between S’s plans is 1000 in all problems tested.

In S’s plans, consecutive noop (one from each agent) are
eliminated because they are useless and to avoid identifying
infinite loops incorrectly.

In our setting, P computes a new optimal plan only in case
there exists aP ∈ AP : pre(aP) ∩ (add(aS) ∪ del(aS)) ̸=
∅, where aS is the last executed action by S. Otherwise, it
continues with its previous optimal plan. On the other hand,
S executes noop when it is not able to compute its plan.

The optimal planner used is Fast Downward
(FD) (Helmert 2006) version 19.06 with A∗ search
and the iPDB heuristic (Haslum et al. 2007). Each approach
was executed for every problem in a machine that consists
of a 12-core Intel® Core™ i7-9750H, with 2.6 GHz clock
speed, with 16 GBytes of RAM installed. We collected the
following data:

• The sequence of S’s actions (αS) and P’s actions (αP)
executed in the common environment.

• The total cost of each agent (C(αS) and C(αP)).
• Total time to compute all P and S’s plans.

From these data, we extracted:

• The percentage of solved problems (i.e. P’s goal is
reached).

• The percentage of problems where the assistance occurs.
• The mean and standard deviation of the percentage of P’s

cost improvement in those problems where the assistance
occurs (and when the cost without assistance is not infin-
ity, i.e. when P can get its goals by itself).

• The mean and standard deviation of S’s cost in those
problems where the assistance occurs.

Results
The obtained results are shown in Table 1 for each domain
and algorithm. In this seciton we analyze them in more de-
tail.

TEA1 is a domain where S provides the optimal assis-
tance using CBO. That is because S knows which route P
will take to the goal, and because P does not modify its
original plan as a consequence of the changes made in the
environment by S until the assistance has been successfully
carried out, i.e. when P has been teleported by S. Figure 1
shows an example, the first image shows P’s original plan.
P’s total cost of that plan is 7 considering unit costs. But P’s
total cost using CBO is 5, since S knows which teleport P
will step on (fourth image in Figure 1, where green repre-
sents the activated teleporters by S and red the ones that are

Table 1: Results about percentage of solved problems, percentage of problems where the assistance occurs, mean and standard
deviation of the percentage of P’s cost improvement (when there is an assistance) and mean and standard deviation of S’s cost
(when there is an assistance).

Domain Approach % Solved % Assistance Improvement ratio S’s cost
TEA1 CBO 100% 100% 35.4% ± 17.8% 3.0 ± 0.0
(200) BTA 100% 47% 40.2% ± 18.3% 3.0 ± 0.0

BTA2 100% 69% 37.5% ± 18.1% 3.0 ± 0.0
TEA2 CBO 10% 0% - -
(200) BTA 23% 23% 97.6% ± 11.6% 2.0 ± 0.0

BTA2 15% 13% 100.0% ± 0.0% 2.0 ± 0.0
CA1 CBO 100% 100% 16.2% ± 5.1% 5.5 ± 2.2
(20) BTA 100% 90% 16.0% ± 5.4% 5.9 ± 2.4

BTA2 100% 100% 16.7% ± 5.0% 5.5 ± 2.2
CA2 CBO 100% 100% 19.9% ± 7.2% 4.7 ± 1.5
(20) BTA 100% 100% 19.9% ± 7.2% 4.9 ± 1.6

BTA2 100% 100% 19.9% ± 7.2% 4.7 ± 1.5
VA CBO 100% 100% 13.1% ± 6.9% 1.3 ± 0.5
(50) BTA 100% 94% 11.6% ± 6.7% 1.4 ± 0.5

BTA2 100% 94% 11.6% ± 6.7% 1.4 ± 0.5
TA CBO 100% 100% 53.8% ± 15.4% 3.8 ± 1.9
(50) BTA 96% 96% 65.8% ± 10.5% 15.8 ± 7.0

BTA2 100% 100% 60.8% ± 12.5% 6.4 ± 2.7

not). On the other hand, using the centralized approaches
BTA and BTA2, S does not always activate the correct origin
teleport. Whereas with BTA S always activates the closest
one to the position of P (second image in Figure 1), BTA2
tends to discard those located in adjacent cells to the initial
P’s position (third image in Figure 1), as it does not consider
that P will execute noop waiting for S’s actions. This implies
that if the assistance occurs using BTA, it will also occurs us-
ing BTA2. For that reasons BTA2 shows a better performance
than BTA in this domain. In any of the three proposals, all
successful assistances are optimal, because the chosen ori-
gin teleport is the closest to P’s position that P reaches and
the chosen destination teleport is the closest to the goals.

In TEA2 the only way to assist is waiting for P to get on a
teleport, activating it and in the next turn teleporting P to the
target cell. With CBO, S is never able to assist P. If S waits
for P to act according to its initial plan, S would always acti-
vate the teleport just before P steps on it. However, P would
stop just before reaching such a teleport (when the teleport is
activated, the goal is blocked and P is unable to compute any
plan). In the best scenario, P would be initially on a teleport
and would not pass over any other teleport on its way to the
goal. In that case, S would do nothing, mistakenly thinking
that it is impossible to assist. On the other hand, using BTA,
S will always activate the closest teleport to the position of
P (in most cases in the first timestep), thinking that P will go
there, which succeeds just in case P is on top of such a tele-
port when it is activated. Using BTA2, S supposes that P will
not execute noop, even when the teleport is activated. For
that reason, S does not always activate a teleport, as it con-
siders P’s cost after S’s actions could end up being the same
as without S’s actions. Also, if P is initially on a teleport, S
could also activate such a teleport when P moves, mistakenly
thinking that it is going to return to the same position, rather

than from the first moment, making the assistance impossi-
ble. For these two reasons BTA shows a better performance
than BTA2 in this domain. As in TEA1, in any of the three
proposals all successful assistances are optimal.

In CA1, if S got into the car, the car would become oc-
cupied and P would have to walk to the goal. With CBO,
S reasons from a plan of P that fits better with the real P’s
behaviour: before getting into the car, S knows where P is
going (directly to the goals or to the car), because S can com-
pute P’s plan. If P changes its plan after S occupies the car,
S also replans, computing P’s plan to know where P is go-
ing (directly to the goals). With BTA, S supposes that P will
stay still in its current position, waiting for S to place the car
there. However P does not do that. Also, in some problems
S is not able to assist. Specifically, in case moving between
adjacent positions by car is necessary to reach P’s position,
if those moves are placed at the beginning of S’s plan and P
moves away from S’s position, S would be unable to reach
P because it would drive too slow. In BTA2, since the use
of noop is limited, S supposes that P goes towards an inter-
mediate cell between the car and the current P’s position.
This fact does not prevent the assistance even if it does not
correspond to the actual plan of P, because S reduces the
distance between P and the car. In case of assistance, the
cost improvement is practically the same in all approaches.
That is because the most important thing in this domain is
that P reaches the car as soon as possible, and all algorithms
achieve this in most cases.

In CA2, P is able to get into the car even if it is occupied.
With any of the 3 approaches S goes towards the car and sub-
sequently drives to reduce the distance between P and such
a car. Eventually, P considers that walking towards the car is
better than walking directly towards the goal. The assistance
will occur, and the improvement will be very similar.

Figure 1: Executions in the environment of a TEA1 problem using no assistance, BTA, BTA2 and CBO repectively.

In VA, there are problems where S’s actions are necessary
for P to achieve its goals, since not all nodes are reachable
from each node. This happens in 39/50 problems. The three
approaches solved all problems, since the only way to not
achieve the goals is falling into an infinite loop of noops, but
we avoid that in all our compilations. CBO has a good per-
formance in comparison to the other two alternatives, since
S is able to know the order of the nodes P will pass through
after computing the plan of P and, therefore, which connec-
tions would have to create so that P does not pass through the
same node twice. In all generated problems (where it is not
necessary to create so many connections to achieve an opti-
mal assistance), the cost of P is reduced as much as possible
(P’s cost = number of nodes - 1), i.e. the optimal assistance
is achieved. This may not occur in other problems. In cen-
tralized compilations (BTA and BTA2) the minimum cost is
achieved in most of these problems, but in others assistance
does not even occur. In these cases S executes noop waiting
for P to move as S estimates, for the purpose of creating the
required connections between nodes later. If P visits a node
it has already visited the assistance may not occur.

In TA, agents can fall into loops, repeating actions in-
finitely. Despite this, the assistance occurs in most cases,
since S can build the structure of blocks faster than P. This
domain is the only one with problems that take several hours
to execute them, considering all plans computed of both
agents. In some problems the total execution time reached
10 hours, while the executions of P without assistance do
not exceed 30 minutes in any problem. In an environment
where both agents replan, the execution time increases sig-
nificantly. Using CBO the cost improvement percentage is
lower than the other two alternatives. This is mainly due to
two reasons: (1) The number of actions that S can perform
is very limited, since some of them force P to execute a dif-
ferent action from its original plan, which implies moving
to phase 2. Therefore, it is not possible to decrease P’s cost
much if to do so it is necessary to compute plans that consist
of some of these actions. For example, the action of lifting
P to change its position would never be executed, because
that means disabling P, forcing it to execute noop and thus
passing to phase 2. (2) It may be desirable to obtain plans
that consist of a shorter phase 1, even if the cost is not re-
duced too much, if later, when S replans, it is possible to
continue reducing P’s cost and thus perform a better assis-
tance, instead of obtaining an unique plan that consists on
reducing the cost as much as possible regardless of the du-
ration of phase 1. For this reason, in CBO, S executes noop

many times, looking forward to assisting later, hence the av-
erage of S’s cost is so small. In fact, in most cases, the as-
sistance consists on lifting the last remaining block, so that
P does not have to perform any action to remove it. Central-
ized plans are better, as they allow S to achieve P’s goals
by itself, requiring P only for creating blocks. BTA obtains
better results than BTA2 because the second one never exe-
cutes the action of lifting P, since it would force P to exe-
cute noop. Using BTA, S has a larger repertoire of actions in
comparison with BTA2, which are used to perform a better
assistance, that is why the average of S’s cost is so high in
BTA.

As expected, the performance of each approach depends
on the domain. CBO could work well if S can open oppor-
tunities for P to improve its plan while P is computing its
initial plan. In that case, the assistance will be effective if P
does not replan prematurely (TEA1) or if the deviation from
P’s original plan continues allowing assistance (CA1, CA2
and VA). However, it will not be a good choice in those do-
mains where small consecutive cost reductions in P’s total
cost are necessary for a better assistance (TA). This is be-
cause CBO does not consider that P will replan more than
once when S is computing its plan, it so tends to prioritise
higher cost reductions regardless of the duration of the plan
and future replannings. S does not replan for further cost
reductions until it has successfully completed the previous
assistance, or in case it has failed. On the other hand, BTA
and BTA2 are good options if P acts as if it knows that an-
other agent wants to help it (CA1 and specially CA2), i.e. if
P’s real actions match with the actions of P estimated by S.
Also, they will work well in case S is able to achieve some
of P’s goals more easily than P by itself (TA). Finally, BTA2
is usually preferable to BTA except when it is necessary to
disable P (making it impossible for P to compute a plan) to
perform a good assistance (TEA2 and TA). By limiting the
use of noop, the actions of P in the centralized plans will not
be based on waiting for S to facilitate its goals, which would
be something P would not really do.

Related Work
Many previous works require communication between
agents in order to assist and avoid risks and conflicts (Geib
et al. 2016; Kulkarni, Srivastava, and Kambhampati 2021),
or to capture the human attention (Sengupta et al. 2017).
Some of them provide proactive assistance in specific do-
mains where communication is necessary such as a com-

puter assistant (Yorke-Smith et al. 2012). In some cases of
communication, all agents could coordinate with each other
to achieve an optimal assistance. However, in some domains
communication may not be possible. For example, when we
need to help elderly and the communication is not precise,
or when we need to assist busy people, who are performing
tasks that require their full attention, without being too in-
trusive. In our work we pretend to assist P by inducing its
behaviour and changing the environment accordingly.

Additionally to the compilation of Freedman et al. in
(2017), which corresponds to BTA, another close work is
done by Chakraborti, Tathagata et al. in (2015). They rede-
fine the concept of serendipity as the emergence of a change
in the environment that achieves a reduction in the total hu-
man cost (P). They incorporate a robot (S) acting in parallel
whose purpose is to modify the environment to achieve such
serendipity. Thus, the human deviates from his original plan,
reducing his cost. Eventually, P resumes the execution of
the original plan’s actions. To develop the idea, they define
some constraints (avoiding concurrence of actions, penalis-
ing the time window where serendipity happens, etc.) and
apply planning. This implementation covers a small fraction
of what the assistance is, as the robot tries to ensure that
the human does not deviate from its original plan prema-
turely, interfering as little as possible and includes commu-
nication between agents. In some other works, agents may
decide not to act if doing so could lead the assisted agent to a
worse situation (Kamar, Gal, and Grosz 2009; Unhelkar and
Shah 2016). Other works defined a helpfulness measure to
determine how useful would be the assistant agent’s actions
(Freedman and Zilberstein 2017). In our case, S will act even
if P computes more expensive plans in its next turns, looking
for a future assistance in the long term. Taking this risk im-
plies P could finally worsen its plan in a planning-execution
environment. However, this would not be a problem as S
could simulate the entire execution before carrying it out,
since it knows P’s model and how P compute their plans.

Since there is no communication, S might not know P’s
goal either. For that reason, a recurrent line of research con-
sists on applying goal recognition (Fern et al. 2007; Freed-
man and Zilberstein 2017; Molineaux et al. 2018). To fa-
cilitate the goal recognition between the agents, they may
decide to execute those actions that provide the most infor-
mation about the goal that they are pursuing (Dragan and
Srinivasa 2013; MacNally et al. 2018; Miura and Zilber-
stein 2020). Others also apply plan and intent recognition
(Levine and Williams 2018). Some of those approaches re-
lated to plan, intent or activity recognition were unified by
Freedman’s work in (2019). In some cases, we do not know
P’s action model either. In these cases, we could apply also
model recognition (Zhuo and Kambhampati 2013; Zhuo and
Yang 2014). These approaches could be used before using
our compilations.

There are also works where several agents cooperate
with each other, especially in multi-agent environments
(Chakraborti et al. 2015), and even deal with goal, beliefs
and actions recognition (Albrecht and Stone 2018). Also,
agents could act in adversarial environments (Keren, Gal,
and Karpas 2016; Masters and Sardina 2017; Freedman and

Zilberstein 2017; Kulkarni, Srivastava, and Kambhampati
2019). Some proposals that solve the problem of assistance
can be changed slightly to define agents acting in adversarial
environments, despite being opposites, and vice versa.

Conclusions and Future Work
We have proposed a assisting agent (S) whose purpose
is to proactively assist another agent (P) using P’s initial
plan through a compilation to classical planning in a non-
communicating environment. We have defined several do-
mains to test our idea in different situations. Subsequently,
we compared our main approach with simple centralised
compilations. Finally, we have identified which compilation
is most suitable for each of those domains.

In view of the promising results, we want to relax some
of our strong assumptions to design solutions based on CBO
that open up opportunities for P to improve its plan and esti-
mating the future actions of P. One of these relaxations can
consist on replacing P’s optimal plans by policies, since they
are more reactive and efficient than automated planning. In
addition, S’s knowledge about the environment could be re-
duced: assuming that the assistant is not aware of P’s al-
gorithm for computing plans, or even that it does not know
the P’s goals and action model. This would require solutions
based on goal and model recognition. On the other hand, it
could be interesting to assist without calculating the goal of
P, since performing goal recognition in grid-based problems
(as in CA1, to find out what is the goal cell) could be com-
plex. For example, in CA1 it would be enough to bring the
car close to P, regardless of where P wants to go. Once these
problems have been adequately solved, we would like to de-
velop approaches for non-deterministic environments with
partial observability, where both agents also act in parallel,
and finally in a real environment.

Acknowledgements
This work has been partially funded by FEDER/Ministe-
rio de Ciencia, Innovación y Universidades - Agencia Es-
tatal de Investigación/TIN2017-88476-C2-2-R and by the
Madrid Government (Comunidad de Madrid-Spain) under
the Multiannual Agreement with UC3M in the line of Ex-
cellence of University Professors (EPUC3M17), and in the
context of the VPRICIT (Regional Programme of Research
and Technological Innovation).

References
Albrecht, S. V.; and Stone, P. 2018. Autonomous agents
modelling other agents: A comprehensive survey and open
problems. Artificial Intelligence, 258: 66–95.

Chakraborti, T.; Briggs, G.; Talamadupula, K.; Zhang, Y.;
Scheutz, M.; Smith, D.; and Kambhampati, S. 2015. Plan-
ning for serendipity. In Proceedings of IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
5300–5306. IEEE.

Dragan, A. D.; and Srinivasa, S. S. 2013. Generating legible
motion. In Robotics: Science and Systems.

Fern, A.; Natarajan, S.; Judah, K.; and Tadepalli, P. 2007.
A decision-theoretic model of assistance. In Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence, 1879–1884.
Freedman, R.; and Zilberstein, S. 2017. Integration of plan-
ning with recognition for responsive interaction using clas-
sical planners. In Proceedings of the AAAI Conference on
Artificial Intelligence, 4581–4588.
Freedman, R. G.; and Zilberstein, S. 2019. A unifying per-
spective of plan, activity, and intent recognition. In Proceed-
ings of the AAAI Workshops: Plan, Activity, Intent Recogni-
tion (Honolulu, Hawaii, USA, 2019), 1–8.
Geib, C.; Weerasinghe, J.; Matskevich, S.; Kantharaju, P.;
Craenen, B.; and Petrick, R. 2016. Building helpful virtual
agents using plan recognition and planning. In Proceedings
of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, 162–168.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; Koenig, S.;
et al. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial In-
telligence, volume 7, 1007–1012.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Kamar, E.; Gal, Y.; and Grosz, B. J. 2009. Incorporating
helpful behavior into collaborative planning. In Proceedings
of the 8th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 875–882. Springer Ver-
lag.
Katz, M.; Keyder, E.; Winterer, D.; and Pommerening, F.
2019. Oversubscription planning as classical planning with
multiple cost functions. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 29, 237–245.
Keren, S.; Gal, A.; and Karpas, E. 2016. Privacy Preserving
Plans in Partially Observable Environments. In Proceedings
of the Twenty-Fifth International Joint Conference on Artifi-
cial Intelligence (IJCAI-16), 3170–3176.
Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2019. A
unified framework for planning in adversarial and coopera-
tive environments. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2479–2487.
Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2021.
Planning for proactive assistance in environments with par-
tial observability. In Workshop on Explainable AI Planning
(XAIP). International Conference on Automated Planning
and Scheduling (ICAPS).
Levine, S. J.; and Williams, B. C. 2018. Watching and act-
ing together: concurrent plan recognition and adaptation for
human-robot teams. Journal of Artificial Intelligence Re-
search, 63: 281–359.
MacNally, A. M.; Lipovetzky, N.; Ramirez, M.; and Pearce,
A. R. 2018. Action selection for transparent planning. In
Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, 1327–1335.

Masters, P.; and Sardina, S. 2017. Deceptive path-planning.
In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence (IJCAI-17), 4368–4375.
Miura, S.; and Zilberstein, S. 2020. Maximizing plan legi-
bility in stochastic environments. In Proceedings of the 19th
International Conference on Autonomous Agents and Multi-
Agent Systems, 1931–1933.
Molineaux, M.; Floyd, M. W.; Dannenhauer, D.; and Aha,
D. W. 2018. Human-agent teaming as a common problem
for goal reasoning. In Proceedings of AAAI Spring Sympo-
sium Series.
Sengupta, S.; Chakraborti, T.; Sreedharan, S.; Vadlamudi,
S. G.; and Kambhampati, S. 2017. RADAR — a proactive
decision support system for human-in-the-loop planning. In
Proceedings of AAAI Fall Symposium Series, 269–276.
Unhelkar, V. V.; and Shah, J. A. 2016. ConTaCT : deciding
to communicate during time-critical collaborative tasks in
unknown, deterministic domains. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence, 2544–2550.
Yorke-Smith, N.; Saadati, S.; Myers, K. L.; and Morley,
D. N. 2012. The design of a proactive personal agent for
task management. International Journal on Artificial Intel-
ligence Tools, 21(01): 1250004.
Zhuo, H. H.; and Kambhampati, S. 2013. Action-model ac-
quisition from noisy plan traces. In Proceedings of Twenty-
Third International Joint Conference on Artificial Intelli-
gence, 2444—-2450.
Zhuo, H. H.; and Yang, Q. 2014. Action-model acquisition
for planning via transfer learning. Artificial Intelligence,
212: 80–103.

