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Abstract

The Pursuit-Evasion (PE) problem is a well-known problem
in which an agent – the Pursuer – attempts to catch another
agent – the Evader – before it reaches some target destina-
tion. We explore a variant of the PE problem called PE with
Fixed Evader plans (PE-FEP), in which an external oppo-
nent modeling tool provides a distribution over the plans the
Evader agent may select. This PE variant, which is motivated
by real-life problems, is particularly challenging for existing
PE algorithms when the agents operate in a large-scale 3D
grid. In this paper, we explore how techniques from the au-
tomated planning literature can be adapted and extended to
effectively solve PE-FEP. We propose three ways to model
PE-FEP as a Markov Decision Process (MDP): two modeling
that approximate the problem and one that fully describes the
problem. To solve this large MDP, we employ the well-known
Real-Time Dynamic Programming (RTDP) algorithm and de-
velop heuristics to initialize it for each of our MDP modeling
scheme. Then, we propose novel techniques for automatically
generating abstract, higher-level, actions and show how to use
it inside the RTDP framework. Experimental results on large
grids with up to 3·106 cells, and with sets of up to 30 possible
Evader plans, show that our algorithms can scale gracefully
with the size of the grid and number of Evader plans.

Introduction
In the Pursuit Evasion (PE) problem, one agent, a Pur-
suer, attempts to catch a second agent, an Evader. PE prob-
lems were explored in many areas of research, ranging from
theoretical computer science to applied robotics (Chung,
Hollinger, and Isler 2011; Cheng 2003; Hespanha, Kim, and
Sastry 1999). In this paper, we explore a specific PE vari-
ant called PE with Fixed Evader plans (PE-FEP) problem,
which has important real-world applications. In PE-FEP,
the agents operate in a large empty 3D grid, with move-
ments bounded by physical constraints. The Pursuer and the
Evader have different abilities. The Evader is faster than the
Pursuer but has no sensors, and cannot observe the Pursuer.
As such, the Evader uses a non-reactive policy, selecting a
plan from a set of predefined plans and following it until ei-
ther reaching its target, or getting caught by the Pursuer. In
contrast, the Pursuer has perfect sensors, enabling it to con-
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stantly track the position of the Evader and adjust its veloc-
ity accordingly. The task is to find a policy for the Pursuer so
that it catches the Evader. The main contribution of this pa-
per is a PE-FEP algorithm that can scale up, producing poli-
cies for large grids with many possible Evader plans. Our al-
gorithms work by modeling PE-FEP as a Markov Decision
Process (MDP), and solving this MDP using the Real-Time
Dynamic Programming (RTDP) algorithm (Barto, Bradtke,
and Singh 1995) with novel enhancements.

The first challenge we address when developing our PE-
FEP algorithm is modeling. We explore MDP models and
analyze them, showing a tradeoff between the size of the
state space and the fidelity of the model. Notably, we pro-
pose a belief-based MDP that compactly represents a suffi-
cient statistic of the agent’s belief about the Evader’s plans.

The second challenge we address when developing our
PE-FEP algorithm is scalability. While RTDP is a highly-
effective MDP solver that can converge to an optimal policy
without iterating over the entire state space, it cannot scale
to the size of problems we aim to solve. To this end, we pro-
pose an spatial action abstraction mechanism based on the
Options framework (Sutton, Precup, and Singh 1999). In our
spatial abstraction, each abstract action is composed of a se-
quence of basic actions designed to achieve a given velocity
and follow it for a time. Key to the effectiveness of this ab-
straction is that the length of our abstract actions is adaptive,
allowing longer sequences when the Pursuer is farther from
the Evader and shorter sequences when it is closer. In addi-
tion, we introduce several heuristics that speed up RTDP by
initializing its Q function intelligently. Using heuristics to
initialize the RTDP value function is known to improve per-
formance, but for RTDP to converge, such a heuristic must
never underestimate the value returned by the optimal value
function. We propose such a heuristic that is based on ana-
lyzing the potential future steps of the Evader and provide a
sufficient condition for their admissibility.

We evaluated different configurations of the algorithm ex-
perimentally on grid sizes of up to 550×200×50 positions,
with up to 60 different Evader plans. These problems have
about 1215 × 669 possible states, yet we solve them in less
than two minutes. We analyze the contribution of each of our
suggested modifications, showing that a naive RTDP imple-
mentation cannot scale beyond a 30× 30× 5 grid, while we
scale to the grid sizes described above.



Background
Markov Decision Process (MDP) is a popular formalism
for sequential decision making under uncertainty (Howard
1960; Puterman 2014). Formally, an MDP is specified by a
tuple ⟨S,A, T,R, γ⟩, where S is a finite state space, A is a
finite set of actions, T is a state transition function, R is a
reward function, and γ ∈ (0, 1) is a discount factor. At each
decision step, the system is at a state s ∈ S and the agent is
required to choose an action a ∈ A that is applicable at this
state. When the agent performs an action a in a state s, it
receives an immediate reward R(s, a) and the system transi-
tions to a new state s′ ∈ S with probability T (s, a, s′). The
discount factor γ ∈ (0, 1) models the preference for imme-
diate over future rewards. In many cases, one of the states
in an MDP is marked as the initial state s0 ∈ S, and one or
more states are marked as terminal states. This indicates that
the system is initially at s0 and it halts when reaching one of
the terminal states. A solution to an MDP is a policy denoted
by π, which is a mapping between states and actions. The
optimal policy, denoted π∗, maximizes the expected sum of
discounted rewards.

Real-Time Dynamic Programming RTDP (Barto,
Bradtke, and Singh 1995) is a well-known algorithm for
solving large MDPs that works by performing simulations
in the search space. A simulation here is to perform
actions and sampling their outcomes according to the
MDP transition function, starting at the initial state and
ending at a terminal state. The sequence of actions and
outcomes resulting from performing a simulation is called
a trajectory. Every “step” in a trajectory can be represented
by a quadruple ⟨si−1, ai, si, ri⟩ where si is the system state
after i actions, ai is the ith action performed, and ri is the
reward obtained after executing action ai at state si−1.

RTDP maintains a Q table that stores for every state-
action pair (s, a) a value that estimates the expected sum
of discounted rewards for executing action a in state s, and
following the best policy afterwards. To update the entries of
this Q table, after every step ⟨s, a, s′, r⟩ in a trajectory, the
Q table is updated using a Bellman update (Barto, Bradtke,
and Singh 1995):

Q(s, a) := r + γ ·
∑

T (s, a, s′) ·max
a′∈A

{Q(s′, a′)}. (1)

RTDP is an anytime algorithm that keeps performing sim-
ulations and performing Bellman updates until it halts. The
policy RTDP returns is induced by its Q table as follows:

π(s) := argmax
a∈A

{Q(s, a)}. (2)

Partially Observable MDP A Partially Observable
Markov Decision Process (POMDP) (Kaelbling, Littman,
and Cassandra 1998) is an MDP in which the agent can-
not directly observe the current state. Instead, the agent re-
ceives observations after performing an action. The POMDP
model includes an observation function that maps the proba-
bility the agent is at a state, given the action it performed and
the observation it received. The standard approach to solve
POMDP problems is to maintain a belief state, which is a
probability distribution function over the possible states. The

agent maintains the belief state during execution, and a solu-
tion to a POMDP is a policy mapping belief states to actions.
A known technique for generating such a policy is to com-
pile the POMDP to a belief-state MDP, whose states are the
POMDP belief states, and apply an MDP solver. However,
the resulting MDP is often very large and may even be in-
finite. In general, solving POMDP problems is undecidable
and notoriously difficult in practice. Thus, POMDP-based
solutions often fail to scale gracefully to problems with
large state spaces. For example, existing POMDP-based ap-
proaches that have been applied to other PE variants were
limited to grids that are significantly smaller than those we
deal with (Yi, Nam, and Sycara 2019).

Problem Definition
Next, we describe the specific PE problem that we address in
this work, which is inspired by a real-world problem. There
is a single Evader agent, denoted e, and a single Pursuer
agent, denoted p. Both e and p operate in a finite 3D grid,
where each agent occupies a single grid cell at each time.
The goal of e is to reach one of m possible target locations.
The goal of p is to prevent e from achieving its goal by col-
liding with e, that is, enter a grid cell that is occupied by
e, before e reaches one of its target locations. Both agents
use a movement model based on the race-car domain (Barto,
Bradtke, and Singh 1995). Each agent has a discrete veloc-
ity ∆v⃗ = (∆x,∆y,∆z) in each of the 3 axes. The velocity
in each axis can be between −maxp and +maxp for the
Pursuer, and −maxe and +maxe for the Evader. The ini-
tial velocity of the agents is (0, 0, 0). After an agent starts to
move, it can never return to a velocity of (0, 0, 0), that is, the
agents cannot remain in the same position after they move
from their initial location. We assume that time is discretized
into time steps, and in each time step each agent can change
its velocity by ±1 in each direction. If an agent is currently at
position (x, y, z) and has velocity v⃗ = (∆x,∆y,∆z), then
it reaches (x+∆x, y+∆y, z+∆z) in the next time step. The
agents are not allowed to move beyond the boundaries of the
grid. We currently assume deterministic actions, but the ap-
proach we proposed in this paper is applicable to stochastic
actions as well. The agents e and p are not homogeneous.
Specifically, p is slower than e, i.e., maxp < maxe, but e
cannot sense the position of p.

Consequently, e must decide on its plan before starting
to move, i.e., it uses a non-reactive policy. By contrast, p is
able to sense the location of e while in motion, and adjust its
plan accordingly. In this paper, we focus on the problem of
generating such a policy for the p agent.

In general, this problem setting is naturally formalized as
a zero-sum game, and can be solved with standard game-
theoretic algorithms such as Minimax, Alpha-Beta, Monte
Carlo Tree Search Solver (Winands, Björnsson, and Saito
2008), and more modern techniques based on Reinforce-
ment Learning (RL) (Silver et al. 2016; Vinyals et al. 2019).
These methods, however, are not expected to scale well to
large 3D grid sizes without computing resources that are be-
yond the reach of most people. In addition, since in our case
the e agent cannot react to the p agent during a game, its
policy can be summarized as a possible stochastic selection



between a set of plans. We assume that an opponent mod-
eling tool is used to adequately characterize this stochastic
selection, e.g., by applying learning techniques to analyze
previously observed behavior of e (Shen and How 2021; He
et al. 2016; Billings et al. 1998)

Specifically, we assume that the opponent modeling tool
returns a set of plans B and a probability distribution pr :
B → [0, 1] over these plans. Each plan in B leads agent e
from its initial location to a target location. Agent e is as-
sumed to randomly choose a plan ρ ∈ B with probability
pr(ρ) before moving, and follow it until either reaching a
target location or getting caught by p. We refer to our variant
of the PE problem as the Pursuit Evasion with Fixed Evasion
plans problem (PE-FEP), defined formally as follows.

Definition 1 (PE-FEP). The PE-FEP problem is defined
by a tuple ⟨G, sp, se,maxp,maxe, B, pr,Rcatch, Rmiss⟩
where G is a 3D grid, sp and se are the initial locations
of p and e in the grid, maxp and maxe are the maximal ve-
locities of p and e, B is the set of plans for agent e, pr is
a probability density function over B, Rcatch is the positive
reward given when p catches e, and Rmiss is the negative
reward given when e reaches a target location or when p ex-
its the grid. A solution to an PE-FEP problem is a policy for
the p agent.

To motivate agent p to catch e as fast as possible, we con-
sider a small discount factor γ of 0.987. This means the re-
ward of catching e decreases by a factor of 0.987 after every
time step in which it has not catched e. All our contributions
are agnostic to the exact value of γ.

PE-FEP as a Markov Decision Process
PE-FEP can be formalized as a POMDP, where the state
comprises the current locations and velocities of the agents,
and the plan chosen by e. The locations and velocities of the
agents are observable, but the plan ρ ∈ B chosen by e is not
observable (by p). The size of the state space of this POMDP
is(
|G| · (2 ·maxe + 1)3

)
·
(
|G| · (2 ·maxp + 1)3

)
· |B| (3)

which is way beyond modern POMDP solvers capabilities
for large grid sizes. In this section, we propose two alterna-
tive modeling approaches that enable better scaling.

Abstract MDP Models
In this modeling approach, we define two MDP models that
abstract some aspects of full PE-FEP problem to gain effi-
ciency. We expect that policies for such MDP models may
be easier to solve, but the quality of the effectiveness of re-
sulting policy in PE-FEP may be lower.

Position-based MDP (Mpos) In the first MDP model we
consider, denoted Mpos, a state contains the location of both
agents and the velocity of only the p agent. The rationale for
this abstraction is the fact that the location of the e agent de-
pends only on its current location and the plan it has chosen.
This is a lossy abstraction, in the sense that remembering
where e has been in previous time steps may allow agent p
to update its belief over the plans e has chosen.

In more details, a state in Mpos is a tuple s = ⟨l⃗p, v⃗p, l⃗e⟩,
where l⃗p and l⃗e are the locations of p and e, and v⃗p is
the velocity of p. An action is a vector a⃗ = (δx, δy, δz),
where δx, δy, δz ∈ {−1, 0, 1}, indicates by how much to
change the velocity of p. The reward function is defined
based on Rcatch and Rmiss, assigning rewards only to ter-
minal states in which either e has been caught or e has
reached its target. The transition function T (s, a⃗, s′) for a
state s = ⟨l⃗p, v⃗p, l⃗e⟩, an action a⃗ = (δx, δy, δz), and a state
s′ = ⟨l⃗p + v⃗p + a⃗, v⃗p + a⃗, l⃗e

′
⟩, is computed by considering

all plans in B in which e is at l⃗e and the probability of choos-
ing these plans is

T (s, a⃗, s′) =
∑

ρ∈B:(l⃗e,l⃗e
′
)∈ρ

pr(ρ). (4)

The size of the Mpos state space is(
|G| · (2 ·maxp + 1)3

)
· |B| · Lmax (5)

where Lmax is the length of the longest plan in B. This is
considerably smaller than the size of the POMDP (Equa-
tion 3).

Time-and-position-based MDP (Mpos(t)) The position-
based MDP does not preserve the Markov propriety, since e
may occupy the same location at different times and move to
different places. To partially remedy this, our second MDP
model, denoted Mpos(t), includes also the current time in the
state. Tracking time steps of states reduces the effect of per-
ceptual aliasing (Chrisman 1992), where the same obser-
vation is obtained in distinct states where different actions
should be performed. That being said, the new model is still
an abstraction of PE-FEP problem.

In more details, in the time-and-position based MDP a
state is a tuple s = ⟨l⃗p, v⃗p, l⃗e, t⟩, where l⃗p and l⃗e are
the locations of p and e, v⃗p is the velocity of p and t
is the current time step. The actions and reward function
remain the same as in the position-based model. For a
plan ρ ∈ B, let ρ[t] be the location of e at time t ac-
cording to ρ. The transition function T (s, a⃗, s′) for a state
s = ⟨l⃗p, v⃗p, l⃗e, t⟩, an action a⃗ = (δx, δy, δz), and a state
s′ = ⟨l⃗p + v⃗p + a⃗, v⃗p + a⃗, l⃗e

′
, t+ 1⟩, is computed by con-

sidering all plans in B in which e is at l⃗e at time t and at l⃗′e
at time t+ 1:

T (s, a⃗, s′) =
∑

ρ∈B:l⃗e=ρ[t]∧l⃗e
′
=ρ[t+1]

pr(ρ). (6)

The size of the Mpos(t) state space is(
|G| · (2 ·maxp + 1)3

)
· |B| · L2

max. (7)

Belief State MDP (Mbel)
The MDP models described so far abstract some aspects of
the PE-FEP problem, and their state information is not suf-
ficient to preserve the Markov propriety across all states in
the problem. As a result, an optimal policy for these models
may not be an optimal policy for the given PE-FEP problem.



To this end, we proposed an MDP model, denoted Mbel, that
accurately captures all aspects of the PE-FEP problem. Mbel
can be viewed as a compact version of the belief-state MDP
corresponding to our POMDP model of PE-FEP. Thus, we
refer to this MDP as the belief MDP and show that its size is
finite and tractable.

The actions and reward function of our belief MDP is
the same as in the previous MDPs. A state is a tuple s =

⟨l⃗p, v⃗p, t, F ⟩, where l⃗p, v⃗p, and t are defined as above, and
F is a subset of the Evader plans B, representing the set of
plans agent e may be following given where it visited so far.
In the initial state F = B. Unlike the states in the position-
based and the position-and-time-based MDPs, a state in our
belief MDP is a sufficient statistic for the PE-FEP prob-
lem. That is, given a state s = ⟨l⃗p, v⃗p, t, F ⟩, action a⃗ =

(δx, δy, δz), and state s′ = ⟨l⃗p + v⃗p + a⃗, v⃗p + a⃗, t+ 1, F ′⟩,
we can compute the exact probability of reaching s′. The
updated belief F ′ comprises every plan in F except plans
that are inconsistent with the new location of e. That is,
F ′ = {ρ|ρ ∈ F where ρ[t + 1] = l⃗e}. Since agent e is not
reactive, pruning inconsistent plans does not change the rela-
tive probabilities of the remaining plans. Hence, to compute
the probability that a plan ρ is the one agent e is following,
we normalize the prior probability of choosing ρ over all the
plans in F . Formally, the probability that e chose ρ given
F is pr(ρ)∑

ρ′∈F pr(ρ′) . We denote this conditional probability by

Pr(ρ|F ). Finally, the transition function for the state s, ac-
tion a⃗, and state s′ specified above is given by:

T (s, a⃗, s′) =
∑

ρ∈F :l⃗e=ρ[t]∧l⃗e
′
=ρ[t+1]

Pr(ρ, F ). (8)

To compute the number of states in our belief MDP, we
analyze the possible values for F . Observe that changes to
F are agnostic to the actions of agent p. In addition, as time
progresses plans are only removed from F but never added.
Thus, we can create belief tree that represents the possible
values of F over time. A node in this tree is a pair ⟨t′, F ′⟩
representing all states in which F = F ′ and t = t′. The root
node is ⟨1, B⟩. The children of the root correspond to the
possible beliefs at the first time step t1 in which exists two
plans ρ1, ρ2 ∈ B in which e occupies different cells. More
generally, the children of a node ⟨t′, F ′⟩ are the possible be-
liefs at the first time step t′′ > t′ in which there exists two
plans ρ1, ρ2 ∈ F ′ in which e occupies different cells. The
leaves of the belief tree are nodes in which F ′ consists of a
single plan. Since all plans have a fixed length, a plan can
only appear in a single leaf. Thus, the size of the belief tree
is at most 2|B|. Practically, we compute the belief tree only
once, and every state in the belief MDP stores a pointer to
the respective node in the belief tree instead of storing all the
plans in the corresponding belief tree node. Consequently,
the size of the Mbel state space is(

|G| · (2 ·maxp + 1)3
)
· 2 · |B|2 · L2

max (9)

where |G| · (2 ·maxp +1)3 represents all possible locations
and velocities of p, |B| · Lmax represents the possible loca-
tions of e, Lmax represents the possible time steps, and 2|B|
represents the possible nodes in the belief tree.

Model State State Space Size

Mpos s = ⟨l⃗p, v⃗p, l⃗e⟩
(
|G| · (2 ·maxp + 1)3

)
· |B| · Lmax

Mpos(t) s = ⟨l⃗p, v⃗p, l⃗e, t⟩
(
|G| · (2 ·maxp + 1)3

)
· |B| · L2

max

Mbel s = ⟨l⃗p, v⃗p, t, F ⟩
(
|G| · (2 ·maxp + 1)3

)
· 2 · |B|2 · L2

max

Table 1: A summary of our different MDP models.

Table 1 summarizes the main properties of our models.
As expected, the higher fidelity models have a larger state
space, suggesting a possible tradeoff between solution time
and solution quality. We investigate this tradeoff experimen-
tally later.

Solving the PE-FEP MDPs
In either MDP model, the size of the corresponding search
space is too large to be solved by a standard implementa-
tion of MDP algorithms, such as RTDP (Barto, Bradtke,
and Singh 1995), for the grid sizes we are interested in.
For example, consider a PE-FEP probelm with a grid size
of 800 × 500 × 5, speed limit of 1 (maxe = 1), 50 possi-
ble plans for agent e (|B| = 50), and a maximal Evader plan
length of 400 (Lmax = 400). The state space size of even the
position-based MDP is approximately 108×1010. Of course,
many of these states are not reachable when following a rea-
sonable policy, but this is still far more than what a naive im-
plementation of RTDP can handle. In the rest of this section,
we propose to augment RTDP with two novel, orthogonal,
techniques that allow solving large PE-FEP problems. The
first technique is a special form of spatial action abstraction.
The second technique is a heuristic for initializing the RTDP
Q table. We describe these techniques in details below.

Spatial Action Abstraction
We formulate our spatial action-abstraction technique using
the Options framework (Sutton, Precup, and Singh 1999).
An Option can be viewed as a macro-operator (Korf 1985)
for an MDP. Planning over a set of options instead of the
atomic MDP actions of a domain can speedup planning sig-
nificantly (Mann and Mannor 2014; Mankowitz, Mann, and
Mannor 2014). Formally, an option is a tuple O = {I, π, β}
where I is the set of states where the option can be initiated,
π : S → A is the policy followed while executing the op-
tion, and β : S → {0, 1} is the option termination condition,
specifying when to stop executing π.

Defining an effective set of options for a given problem is
a challenge. Prior work assumed the set of available options
is either provided as input to the solver (Sutton, Precup, and
Singh 1999) or learned (Stolle and Precup 2002; Mankowitz
et al. 2018). Existing algorithms for learning options are not
expected to be effective in our context, as positive rewards
in our MDPs are only encountered deep in the search space,
and the size of the search space is very large for PE-FEP
problems that we are interested in.

We present here an dedicated type of options that are es-
pecially designed for large spatial-based MDPs such as ours.
Using these spatial-based options is intended to vary the
granularity of the agent’s decision-making based on the dis-



tance between the agents. When the distance is large, the
available options correspond to maintaining a chosen veloc-
ity for a large number of time steps. As the distance between
the agents diminishes, the available options maintain a cho-
sen velocity for a smaller number of time steps, allowing
p more controllability to direct itself towards e. Eventually,
when the agents are near, we make a decision at each time
step and the available options reduce to the atomic actions
of changing the agent’s velocity for a single time step.

Formally, we create an option Os,D⃗ for every state s =

⟨⃗lp, v⃗p, l⃗e⟩ and direction d⃗ = (dx, dy, dz) that the agent can
move to, where d⃗ ∈ {−1, 0, 1}3. Thus, in every state s there
are exactly 27 applicable options. The policy for an option
Os,D⃗ is to move in the direction d⃗ a fixed number of cells.
Importantly, that fixed number is a function of the distance
between the agents in s. Specifically, we propose the fol-
lowing exponential decaying function of the L∞ distance
between the agents in s:

D(s) = 2max{⌊log2(||⃗lp−l⃗e||∞)⌋−3,0} (10)

For example, consider a state s in which the distance be-
tween the agents is 1024. In this case, the policy for the op-
tions in this state would move in the chosen direction for
128 grid cells. In a state where the agents are closer and
the distance between them is 100, the corresponding options
perform the same basic action 8 times. Finally, when the dis-
tance between the agents is smaller than 16, the available
options represent applying a basic action once.

We use the options generated in the above manner in
RTDP by using options instead of basic actions. This means
the RTDP Q table stores a Q value for every (state, option)
pair instead of (state, action) pair, and the policy it learns
maps states to options. In addition, we update the RTDP us-
ing the Bellman update operator to reflect that an “action”
in a state s corresponds to performing a sequence of D(s)
atomic actions, as follows:

Q(s,Os,⃗d) = R(s,Os,⃗d) + γD(s)
∑
s′

T (s,Os,⃗d, s
′)V (s′)

(11)
where R(s,Os,⃗d) is the sum of discounted rewards collected
when executing the option, and

V (s′) = max
O

s′ ,⃗d′
Q(s′, O

s′ ,⃗d
′). (12)

Heuristics
A known technique to speedup the performance of RTDP
is to use a heuristic function to intelligently initialize the
values in the Q table (Bonet and Geffner 2003; McMa-
han, Likhachev, and Gordon 2005). These heuristic func-
tions receive a state and an action, and output the value with
which to initialize the corresponding entry in the Q table.
Let Q∗(s, a) be the expected discounted reward obtained by
performing action a at state s and subsequently following an
optimal policy. A heuristic function H is called admissible
if it is an upper bound on Q∗(s, a) for every state-action pair
(s, a), i.e., if H(s, a) ≥ Q∗(s, a). Initializing RTDP with an

admissible heuristic guarantees that its Q table will eventu-
ally converge to Q∗, and subsequently the policy it returns is
optimal. Next, we describe several admissible heuristics for
our MDP models.

Discounted Reward Heuristics In all our MDP models,
rewards are only given at a terminal state. Thus, the maximal
expected discounted reward in a state is Rcatch, the reward
for catching e. However, that reward is only obtained when
p reaches e. If this occurs t time steps after the current state,
then the discounted reward at that state is only Rcatch · γt.
We say that heuristic H is a discounted reward heuristic if it
is of the form H(s, a) = Rcatch · γt

min(s) for some function
tmin(s).
Observation 1. Any discounted reward heuristic in which
tmin(s) is a lower bound on the time it will take e to catch p
when at state s, is admissible.

A trivial admissible discounted reward heuristic sets
tmin(s) to zero. The resulting heuristic, referred to as the
zero heuristic and denoted H0, returns Rcatch for every
(s, a) pair. A more informed approach to obtain an admissi-
ble heuristic is to consider the distance between the agents
in s when computing tmin(s). If the distance between the
agents is d, then the fastest way they can reach each other is
by moving towards each other at their highest speed. Corre-
spondingly, we can obtain an admissible discounted reward

heuristic by setting tmin(s) to be ||⃗le(s)−l⃗p(s)||∞
maxp +maxe

, where l⃗e(s)

and l⃗p(s) are the locations of e and p in state s. We refer to
the resulting heuristic as the air distance heuristic and de-
noted it by HAir.

Plan-Aware Heuristics The zero and air distance heuris-
tics ignore the fact that the Evader is limited to move along
a plan from B. The following discounted reward heuristics,
referred to as the plan-aware heuristics, exploit that knowl-
edge to provide tighter computation of t(s). To define these
heuristics, we introduce the following helper functions:

Tp (⃗l1, l⃗2) =
L∞ (⃗l1 − l⃗2)

maxp
(13)

h(⃗lp, t, ρ) = argmin
t′≥t

Tp(ρ[t
′], l⃗p) t′ ≥ Tp(ρ[t

′], l⃗p)

∞ otherwise
(14)

Tp(⃗l1, l⃗2) computes a lower bound on the time it takes p

to move from l⃗1 to l⃗2. h(⃗lp, t, ρ) computes a lower bound
on the time it takes p to reach e given that it is following
plan ρ ∈ B and the current time step is t. We use this h
function to define a plan-aware heuristic function for each
of our MDP modeling.

For Mpos, we set tmin(s) to be the minimum over all
Evader plans and time steps that are consistent with the lo-
cation of e in the current state. Specifically, we propose a
discounted reward heuristic that computes tmin(s) as

min
(ρ,t)∈{ρ,t|ρ∈B∧ρ[t]=l⃗e(s)}

h(⃗lp(s), t, ρ) (15)

We denote the resulting heuristic by Hpos.
For Mpos(t), the states contain additional information that

allows further refinement of the set of Evader plans consis-
tent with s. Specifically, for Mpos(t), we propose a discounted



reward heuristic that computes tmin(s) as

min
ρ,∈{ρ|ρ∈B∧ρ[t(s)]=l⃗e(s)}

h(⃗lp(s), t(s), ρ) (16)

where t(s) denotes the time step of s. We denote the result-
ing heuristic by Hpos(t).

For Mbel, a state s explicitly contains the set of consistent
Evader plans F as well as probability distribution over them.
Here, we slightly break the format of a discounted reward
heuristic and propose the following heuristic:

Hbel(s, a) =
∑

ρ∈F (s)

Pr(ρ|F (s)) · γh(⃗lp(s),t(s),ρ) ·Rcatch

(17)
where F (s) is the consistent Evader plans at state s.

Observation 2 (Admissibility). All our proposed heuristics
are admissible.

Proof. All our heuristics, except Hbel, are admissible due to
Observation 1. For Hbel, observe that γh(⃗lp(s),t(s),ρ) ·Rcatch

is a lower bound the expected discounted reward when at
state s and e is following plan ρ, then Hbel(s, a) is lower
bound the expected discounted reward when at state s. Thus,
Hbel is admissible.

Experimental Results
We implement all the RTDP-based algorithms we proposed
and evaluated them experimentally on a set of PE-FEP prob-
lems. In each experiment, we selected (1) an MDP model
(Mpos, Mpos(t), or Mbel); (2) whether or not the spatial action
abstractions were used; and (3) an RTDP heuristic function
(H0, HAir, Hpos, Hpos(t), or Hbel). Then, we run the corre-
sponding RTDP one a given PE-FEP problem until either
the RTDP policy converged or a predefined budget of sim-
ulations has exceeded. Unless stated otherwise, the budget
was set to 5 · 106 simulations. All experiments were con-
ducted on a single machine with 4 CPU cores 2.60GHz and
16 GB of RAM. Our solver is implemented in C++.

This goal of this experimental evaluation is to answer the
following research questions: (RQ1) Is the proposed spatial
action effective? (RQ2) Are the proposed heuristics effec-
tive, and which heuristic works best? (RQ3) Can our RTDP-
based algorithm solve large-scale PE-FEP problems? (RQ4)
When each MDP model — Mpos, Mpos(t), or Mbel — should
be used?

The main performance metric we consider is the collision
rate. After an algorithm returns a policy, we execute 1,000
simulations. The collision rate is the number of simulations
ended up with p catching e, divided by 1,000. Note that the
collision rate is computed w.r.t the actual PE-FEP problem
(Definition 1), not w.r.t. the chosen MDP model, which may
be simpler, e.g., in the case of Mpos. The second metric we
measure is the simulations rate, which is the number of sim-
ulations performed, as part of the learning phase of the algo-
rithm, divided by the given budget. Lastly, the third metric
we consider is called convergence rate, which is the number
of episodes it took to obtain the best policy (the policy that
is ultimately returned), in terms of collision rate, divided by

the budget. For example, let us assume that the algorithm
halted after performing 500 simulations (out of a budget of
10,000 simulations) and that the best policy was achieved
after performing 400 simulations. In this case, the simula-
tions rate is 500/10, 000 = 0.05 and the convergence rate
is 400/10, 000 = 0.04. To measure the collision rate, let us
assume that we executed 1,000 simulations of the resulted
policy and that the agents collided in 900 of the simulations.
Then, the collision rate is 900/1, 000 = 0.9.

Creating PE-FEP Problems
We created PE-FEP problems for our experiments as fol-
lows. First, we set the length, width, and height of the grid
(G), denoted maxx, maxy , and maxz , respectively. All tar-
get locations and the initial locations of p and e (i.e., sp and
se) are positions on the ground. The initial locations of p and
e are in opposing sides of the grid, and the targets are located
between them but closer to agent p.

To create non-trivial Evader plans B, we enforced each
evader plan ρ ∈ B to pass through a set of waypoints. When
moving between waypoints, e follows the shortest path be-
tween them. Figure 1 illustrates one of the waypoints dis-
tribution used in our experiments (waypoints are marked by
“x”). The waypoints are arranged in columns over the y-
axis. Every evader plan starts at Se, moves from right to
left by choosing a single waypoint from each column, un-
til eventually reaching one of the target locations (marked
by a green start). The exact benchmark of PE-FEP problems
will be made available upon request.

The Wait-For-It Baseline
Since PE-FEP is a new variant of PE, there are no estab-
lished baseline algorithm to compare with. Nevertheless, we
consider two algorithms as our baselines. The first baseline
is vanilla RTDP, without spatial action abstraction and only
the zero heuristic. The second baseline implements the rule-
based policy in which p waits in its initial location until it
either infers the Evader’s plan and is able to catch it, or it
infers that it cannot infer the Evader’s exact plan in time
at which case it selects one Evader plan and targets it. In
more details, this baseline solver, which we refer to as the
Wait-For-It (WFI) algorithm, computes for each Evader plan
ρ ∈ B the last time step in which p can still catch e assum-
ing p remains in its initial location. Then, its policy for p is
remains in its initial location as long as e follows plans for
which p can still catch e. When e is about to cross the last
time step described above, p randomly chooses a plan from
the remaining consistent plans and tries to catch e accord-
ingly. Note that, as time passes, the set of relevant plans F
decreases with fewer plans remain in the Pursuer beliefs

Spatial Action Abstraction: Results
The first set of experiment evaluates the benefit of our spatial
action abstraction. We report here on a subset of a larger set
of experiments we conducted to address this research ques-
tion (RQ1), In this subset, we used the Mposmodel and run
RTDP with Hpos on grids of different sizes and 6 Evader
plans. For each grid size, we generated 20 different PE-
FEP problem instances. We repeated this experiment with



and without our spatial action abstractions. Table 2 shows
the average CPU time, collision rate, and simulation rate for
both options. We mark out of memory (OOM) when the run-
ning process exceeded the maximum RAM memory.As can
be seen, the benefit of using our spatial action abstraction
is significant. In some cases, it yielded a speedup of more
than two orders of magnitude. The results also show that,
beyond 600 × 300 × 5, RTDP with only atomic actions ex-
ceeds the RAM capacity. While the time required to reach a
collision rate of 1.0 increases rapidly with the grid size for
RTDP with atomic actions, using our spatial action abstrac-
tions allowed RTDP to achieve a perfect collision rate even
for the very large 1000× 600× 5 grids. Recall that the cor-
responding MDP has more than 16,875,000,000 states. We
also observed the same trend in the other models (Mpos(t)
and Mbel). Since the benefit of using our options is clear, we
only use this method in all experiments below. Thus, using
spatial abstractions are shown to be highly beneficial and al-
low scaling to very large grids, suggesting that the answers
to RQ1 and RQ3 are affirmative.

Time (sec.) Collison Rate Simulation Rate
Grid Size Options Atomic Options Atomic Options Atomic

20× 10× 5 0.01 0.78 1.00 1.00 0.00 0.03
40× 20× 5 0.01 9.41 1.00 1.00 0.00 0.17
80× 40× 5 0.07 26.50 1.00 0.99 0.00 0.20
160× 80× 5 0.19 249.20 1.00 0.97 0.00 1.00
320× 160× 5 0.27 553.40 1.00 0.95 0.00 1.00
600× 300× 5 0.90 919.70 1.00 0.90 0.01 1.00
1000× 600× 5 1.20 OOM 1.00 OOM 0.05 OOM

Table 2: Spatial action abstraction and atomic actions for
different grid sizes with 6 Evader plans, averaged over 20
random settings.

Heuristics : Results
Next, we evaluated the impact of using our discounted re-
ward heuristics to initialize RTDP. To this end, we designed
a set of experiments over various grid sizes with 30 distinct
Evader plans. The grid setting was similar to the one used
in the previous experiment, and we used the Mposmodel. We
repeated this experiment with each of the relevant heuristics,
namely, H0, HAir, and Hpos. Table 3 shows the collision rate
and convergence rate achieved by RTDP with the different
heuristics. The rows show the different grid sizes and the
columns represent the collision and convergence rates for
each of the heuristic functions. In all problem settings, the
Hpos heuristic achieved the highest collision rate, excluding
the smallest grid where all methods achieved a collision rate
of 1.0. Another significant advantage for Hpos can be seen
in the convergence rate. The results show that Hpos outper-
formed the other two heuristics. We also observed the same
trend when using Mpos(t)and Mbel. Thus, we use the plan-
based heuristics in all subsequent experiments.

Modeling : Results
Next, we investigate the performance of RTDP on the dif-
ferent MDP models we proposed, namely Mpos, Mpos(t), and
Mbel. We report here results for a grid size of 550×200×5,
on the PE-FEP problems depicted in Figure 1. Figure 1

Grid Size Collision Rate Convergence Rate
H0 HAir Hpos H0 HAir Hpos

20× 10× 5 1.00 1.00 1.00 0.59 0.27 0.05
40× 20× 5 0.78 0.89 1.00 0.92 0.88 0.17
80× 40× 5 0.54 0.88 1.00 0.76 0.99 0.04
160× 80× 5 0.70 0.74 1.00 0.91 0.51 0.03
320× 160× 5 0.77 0.85 0.96 0.85 0.96 0.09
600× 300× 5 0.58 0.74 1.00 0.86 0.95 0.10
1000× 600× 5 0.61 0.72 0.92 0.71 0.51 0.10

Table 3: Different heuristics for the position model for dif-
ferent grid sizes with 30 distinct Evader plans.

Metric Model 1 2 3 4 5 6

(a)

Coll.
Rate

WFI 0.61 0.61 0.61 0.62 0.34 0.19
Mpos 1.00 1.00 0.60 0.62 0.34 0.33
Mpos(t) 1.00 1.00 0.65 0.65 0.38 0.33
Mbel 1.00 1.00 0.90 0.99 0.54 0.33

Conv.
Rate

Mpos 0.00 0.00 0.53 0.30 0.43 0.47
Mpos(t) 0.00 0.00 0.57 0.49 0.54 0.47
Mbel 0.01 0.04 0.60 0.48 0.36 0.47

(b)

Coll.
Rate

WFI 0.51 0.51 0.50 0.50 0.50 0.36
Mpos 1.00 1.00 0.94 0.83 0.62 0.44
Mpos(t) 1.00 1.00 0.95 0.86 0.74 0.56
Mbel 1.00 1.00 0.97 0.92 0.78 0.60

Conv.
Rate

Mpos 0.00 0.00 0.21 0.37 0.49 0.67
Mpos(t) 0.00 0.00 0.05 0.07 0.14 0.20
Mbel 0.01 0.01 0.03 0.16 0.12 0.30

(c)

Coll.
Rate

WFI 0.47 0.47 0.47 0.43 0.25 0.11
Mpos 1.00 1.00 1.00 0.79 0.43 0.17
Mpos(t) 1.00 1.00 1.00 0.79 0.43 0.17
Mbel 1.00 1.00 1.00 0.80 0.43 0.16

Conv.
Rate

Mpos 0.00 0.00 0.00 0.17 0.63 0.42
Mpos(t) 0.01 0.01 0.01 0.34 0.71 0.89
Mbel 0.01 0.01 0.01 0.38 0.63 0.89

Table 4: Comparing model methods on the grids from Fig. 1.

shows 2D maps with different Sp points for the Pursuer
(blue). We gradually increased the x coordinate of the Pur-
suer initial location to see the effect on each of the model-
ing methods. The Evader initial location (red) is fixed across
all problems. The X marks are the waypoints and the green
stars are target locations. We present some possible Evader
plans to demonstrate how an Evader plan looks in a 2D
viewpoint.

Table 4 shows the maximum collision rate and the corre-
sponding convergence rate (2nd column). Both metrics were
measured for each model (3rd column) on each of the three
problems illustrated in Figure 1 (1st column). Each col-
umn (columns 4-9) represents the different initial location
of agent p where 1 is the closest location to the goals and 6
is the farthest.

The results show that, in all three problems, Mbel achieved
the highest collision rate, which was close to 1.00 in the
three closest locations of p. However, in these cases, Mpos
and Mpos(t) were converged faster than Belief . In problem
(c), while all three modeling methods achieved almost the
same collision rate, Mpos converged faster than the other
methods. This phenomenon is related to the fact that when
the approximation MDPs are good enough to model the
problem, they update fewer states than Mbel, since model-



(a) (b) (c)

Figure 1: 2D overview on the grid with 4 goals and (a) 24 Evader plans with small waypoint gap, (b) 24 Evader plans with large
waypoint gap, and (c) 36 Evader plans.

#Evader Plans 4 20 40 60
60 0.81 0.66 0.55 0.49
100 0.87 0.83 0.70 0.63
200 0.87 0.87 0.77 0.73
400 0.94 0.86 0.86 0.85

Table 5: Collision Rate as a function of the number of Evader
plans (rows) and waypoints (columns) when using Mbel

ing with the Belief results in more states to update.
To demonstrate the impact of the waypoints and the num-

ber of Evader plans on Mbel, we designed an experiment in
which we increased the number of evader plans (|B|) but
fixed the grid size to 550× 200× 50 with 4 different goals.
Table 5 shows the results in terms of collision rate. The rows
represent the number of possible unique plans that can be
created on the given grid and the columns are the number
of unique Evader plans that were generated. For example,
when the number of available different plans was 60 and the
actually generated plans was 60, Mbel achieved only 0.49
collision rate. The first trend observed is that as more plans
exist the collision rates decreases. This trend implies that the
problem is harder. As we add more Evader plans, we directly
increase the state space. We also observed that the collision
rate increases as the number of possible plans increases. This
means that the Evader plans are more sparse across the grid
and fewer parts of the Evader plans overlap.

Related Work
Approaches to solve different variants of PE using Markov
models have been proposed in the past. This includes
POMDP models for PE variants with partial observability
where the agent’s (Pineau, Gordon, and Thrun 2003) and PE
variants for multiple pursuer agents (Mottaghi and Vaughan
2007). These prior work cannot scale to the large grids we
consider. For example, while the point-based later-tag do-
main is over a 2D grid with only 22 cells, we experiment in
3D grids with size of up to 800×400×5 cells. Yi et al. (2019)
focused on indoor PE problems using multiple pursuers.
They proposed a hybrid hierarchical POMDP structure that
utilizes the convex hulls of the environment to create abstract

states. The approach reduces the state space for improved
scalability. Yet, they could not scale to the large graphs we
consider. Hollinger (2009) uses a POMDP formulation for
a multi-robot PE variant, where a team searches in a known
environment for a moving non-adversarial target. They show
that the resulting planning problem is NP -hard, and that
the optimal solution scales exponentially in the number of
searchers. Thus, their approach is intractable for large en-
vironments or numerous searchers. Baltes sand Park (2001)
investigated machine learning techniques in the context of
the PE problem, directly considering the kinematics of the
robots. The movement model is based on the physical robots
on 2D plane, while PE-FEP has discrete actions in 3D space.

Conclusion
We presented a scalable algorithm for solving the Pursuit
Evasion with Fixed Evader Plans (PE-FEP) problem, a real-
world variant of the PE problem. We propose three MDP-
based approaches to model PE-FEP and analyze them. Then,
we introduce two novel techniques that enable using RTDP
over the proposed MDP models, to efficiently solve PE-FEP
problems.

The first technique is a spatial abstraction of the action
space based on the options framework (Sutton, Precup, and
Singh 1999). In this abstraction, we force the Pursuer to
choose a sequence of actions whose length is in correlation
with the distance between the Pursuer and the Evader. The
second technique involves admissible heuristic functions for
each of our MDPs to initializing the RTDP Q table. We eval-
uated the different models and RTDP enhancements exper-
imentally on a large 3D grid of up to 550 × 200 × 50 grid
cells and up to 60 different Evader plans. Our results show
that RTDP with all our enhancements can solve such large
problems, yielding over two orders of magnitude improve-
ment over baseline techniques.
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