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Abstract

Food is not only a basic human necessity but also a
key factor driving a society’s health and economic well-
being. As a result, the cooking domain is a popular use-
case to demonstrate decision-support (Al) capabilities
in service of benefits like precision health with tools
ranging from information retrieval interfaces to task-
oriented chatbots. An Al here should understand con-
cepts in the food domain (e.g., recipes, ingredients),
be tolerant to failures encountered while cooking (e.g.,
browning of butter), handle allergy-based substitutions,
and work with multiple data modalities (e.g. text and
images). However, the recipes today are handled as tex-
tual documents which makes it difficult for machines
to read, reason and handle ambiguity. This demands a
need for better representation of the recipes, overcom-
ing the ambiguity and sparseness that exists in the cur-
rent textual documents. In this paper, we discuss the
construction of a machine-understandable rich recipe
representation (R3), in the form of plans, from the
recipes available in natural language. R3 is infused with
additional knowledge such as information about aller-
gens and images of ingredients, possible failures and
tips for each atomic cooking step. To show the benefits
of R3, we also present TREAT, a tool for recipe retrieval
which uses R3 to perform multi-modal reasoning on the
recipe’s content (plan objects - ingredients and cooking
tools), food preparation process (plan actions and time),
and media type (image, text). R3 leads to improved re-
trieval efficiency and new capabilities that were hither-
to not possible in textual representation.

Introduction

Food is an innate psychological need for human life, along
with water, warmth and rest. In addition to being a basic
human necessity, food is also a key factor driving a soci-
ety’s health and economic well-being. However, maintain-
ing a healthy diet is essential for good health and nutrition
as it prevents many chronic non-communicable diseases.
The importance of diet and food has attracted increasing
attention, leading to the coining of a new term called as
precision nutrition (Chatelan, Bochud, and Frohlich 2019;
Wang and Hu 2018)) - which seeks to better the health of a
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person through precise dietary intake based on unique char-
acteristics of an individual such as DNA, race, gender, and
lifestyle habits. The process of cooking is a key enabler
for precision nutrition, which has led to extensive research
in building and deploying decision-support artificial intelli-
gence (Al) tools - varying from information retrieval (IR)
using interfaces to task-oriented chatbots (Min et al. 2019
Jiang and Min 2020).

Recent advancements in learning-based approaches have
seen many Al researchers channeling their effort in building
large datasets and learning vector representations for recipes
in the latent space. The learnt vector representations are used
for downstream tasks (L1 and Zaki 2020; |Lien, Zamani, and’
Croft 2020) such as cooking (ingredient/recipe/cuisine) rec-
ommendation (Song, Yang, and Xu 2022} Tian et al. 2022
Kim et al. 2021)), food conversation chatbots (Frummet, El-
sweiler, and Ludwig 2022), and cooking activity recogni-
tion (Ramadan and El-Jaroudi 2022)). The learning-based ap-
proaches are heavily dependent on the data they are trained
on which, for the cooking domain, is the text-based recipes.
However, text is a difficult representation for machines, us-
ing natural language processing (NLP), to read, reason and
handle ambiguity. While learning an embedding - the state-
of-the-art NLP method to pre-process documents - for the
cooking domain, there is a need for representation that cap-
tures the cooking actions explicitly. Additionally, the recipe
embeddings being learned only from the cooking instruc-
tions often lack constraints and attributes such as possible
allergens, failures, and relation between multi-modal data
points.

In this paper, inspired by PDDL plans, we consider
recipes as plans that are composed of a sequence of steps.
A step corresponds to a single food preparation action in-
dicated by a verb and instantiated by world objects that are
subject and object of the action (parameters). The actions
proposed in R3 have additional knowledge such as aller-
gen information, possible failures that can happen during
preparation and their workarounds. As a preliminary im-
plementation, we have created 25 egg-based recipes in R3
manually from original recipes taken from the RecipeQA
dataset (Yagcioglu et al. 2018). We further created a tool -
TREAT, to demonstrate the advantage of using R3 over nat-
ural language from the dataset for the task of information
retrieval. We demonstrate how TREAT can perform multi-



modal constrained queries from the user for recipe retrieval.
Constrained queries consist of restrictions specified by the
user whilst obtaining information. Two kinds of constraints
can be performed by TREAT, namely, outcome (e.g., [ want
a recipe without leaf allergy.) and process (e.g., Suggest me
a recipe that is not fried.) constraints.

We make following contributions in the paper: (a) in-
troduce a machine-readable rich recipe representation for
recipes inspired by the structure of PDDL plans called R3,
(b) implement the TREAT multi-modal recipe retrieval sys-
tem which responds to user queries by reasoning on recipe
content and process using R3, and (c) evaluate the impact of
R3 by comparing recipes in R3 over text representation for
the task of (recipe) information retrieval. In the remainder of
the paper, we give a background of related work, followed
by our approach describing the construction of R3 and its
use in the TREAT system. We the demonstrate the effec-
tiveness of using R3 by performing a comparative study and
conclude with pointers to future work.

Related Work

In this section, we describe existing work on representing
recipes and plans to motivate the need and benefits of our
approach.

Representing Recipes

Building representations for recipes using various learning-
based techniques has been active research area in the re-
cent past (Li and Zaki 2020). However, there are inherently
many limitations of learnt recipe embeddings from text. The
closest effort to ours in obtaining a new representation for
recipes has been to manually convert them to a flowgraph
(Mori et al. 2014). However, R3 differs from flowgraphs,
as the former is created with the goal of offering flexi-
bility to be used by both learning and planning based ap-
proaches. An automated planner cannot work with the rep-
resentation from a flowgraph, but can do so on R3 enabling
additional functionalities such as generating multiple simi-
lar plans (i.e.,similar recipes) or alternative plans in case of
failures (e.g., missing ingredient or cooking tool).

Existing datasets in the cooking domain mostly consti-
tute of text and images (Lien, Zamani, and Croft 2020;
Leroux and London 2002} Yagcioglu et al. 2018). There also
have been efforts in building a cooking workflow dataset
(Pan et al. 2020). Researchers also have looked at repre-
senting recipes in the form of a knowledge graph (Shirai
et al. 2021) but as the graph grows in size, deploying and
performing real-time decision support becomes a challenge
(Haussmann et al. 2019). R3 has been developed to foster the
continual search for finding a better representation of proce-
dural texts and to demonstrate its viability, we adopted the
task of recipe retrieval as it is an accepted baseline to val-
idate a new representation (Lien, Zamani, and Croft 2020j
Chen and Ngo 20165 Zhu et al. 2019). Roither et al (Roither,
Kurz, and Sonnleitner 2022) have worked on classifying in-
gredients into allergen categories. In our work, through our
representations, we enable searching recipes without an al-
lergen. This enhances user convenience and ease-of-use.

Plan Representation

Planning is the problem of finding a path to lead an
agent from an initial state to a goal state, given a set
of legal actions to transition between states. The field
of planning has seen many representations. In classical
planning, which assumes complete information about the
world, there was STRIPS (Fikes and Nilsson 1971)), Ac-
tion Description Language (ADL) (Pednault 1994) and
SAS+ (Bickstrom 1995) before Planning Domain Descrip-
tion Language (PDDL) (McDermott et al. 1998} [Fox and
Long 2003)) standardized the notations.

In PDDL, a planning environment is described in terms of
objects in the world, predicates that describe relations that
hold between these objects, and actions that bring change to
the world by manipulating relations. To faciliate automated
solving, PDDL envisages two files, a domain description file
which specifies information independent of a problem like
predicates and actions, and a problem description file which
specifies the initial and goal states. PDDL provides a relaxed
specification of the output plan — it is a series of time steps,
each of which can have one or more instantiated actions with
concurrency semantics. Specification of the correctness of
plans was formalized much later when tools like VAL were
created (Howey and Long 2003)) but they assume access to
domain and problem files.

There is a long history in planning of viewing plans in-
dependently from how they may have been generated or
evolve over time e.g., by an automated planner or by a hu-
man. In (Myers and Lee 1999), the need for diverse plan-
ning was motivated and grounded in a meta-theory allowing
the plans to be modified and compared. In (Srivastava, Van-
hatalo, and Koehler 2005), the authors describe a platform
to store, search and manage plans, representing Information
Technology workflows, as they are evolve over time.

In this work, we adopt the plan representation of PDDL
for recipes but do not assume how recipes may have been
created. We thus allow not only efficient management of
recipe data (storage and retrieval) but also enable future au-
tomation in recipe creation (by reuse and composition of
recipes to create new recipes), and food preparation (by
monitoring the execution of agents) by allowing reasoning
with both the data and control flow inherent in the plan-
based recipe representation consisting of text and images.

Approach

In this section, we first describe out plan-based recipe repre-
sentation (R3) and then describe a system, TREAT, that uses
it to support information retrieval.

Rich Recipe Representation

We define a recipe (R) as a tuple consisting of a required set
of ingredients (IG), preparation time, cooking time, number
of people served, and is said to be complete on performing a
series of instructions (I). Each ingredient is a set consisting
of the name, quantity (Q) required for the recipe, allergen
information (A), alternative replacements for the ingredient,
quality characteristic which signifies on state of the ingredi-
ent (e.g. grated cheese or cheese slice are two different qual-



Recipe: Egg-drop Chicken Noodle Soup
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Figure 1: Difference between textual representation and R3 for a single instruction
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Figure 2: Data flow between TREAT and R3

ity characteristics for cheese) and corresponding image. Q is
a tuple consisting of measurement and corresponding units.
A captures the allergen information - ID to index all possi-
ble allergens, category of allergen to which the ingredient
belongs, reference to the source from where this informa-
tion is captured, and additional details for the allergen in the
Knowledge Graph.

An instruction is broken down into atomic actions. I is a
tuple consisting of the original recipe text from which the
representation is being built, the input condition and out-
put condition which define the requirements and changes
that happen in the cooking environment once an instruction
is performed, tasks (T) which captures the atomic actions
and modality (M) which has visual information regarding

the instruction. The set T also contains information regard-
ing the objects used and the activities being performed on
them, output quality of the action, and background knowl-
edge (BK). BK is a 2-tuple consisting of tools and failures
associated with the atomic action. Figure [3]shows the skele-
tal structure of the R3. In an initial effort, we have manu-
ally created R3 for 25 egg-based recipes obtained from the
RecipeQA dataset. We show the difference between the orig-
inal representation and R3 for a single instruction of Egg-
drop Chicken Noodle Soup in Figure [T} We now proceed to
explain how we created a proof-of-concept corpus of recipes
in R3 and how this representation is vital in building a pro-
totypical recipe retrieval system - TREAT.
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Figure 3: Skeletal structure of R3.

Populating R3

Most of the attributes in R3 are analogous to the data
points present in RecipeQA. However, there are additional
attributes which are modeled using manual curation of rel-
evant data from Creative Commons. Figure [ gives an
overview of how each attribute is populated in R3, out of
which, allergies needs more explanation.

For a given recipe, it is the ingredient(s) to which a con-
sumer is allergic to and this would also help in making in-
telligent AI models. For instance, a current Al system might
classify pizza as a dish containing gluten allergy, but that
pizza might be completely made up of gluten-free ingredi-
ents. Thus, in R3 we focus on the possibility of allergies that
can be faced by a consumer based on the ingredients. We
have created an allergen lexicon with 17 different classes
following the guidelines provided by the Institute of Agri-
culture and Natural Resources

However, all the ingredients that belong to a particu-
lar allergen class are not present in the lexicon. Thus, we
performed a comparative study of multiple word embed-
ding methods (Word2Vec (Mikolov et al. 2013)/Concept-

"nttps://ianr.unl.edu/

net Numberbatch (Speer, Chin, and Havasi 2017)/GloVe
(Pennington, Socher, and Manning 2014)/Transformers
(Vaswani et al. 2017)) to find similar ingredients to one’s
already present in the allergen lexicon. Figure [5] summa-
rizes the performance of the mentioned models. We see that
Transformer outperforms the others in finding similar ingre-
dients. For example, (Transformer) embeddings help us es-
tablish the similarity between an unseen ingredient such as
yolk or egg whites with egg which is present in the allergen
lexicon. This helps us in deriving the allergy information to
unseen ingredients present in R3.

TREAT for Recipe Retrieval

R3 can be used in building decision-support tools in the food
domain, out of which information retrieval is considered in
this paper. We build a simple web-based tool called TREAT,
which makes use of R3 to understand and answer user’s con-
strained queries - which can be either text, image or a com-
bination of both. Figure [2| shows the overall data flow hap-
pening between R3 and the TREAT system based on the user
query.

A user can query TREAT using multiple modalities (text,
image, text + image) in order to perform constrained queries,
which are of two types:

* Process Constraints: where the user puts restrictions on
the cooking process, e.g., Give me a recipe with less
than 5 steps and is completed in 20 minutes or Suggest
me a recipe which is not deep-fried. For now, TREAT is
equipped with the functionality to filter recipes only by
length and time.

* Outcome Constraints: where the limitations set by the
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Action Name
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Background Knowledge (BK) Human Curation

Figure 4: Information source for different attributes in R3.
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Figure 5: Comparison of different word embedding models
for ingredient similarity.

user bring a change about in the general course of the
recipe. For example, if the user asks for the recipe of a
cake but sets a constraint that he is allergic to gluten, then
the system is expected to retrieve gluten-free cake recipes.
TREAT can answer user’s queries with limitations set on
allergens, ingredients, and cuisine.

When the input is a string, the similarity metric employed
to match with attributes in R3 is Levenshtein distance, where

TREAT

ot Text
Groose Fia No e chosen
Soaen

Input query:

Give me  ecipe without maize allrgen

Result (Obtained 6 matching recipes)

NAME. IMAGE  COMMENTS

Figure 6: User Interface of TREAT, showing a query where
the user is searching for recipes without maize allergen

Uploaded Image

Result (Obtained 3 matching recipes)
’
o

Figure 7: An image query using TREAT. The query is an
image of bacon asking for recipes containing it.

the threshold for matching is a hyperparameter which is set
to 0.7 by default. For image as an input, which can be of an
ingredient or final cooked recipe, similarity is computed us-
ing the Scale Invariant Feature Transform (SIFT) algorithm
(Lowe 2004). The algorithm locates local features in the im-
ages called key points and transforms them to vectors called
descriptors. The similarity between two images is obtained
by computing the euclidean distance between these descrip-
tors. The similarity scores in both approaches are normalized
and set to the same default value.

Figure[6]shows a demo query posed to TREAT where the
user is seen performing a query with allergen constraint on
the recipes - Give me a recipe without maize allergen? and
the TREAT systems retrieves all 6 relevant recipes. Figure
[7] shows an image query where an image of bacon is given
as input to our system, it retrieves 3 recipes with bacon as an
ingredient.

In this section, we presented the R3 representation and a
tool which uses it for recipe retrieval. In the next section, we
present a preliminary evaluation of TREAT to assess R3’s
impact.

Experiments and Results

We want to establish that the representation is helpful in
driving better recipes for users needs. We perform an eval-
uation of the TREAT system using 50 unique queries, con-
sisting of both process and outcome constraints. The queries
are generated based on two random functions - first select-
ing the parameters (such as allergen category, image, recipe
name, ingredient) and the other selecting the value for those
parameters (such as egg, maize category, scotch-eggs, pars-
ley). This systematic process of generating queries avoids
the risk of cherry-picking, and allows us to test our system
on various edge cases.

Further, a manual process is used to obtain the ground
truth values for each of the queries present. The ground
truth is compared with the retrieved output from the sys-
tem to calculate the evaluation metrics, which are Cover-
age of Ground Truth (CVG) and Intersection Over Union
Iov).

* Coverage of Ground Truth (CVGQG): is defined as the in-
tersection of ground truth and retrieved recipes over the
ground truth recipe - Equation|[T}

C(R, N Ry)

Cyt

In the above equation, R, R, refers to the set of retrieved

recipe and ground truth recipes for a given query, respec-

CVG = (1)

Query Type Basedon | CVG | 10U
Process Constraint | Length 1.00 | 1.00
Ingredient | 1.00 | 1.00
Allergen 0.9 0.94
Name 1.00 | 1.00
Image 0.88 | 0.78

Output Constraint

Table 1: Results of TREAT System



tively. The C' represents length of the set of recipes and
€ R (set of real numbers).

e Intersection over Union (IOU): This is intersection of
ground truth and retrieved recipe over the union of both
- Equation[2}

@

In the above equation, R,., R refers to the set of retrieved
recipe and ground truth recipes for a given query, respec-
tively. The C' represents length of the set of recipes and
€ R (set of real numbers).

Performance of the TREAT system

Table (1| shows the performance of the TREAT system on
the test set of queries. Results relevant to the user’s search
query are obtained using the similarity function mentioned
in the Approach. We can see that TREAT is able to achieve a
performance of 100% on queries pertaining to process con-
straints, owing the effectiveness of elaborate representation
in R3. It can also be seen that the system is able to perform
well on the output constraints.

Role of R3 in Improving Performance

Table [2] shows the a comparative study of the queries sup-
ported by R3 and the RecipeQA dataset (original) from
which it is built. R3 acts as an enabler for the user to perform
3 additional queries, namely, allergen, image, and length
based queries in addition to the queries supported by the
original dataset.

Query Type Original | Proposed
Allergen Based No Yes
Ingredient Based Yes Yes
Text data-modality Yes Yes
Image data-modality | No Yes
Length Based No Yes
Name Based Yes Yes

Table 2: Different types of query supported by original and
proposed data representation

We further evaluate the performance of the two types of
representations using the test set of queries. Table [3| shows
that the TREAT system can perform around 40% better than
the original textual representation in enabling the user find
answers for the queries.

Representation Type | CVG | IOU
Original 0.54 | 0.61
Proposed 0.96 | 0.94

Table 3: Performance Comparison of Original and Proposed
representations

Support for Allergy Based Search

R3 is bound to achieve better performance than the origi-
nal procedural text as it captures information in a machine-
readable and understandable manner, similar to a Planning
domain. Thus, this enables easier search for user queries.
However, R3 can help answer a wider set of queries, out of
which the queries related to allergens are of utmost impor-
tance. There has been extensive effort in building the allergy
lexicon and use it to populate R3. Thus, we wanted to evalu-
ate the performance of the TREAT system solely on allergy-
constrained queries as well and also see how R3 would fare
against the original recipe data.

We divide our allergy based queries into two categories -
(1) where the user would explicitly mention the allergen in
his query and (2) where the user just asks for a query with-
out a particular allergy causing ingredient, thereby, having
an implicit allergen information in the query. An example
of an explicit and implicit allergen query can be Give me a
recipe without maize allergen and Give me a recipe with-
out parsley respectively. The original recipe representation,
as Table |3|is incapable of performing explicit allergy based
queries, but can perform implicit allergy queries to some ex-
tent, i.e., when the query consists of matching ingredients.
Table 4| shows how R3 is able to outperform any kind of
allergy based queries in comparison to the original dataset.

Query Representation CVG | IOU
Type

.. Original 0.00 | 0.00

Explicitallergen | p 0o ced 1.00 | 1.00

Imolicit allereen Original 0.16 | 0.24

P 8N | Proposed 09 |0.94

Table 4: Allergen based query results

Conclusion and Future Work

In this work, we have curated a PDDL plan inspired repre-
sentation for recipes with additional knowledge, i.e. R3 for
building intelligent decision-support tools in the food do-
main. In order to validate the effectiveness of R3, we build a
tool for recipe retrieval which can perform multi-modal rea-
soning. After experimental evaluation, we arrive at a conclu-
sion that R3 leads to an improved performance in the task of
information retrieval when compared to the original textual
representation of recipes. In this initial phase of research, we
have created R3 for 25 recipes using a semi-automated ap-
proach. However, the datasets in food domain have around
a million recipes. Thus, scaling R3 using fully-automated
approaches is our current ongoing effort. Having a large-
scale R3 data would enable us to experiment and evaluate R3
on various fronts and the learnings might help the research
community in exploring representations for other formats of
procedural texts.

Beyond efficient information retrieval, a plan based repre-
sentation could enable future automation in recipe creation
by reusing existing recipes, reasoning on their content and
composing, as necuessary, to create new recipes based on



characteristics desired by the user. It can also help automa-
tion in food preparation by enabling monitoring the execu-
tion of agents by allowing reasoning with both the data and
control flow inherent in the plan-based recipe representation
consisting of text and images. These are avenues for future
work.
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