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Abstract

PDDL+ is an expressive planning formalism that enables the
modelling of hybrid domains having both discrete and contin-
uous dynamics, in which the agent and the environment de-
scription are sharply separated. These models are notoriously
difficult to address, and many planning systems do so by
assuming discrete semantics. Following a long trend aimed
at reformulating complex problems into ones expressed in
simpler and more manageable formalisms, translations from
discrete PDDL+ into numeric PDDL2.1 have recently been
proposed. In this work, firstly we study the existing trans-
lations by comparing them from the point of view of induced
searches and the size of generated numeric tasks. Secondly,
building on the existing translations, we propose a novel
translation whose design goes in the direction of defining a
scheme sensitive to the structure of the problem.

Introduction
Automated planning is a solid branch of artificial intelli-
gence that aims at designing methodologies for synthesising
a sequence of actions capable to transform a given state, i.e.,
the initial state, into the desired state, i.e., the goal state.

Many real-world systems are hybrid in nature, as they are
characterised by the coexistence of discrete and continuous
state variables, together with changes that can happen over a
continuous timeline. In automated planning, hybrid systems
can be represented and modelled using the PDDL+ formal-
ism (Fox and Long 2006). PDDL+ provides a representation
that puts together an agent, via an action-oriented formal-
isation, with an explicit representation of the environment
and its exogenous dynamics given in terms of processes and
events. However, PDDL+ planning problems are notoriously
difficult to be solved, and there is a restricted set of planning
engines that can natively support them.

Recently, to increase the pool of planning engines that can
tackle PDDL+ planning problems, an exponential (EXP) and
a polynomial (POLY) translation have been proposed (Per-
cassi, Scala, and Vallati 2021c). Such translations aim to
transform a time discretisation of a PDDL+ problem into
a simpler formalism, more precisely, a numeric planning
problem represented using the PDDL2.1 language (Fox and
Long 2003). Both schemata compile the environment into
the agent’s actions. EXP does so anticipating all possible pro-
cesses with an exponential encoding that keeps the height

of the search tree limited. POLY avoids such an exponen-
tial behaviour by unrolling all processes into several con-
secutive actions but makes the search tree much deeper.
Both translations belong to a broader family of approaches
aimed at solving problems represented in some language us-
ing solvers and tools devoted to tackling problems expressed
in some other, less complicated, language (e.g., (Keyder and
Geffner 2009; Palacios and Geffner 2009; Cooper, Maris,
and Régnier 2010; Taig and Brafman 2013; Grastien and
Scala 2017; Percassi and Gerevini 2019; Bonassi et al. 2021;
Scala and Grastien 2021)).

One of the challenges of these approaches is to be able to
provide compact and efficient translations, and exactly with
this objective in mind, a third translation, namely POLY−,
has been recently proposed (Percassi, Scala, and Vallati
2021a). Intuitively, POLY− leverages the advantages of EXP
while avoiding the exponential blow up with a schema that
ignores some of the possible transitions. This results in a
schema that, differently from EXP and POLY which are both
sound and complete, is sound but complete only for a sub-
class of PDDL+.

In order to improve our understanding of these transla-
tions, in this paper, we report on a study of the existing trans-
lations focusing on the induced state space and the size of the
numeric translated tasks, aspects of crucial importance from
a practical point of view. Then we propose a new transla-
tion, namely EXPL that, by exploiting the structure of the
problem at hand, combinatorially combines only those pro-
cesses deemed necessary, resulting in a schema that is expo-
nential only the size of the largest set of processes affecting
a numeric variable. This novel translation is compared from
a theoretical point of view with the existing ones, showing
when it is generally preferable. These considerations are fi-
nally supported by an experimental analysis of optimal plan-
ning problems.

Background
In this section we report on the PDDL+ problem (Fox and
Long 2006) interpreted over a discrete timeline (Percassi,
Scala, and Vallati 2021c), and the problem of numeric plan-
ning as the one that can be specified in PDDL2.1 (level 2)
(Fox and Long 2003). We borrow notation and the seman-
tics from (Percassi, Scala, and Vallati 2021c), and focus here
on the description of those aspects that are crucial to under-



stand this work.
We specify our problems using propositional formulas

over numeric and Boolean conditions defined over sets of
numeric and Boolean variables. A numeric condition is of
the form ⟨ξ ▷◁ 0⟩ with ξ being a numeric expression, and
▷◁∈ {≤, <,=, >,≥}. A Boolean condition is of the form
f = {⊤,⊥} with f being a Boolean variable.
Definition 1 (PDDL+ problem). A PDDL+ planning problem
Π is the tuple ⟨F,X, I,G,A,E, P ⟩ in which each element
is detailed in the following. F and X are the Boolean and
numeric variables. Numeric variables take values from R. I
is the description of the initial state, expressed as a full as-
signment to all variables in X and F . G is the description
of the goal, expressed as a formula. A and E are the sets
of actions and events, respectively. Actions and events are
pairs ⟨p, e⟩ where p is a formula and e is a set of conditional
effects of the form c ▷ e. Each conditional effect c ▷ e is such
that (i) c is a formula and (ii) e is a set of Boolean assign-
ments of the form ⟨f := {⊥,⊤}⟩ or numeric assignments
of the form ⟨{asgn, inc, dec}, x, ξ⟩ where ξ is a numeric ex-
pression. P is a set of processes. A process is a pair ⟨p, e′⟩
where p is a formula and e′ is a set of numeric continuous
effects expressed as pairs ⟨x, ξ⟩ where ξ is the net derivative
of x.

Let a = ⟨p, e⟩ be an action/event/process, we use pre(a)
to refer to the precondition p of a, and eff(a) to the effect e
of a. Moreover, in the following we will use a, ρ, and ε to
refer to a generic action, process, and event, respectively. In
order to make the notation more concise, Boolean conditions
and assignments of the form ⟨f = ⊥⟩ (⟨f := ⊥⟩) and ⟨f =
⊤⟩ (⟨f := ⊤⟩) are shortened to f and ¬f , and conditional
effects of the form ⊤ ▷ e are rewritten as e.

A plan for a PDDL+ problem is an ordered set of timed
actions plus a time envelope, organised formally as follows.
Definition 2 (PDDL+ plan). A PDDL+ plan πt is a pair
⟨π, ⟨ts, te⟩⟩ where: π = ⟨⟨a0, t0⟩, ..., ⟨an−1, tn−1⟩⟩, with
ti ∈ Q, is a sequence of time-stamped actions; ⟨ts, te⟩, with
ts, te ∈ Q and ts ≤ te, is the envelope within which π is
performed.

We say that πt is well-formed iff ∀ i, j ∈ [0..n− 1] and
i < j, then ti ≤ tj and ts ≤ ti ≤ te hold. Hereinafter we
consider just well-formed plans.

PDDL2.1 is the subclass of PDDL+ where we only have
actions and no explicit management of time. This is syntac-
tically reflected in the absence of events and processes.
Definition 3 (PDDL2.1 problem). A PDDL2.1 problem Π
is a tuple ⟨F,X, I,G,A, c⟩ where all elements are as for
PDDL+, yet there are neither processes nor events and c as-
sociates to each action a rational cost.
Definition 4 (PDDL2.1 plan). A PDDL2.1 plan is a sequence
of actions ⟨a0, ..., an−1⟩. The cost of the plan π is the sum
of all action costs in π, cost(π) =

∑
a in π c(a).

Intuitively, a PDDL+ problem consists in finding plans
along a potentially infinite timeline, whilst conforming to a
number of processes and events that may change the state of
the world as time goes by. Both processes and events are ap-
plied as soon as their preconditions become satisfied (must

transitions); differently, actions are decisions that need to
be taken (may transitions). A PDDL2.1 problem is a vari-
ant where there is no time, and we only seek a sequence of
actions that starts from some initial state and yields a state
satisfying the goal.

Following Percassi, Scala, and Vallati (2021c) and Shin
and Davis (2005), we formalise the PDDL+ semantics
through the notion of time points, histories and the projec-
tion of a plan given a domain.

γ(s, ·) denotes the state resulting by applying either
an action/event (γ(s, a)) or a sequence of action/events
(γ(s, ⟨a0, . . . , an⟩)) in state s. As for formal specification
(Fox and Long 2003), an action is valid if no numeric vari-
able appears on the left-hand side of the effect (lvalue) in
more than one effect.

A time point T is a pair ⟨t, n⟩ where t ∈ R and n ∈ N.
Time points over R × N are ordered lexicographically. A
history H over I = [Ts, Te] maps each time point in I
into a situation. A “situation at time point T ” is the tuple
H(T ) = ⟨HA(T ),Hs(T )⟩, where HA(T ) is the sequence
of actions executed at time point T andHs(T ) is a state, i.e.,
an assignment to all variables in X and F at time point T .
We denote by Hs(T )[v] and Hs(T )[ξ] the value assumed in
the state at time point T by v ∈ F ∪X and by a numeric ex-
pression ξ, respectively. Etrigg(T ) indicates the set of active
events in T . T is a significant time point of H over [Ts, Te]
iff, in such a time point, an action is applied, an event is trig-
gered, a process has started or stopped or there has been a
discrete change just before.

The net derivative expressions are discretised using
∆(ξ, δ) = ξ · δ. For example, let ⟨x, 1.5 · y⟩ (ẋ = 1.5 · y)
and δ = 2 be a continuous numeric effect and a discreti-
sation parameter, the discretised expression of x is equal to
∆(1.5 · y, δ) = 3 · y.

Definition 5 (Induced discrete projection). Let δ ∈ Q, Hπ

be a history, I be an initial state and πt be a PDDL+ plan.
We say that Hπ is a discrete projection of πt which starts
in I iff Hπ induces the significant time points TH = ⟨T0 =
⟨ts, 0⟩, · · · , Tm = ⟨te, nm⟩⟩ where either ti+1 = ti + δ or
ti+1 = ti and, for all i ∈ [0..m], the following rules hold:

R1 Etrigg(Ti) ̸= ⟨⟩ iff Hπ
s (Ti+1) =

γ(Hπ
s (Ti), Etrigg(Ti)), Hπ

A(Ti) = ⟨⟩, ti+1 = ti
and ni+1 = ni + 1;

R2 Hπ
A(Ti) ̸= ⟨⟩ iff Hπ

s (Ti+1) = γ(Hπ
s (Ti),H

π
A(Ti)),

Etrigg(Ti) = ⟨⟩, ti+1 = ti and ni+1 = ni + 1;
R3 for each ⟨ai, ti⟩, ⟨aj , tj⟩ ∈ π, with i < j and ti = tj

there exists Tk, Tz ∈ TH such that ai ∈ Hπ
A(Tk) and

aj ∈ Hπ
A(Tz) where tk = tz = ti and nk < nz;

R4 for each pair of contiguous significant time points
Ti = ⟨ti, ni⟩, Ti+1 = ⟨ti+1, 0⟩ such that ti+1 = ti + δ,
the value of each numeric variable x ∈ X is updated as:

Hπ
s (Ti+1)[x] = H

π
s (Ti)[x]+

∑
⟨x′,ξ⟩∈eff(ρ), x′=x

ρ∈{ρ∈P, Hπ
s (Ti)|=pre(ρ)}

Hπ
s (Ti, ξ)[∆(ξ, δ)]

and values of unaffected variables remain unchanged
(frame-axiom).



With reference to the rules R1–R4 of the Def. 5, R1 (R2)
states that if at least an action (event) is executed (triggered)
in a significant time point ⟨t, n⟩, then there necessary exists
a successor, i.e., ⟨t, n + 1⟩, whose state associated is calcu-
lated by simply applying the discrete effects of the action(s)
(event(s)). R3 is used to enforce how actions of a PDDL+
plan π are projected over a history, preserving their original
ordering in case they share the same time-stamp in π. R4 is
used to enforce how a numeric variable evolves when time
advances for a discrete quantum of time δ.
Definition 6 (Valid PDDL+ plan under δ discretisation). πt

is a valid plan for Π under δ discretisation iff Hπ
s (Tm) |= G

and, for each T ∈ I such that Hπ
A(T ) ̸= ⟨⟩, then Hπ

s (T ) |=
pre(a).

The validity of a plan for PDDL2.1 can be formalised in a
much simpler way.
Definition 7 (Valid PDDL2.1 plan). A plan π =
⟨a0, ..., an−1⟩ is valid for a PDDL2.1 problem Π =
⟨F,X, I,G,A, c⟩ if the trajectory of states ⟨s0 =
I, s1, ..., sn⟩ generated applying actions from π iteratively
is such that (i) each action ai is executable in si−1, (ii)
sn |= G.

From Discretised PDDL+ To PDDL2.1
In this section, we describe the POLY and EXP translations
(Percassi, Scala, and Vallati 2021c), as well as POLY−, a
variant of POLY, having the characteristic of being sound but
incomplete (Percassi, Scala, and Vallati 2021a,b). For the
sake of clarity and readability, here we focus our attention
on event-free PDDL+ tasks; the discussed translations can be
straightforwardly extended to handle events (Percassi, Scala,
and Vallati 2021c).

Exponential Translation
Given an event-free PDDL+ problem Π =
⟨F,X, I,G,A, ∅, P ⟩, we define a context C to be a
non-empty subset of processes, and denote with P+(P ) the
set of non-empty subsets of P , that is the set of all possible
contexts.

For an event-free PDDL+ problem Π, the exponen-
tial translation generates a PDDL2.1 problem ΠEXP =
⟨F,X, I,G,A ∪ {SIM}, c⟩, discretised in δ ∈ Q. ΠEXP is
almost identical to Π but for the absence of processes and
the presence of the special action SIM playing the role of the
simulator, i.e., what changes when time goes forward. SIM
is defined as follows:

pre(SIM) =⊤

eff(SIM) =
⋃

C∈P+(P )

{contpre(C) ▷ conteff(C)}

where
contpre(C) =

∧
ρ∈P\C

¬pre(ρ) ∧
∧

ρ∈P∩C
pre(ρ)

conteff(C) =
⋃
x∈X

{⟨inc, x,
∑

⟨x′,ξ⟩∈eff(ρ), x′=x
ρ∈C

∆(ξ, δ)⟩}

Intuitively, the action SIM organises all possible contexts
within a unique action, delegating to each conditional ef-
fect (i) the conditions under which a context is triggered
and (ii) the consequences that such a context has on the
state after some time δ has passed. Point (i) is formalised by
conjoining two conjunctions: the first ensures that no other
process of some other context has its precondition satisfied
(

∧
ρ∈P\C

¬pre(ρ)); the second ensures that all the precondi-

tions of a given context are satisfied (
∧

ρ∈P∩C
pre(ρ)). Let x

be some numeric variable of our problem, point (ii) is ob-
tained by summing the contribution of each process within
the context.

Polynomial Translation
As shown in (Percassi, Scala, and Vallati 2021c), it is pos-
sible to translate a discretised PDDL+ into a PDDL2.1 that
is only polynomial with regards to the size of the PDDL+.
The key idea in POLY consists in simulating the progress of
a discrete amount of time δ ∈ Q by means of a sequence of
actions.

Let Π = ⟨F,X, I,G,A, ∅, P ⟩ be an event-free PDDL+
problem, and a discretisation parameter δ, POLY generates
a new PDDL2.1 problem ΠPOLY = ⟨F ∪D ∪ {pause}, X ∪
Xcp, I, G ∧ ¬pause, Ac ∪AP ∪ {start, end}, c⟩ such that:

Xcp = {xcopy | x ∈ X}

D =
⋃

ne∈eff(ρ)
ρ∈P

{donene}

Ac = {⟨pre(a) ∧ ¬pause, eff(a)⟩ | a ∈ A}

start = ⟨¬pause, {pause} ∪
⋃
x∈X

{⟨asgn, xcopy, x⟩}⟩

end = ⟨
∧

done∈D

done ∧ pause, {¬pause} ∪
⋃

done∈D

{¬done}⟩

AP =
⋃

ne:⟨x, ξ⟩∈eff(ρ)
ρ∈P

{⟨pause ∧ ¬donene, {σ(pre(ρ), Xcp)▷

{⟨inc, x,∆(δ, σ(ξ,Xcp)⟩}} ∪ {donene}⟩}

Whenever the passage of a discrete amount of time δ has to
be simulated within ΠPOLY, the sequence of actions wait =
⟨start, seq(AP ), end⟩, where seq(AP ) is any permutation of
all AP actions, has to be performed. Such simulation con-
sists of the following steps: (i) start, this action enables the
execution of all AP actions and, at the same time, disables
all those that do not belong to AP through the use of the
pause predicate; (ii) seq(AP ), this sequence modifies the
state of the world according to the dynamics of the active
processes; to prevent the AP actions from interfering with
each other, the start action performs a copy of all the nu-
meric variables X , assigning the current value to the corre-
sponding Xcp variables; this allows to correctly modify the
state of the world, regardless of the specific sorting chosen
for seq(AP ); (iii) end, this actions closes the simulation. end
can be executed if all the AP actions have been executed.



Incomplete Polynomial Translation
For an event-free PDDL+ problem Π, POLY− generates a
PDDL2.1 problem ΠPOLY− = ⟨F,X, I,G,A ∪ {SIM}, c⟩,
discretised in δ. ΠPOLY− has an similar structure to ΠEXP in
that it also uses the SIM action, which is however defined
differently. That is:

pre(SIM) = ⊤

eff(SIM) =
⋃
ρ∈P

{pre(ρ) ▷
⋃

⟨x,ξ⟩∈eff(ρ)

{⟨inc, x,∆(ξ, δ)⟩}}

SIM action is always applicable and features a conditional
effect for each process ρ ∈ P . Such conditional effect is
triggered if the precondition of ρ holds when SIM is applied,
modifying, for each ⟨x, ξ⟩ ∈ eff(ρ), the affected numeric
variable x according to the discretised effect expression, i.e
∆(ξ, δ).

According to the PDDL2.1 semantics, an action having
two effects acting on the same variable is to be considered
inapplicable as it would produce an undefined outcome. The
SIM action could generate conditional effects potentially
conflicting and thus become inapplicable, thus preventing,
in some states, the simulation of the flow of time.

It is possible to enumerate all the states such for which
SIM is inapplicable, i.e., the set of all states in which
at least two processes affecting the same numeric vari-
able are activated. Such a set is formally defined as
follows FS(ΠPOLY−) = {s | s ∈ states(Π), s |=∨

⟨ρ,ρ′⟩∈FP(Π) pre(ρ) ∧ pre(ρ′)} and FP(Π) = {⟨ρ, ρ′⟩ |
⟨x, ξ⟩ ∈ eff(ρ), ⟨x′, ξ′⟩ ∈ eff(ρ′), x = x′, ρ ̸= ρ′} (where
FS(·) and FP(·) stand for forbidden states and forbidden
pairs, respectively).

Let π be a valid plan for Π such that s ∈ FS(ΠPOLY−) is
traversed by π, it follows that there is no equivalent solution
of π for ΠPOLY− . So, in the general case, POLY− is incom-
plete.

However, it is possible to define a syntactic property
for PDDL+ problems for which it can be guaranteed that
FS(ΠPOLY−) = ∅. Such a property, namely 1-lhs (which
stands for mono left-hand side), requires that Π does not
have two processes having numeric continuous effects af-
fecting the same numeric variable. Using this property a sub-
class of PDDL+ problems for which FS(Π) = ∅ is defined
and therefore for which POLY− is both sound and complete.
For a more in-depth discussion, the interested reader is re-
ferred to (Percassi, Scala, and Vallati 2021a,b).

Making EXP structure-sensitive
Translations for which a single action is performed to sim-
ulate the flow of a discrete amount of time, like EXP and
POLY−, are ideally preferable to translations where the sim-
ulation requires the execution of a sequence of actions, as
in the case of POLY. What limits the practical use of EXP
and POLY− is that the former, generating an exponential
number of conditional effects with respect to the number
of processes, is infeasible when |P | is large. The second,
although being very efficient for 1-lhs PDDL+ tasks, risks
making the problem unsolvable. This is particularly evident

in those cases where every solution requires the activation of
at least two processes affecting the same variable.

We propose a new translation, namely EXPL, having the
same convenience in terms of search effort of EXP and
POLY−, but mitigating their negative aspects. Compared to
POLY−, EXPL provides guarantees of soundness and com-
pleteness in the general case while, compared to EXP, it pro-
duces numeric tasks that are generally more feasible, since
it is able to exploit the structure of the problem. Finally, for
1-lhs tasks, EXPL produces numeric tasks equivalent to what
is produced by POLY−. In what follows we formalise EXPL.

The basic idea of EXP consists in enumerating all the pos-
sible non-empty contexts C, and, for each of them, gener-
ating a conditional effect that will be activated individually
when SIM is applied. As it is possible to note, this approach
can become quickly inapplicable with problems having a
large number of processes. EXPL overcomes this weakness
by enumerating, for each numeric variable x ∈ X , all the
contexts in which only the processes that affect x are con-
sidered. To present this translation we need to introduce two
new definitions.

Definition 8. Let x ∈ X be a numeric variable. We define
the following sets: E(x) = {⟨ξ, ρ⟩ | ⟨x′, ξ⟩ ∈ eff(ρ), ρ ∈
P, x = x′} and EP (x) = {ρ |⟨x, ρ⟩ ∈ E(x)}.

E(x) is the set of all the continuous numeric effects of Π
affecting x together with the associated process. EP (x) is
the processes view of E(x). Let x ∈ X , C ⊆ EP (x) is what
we call the local context relevant to x.

For an event-free PDDL+ problem Π =
⟨F,X, I,G,A, ∅, P ⟩, EXPL generates a PDDL2.1 problem
ΠEXPL = ⟨F,X, I,G,A∪{SIM}, c⟩, discretised in δ where:

pre(SIM) =⊤

eff(SIM) =
⋃

x∈X,
E(x)̸=∅

⋃
C∈P+(EP (x))

{contpre(C,EP (x))▷

{⟨inc, x,
∑

⟨ξ,ρ⟩∈E(x),
ρ∈C

∆(ξ, δ)⟩}}

contpre(C, P ′) =
∧

ρ∈P ′\C

¬pre(ρ) ∧
∧

ρ∈P ′∩C
pre(ρ)

EXPL adds to the effects of SIM a set of conditional effects
for each numeric variable x ∈ X for which there is at least
one process capable of affecting it, i.e. for which E(x) ̸= ∅
holds. Note that, for each variable, EXPL generates a single-
ton with a single numeric assignment that collects the con-
tribution of all the discretised numeric effects affecting x.

Whenever SIM is applied, at most one conditional effect
will be activated for each numeric variable.

Proposition 1 (Soundness and Completeness of EXPL). Let
Π = ⟨F,X, I,G,A, ∅, P ⟩ be a PDDL+ problem, and let
ΠEXPL = ⟨F,X, I,G,A ∪ {SIM}, c⟩ be the PDDL2.1 prob-
lem obtained by using EXPL translation discretised in t = δ.
Π admits a solution under δ discretisation iff so does ΠEXPL .



Properties
In this section, we study the properties of the presented
translations to provide a means for theoretically comparing
them.

We evaluate all the schemata in terms of size of the
translated numeric task, and structure of the induced search
space. More precisely, given a PDDL+ task Π, we define
Nmax = max

x∈X
|E(x)| and Ntot =

∑
x∈X

|E(x)| where E(x)

is the set of continuous effects affecting x. Ntot is the num-
ber of continuous numeric effects of Π, while Nmax is the
maximum number of continuous numeric effects that could
affect a numeric variable.

Let Π be a PDDL+ problem and let Z ∈
{EXP, POLY, POLY−, EXPL}, we denote with ΠZ =
⟨FZ , XZ , IZ , GZ , AZ , cZ⟩ the numeric task obtained using
Z.

For all Z ∈ {EXP, POLY−, EXPL}, Z generates a numeric
task ΠZ in which |AZ | = |A| + 1, |FZ | = |F | and |XZ | =
|X|. This is due to the fact that these schemata add a single
action, i.e., SIM, and do not add any new variable.

POLY adds an action for each continuous numeric effect
of Π, and two actions to initialise and close the simulation;
therefore |APOLY| = |A| + Ntot + 2. Then, POLY only adds
predicates pause and done, for each continuous numeric ef-
fect. Therefore, |FPOLY| = |F |+|D|+1 = |F |+Ntot+1 with
D being the set of done predicates. Finally, to ensure that the
simulation sequence ⟨start, seq(AP ), end⟩ produces an out-
come consistent with the PDDL+ semantics, POLY doubles
the numeric variables; therefore |XPOLY| = 2 · |X|.

To have a clearer picture of the actual size of the problem,
we also consider the number of conditional effects of ΠZ ,
denoted by |WZ |.

POLY associates to each a ∈ AP a conditional effect that
in turns is associated with a single continuous numeric effect
of Π. Therefore we get that |WPOLY| =

∑
x∈X

|E(x)| = Ntot.

POLY− associates a conditional effect for each process. Such
a conditional effect is included in the effects of the SIM ac-
tion; therefore |WPOLY− | = |P |.

EXP generates a conditional effect for each possible con-
text C ∈ P+(P ); therefore |WEXP| = 2|P | − 1. As concerns
EXPL, a set of conditional effects for each x ∈ X is added
to the effects of the SIM action. The size of each such set
has cardinality equal to the set of local contexts referred to
x. Therefore |WEXPL | =

∑
x∈X

2|E(x)| − 1 = O(2Nmax).

Note that EXPL can generate up to 2|P | − 1 whenever at
least one variable is affected by all processes. Yet, as we will
see in the experimental section, we have observed that this
is quite a rare situation, i.e. we often observe that 2Nmax ≪
2|P |.

Table 1 provides an overview of the main theoretical prop-
erties of the translations and gives an intuition on the size of
the translated planning tasks.

Comparative example
To better characterise the structure of the numeric tasks gen-
erated by the considered translations, here we describe a

synthetic event-free PDDL+ problem and present the result-
ing PDDL2.1 tasks.
Example 1. Let Π = ⟨F,X, I,G,A, ∅, P ⟩ be a PDDL+
problem without events encompassing one Boolean vari-
able, i.e., F = {f1.f2}, four numeric variables, i.e., X =
{x1, x2, x3, x4} and two processes P = {ρ1, ρ2, ρ3} such
that: ρ1 = ⟨x1 > 0, {⟨x2, x3⟩}⟩, ρ2 = ⟨f1, {⟨x2, x4⟩}⟩ and
ρ3 = ⟨f2, {⟨x1, x3⟩}⟩. According to R4 of Def. 5, ρ1 affects
x2 according to ẋ2 = x3 when x1 > 0 holds, ρ2 affects x2

according to ẋ2 = x4 when f1 holds and ρ3 affects x1 ac-
cording to ẋ1 = x3 when f2 hold. Finally, if x1 > 0 ∧ f1,
then ẋ2 = x3 + x4. We enumerate the possible non-empty
contexts of Π, i.e.,

P+(P ) ={{ρ1}, {ρ2}, {ρ3}, {ρ1, ρ2}, {ρ1, ρ3},
{ρ2, ρ3}, {ρ1, ρ2, ρ3}}

Using Def 8 we get that E(x1) = {⟨x3, ρ3⟩},
E(x2) = {⟨x3, ρ1⟩, ⟨x4, ρ2⟩}, E(x3) = {}, E(x4) = {},
EP (x1) = {ρ1, ρ2}, EP (x2) = {ρ3}, P+(EP (x1)) =
{{ρ1}, {ρ2}, {ρ1, ρ2}} and P+(EP (x2)) = {{ρ3}}. So,
Ntot = 3 and Nmax = 2.

EXP The PDDL2.1 problem obtained using EXP discre-
tised in t = δ is ΠPOLY = ⟨F,X, I,G,A ∪ {SIM}, c⟩ where:

SIM =⟨⊤,WEXP = {W{ρ1},W{ρ2},W{ρ3},W{ρ1,ρ2},

W{ρ1,ρ3},W{ρ2,ρ3},W{ρ1,ρ2,ρ3}}⟩

W{ρ1} =⟨x > 1⟩ ∧ ¬f1 ∧ ¬f2 ▷ {⟨inc, x2, x3 · δ⟩}
W{ρ2} =¬⟨x > 1⟩ ∧ f1 ∧ ¬f2 ▷ {⟨inc, x2, x4 · δ⟩}
W{ρ3} =¬⟨x > 1⟩ ∧ ¬f1 ∧ f2 ▷ {⟨inc, x1, x3 · δ⟩}

...

W{ρ1,ρ2,ρ3} =⟨x > 1⟩ ∧ f1 ∧ f2 ▷ {⟨inc, x2, (x3 + x4) · δ⟩,
⟨inc, x1, x3 · δ⟩}

SIM enumerates all the possible contexts in its conditional
effects, i.e., WEXP = {W{ρ1},W{ρ2}, ...,W{ρ1,ρ2,ρ3}},
which are mutually exclusive. Whenever SIM is executed in
a state, the active context triggers one and only one condi-
tional effect of WEXP.

POLY Let ne1 = ⟨x2, x3⟩, ne2 = ⟨x2, x4⟩ and
ne3 = ⟨x1, x3⟩ be the numeric continuous effects
of ρ1, ρ2, and ρ3 respectively. The PDDL2.1 prob-
lem obtained using POLY discretised in t = δ
is ΠPOLY = ⟨F ∪ {donene1 , donene2 , donene3} ∪
{pause}, X∪{xcopy

1 , xcopy
2 , xcopy

3 , xcopy
4 }, I, G∧¬pause, Ac∪

{SIM-ne1, SIM-ne2, SIM-ne3} ∪ {start, end}, c⟩ such that:

start =⟨¬p, {⟨asgn, xcopy
1 , x1⟩, ⟨asgn, xcopy

2 , x2⟩,
⟨asgn, xcopy

3 , x3⟩, ⟨asgn, xcopy
4 , x4⟩, p}⟩

SIM-ne1 =⟨p ∧ ¬dne1 , {(x
copy
1 > 0) ▷ {⟨inc, x2, x

copy
3 · δ⟩}, dne1}⟩

SIM-ne2 =⟨p ∧ ¬dne2 , {f1 ▷ {⟨inc, x2, x
copy
4 · δ⟩}, dne2}⟩

SIM-ne3 =⟨p ∧ ¬dne3 , {f2 ▷ {⟨inc, x1, x
copy
3 · δ⟩}, dne3}⟩

end =⟨p ∧ dne1 ∧ dne2 ∧ dne3 , {¬p,¬dne1 ,¬dne2 ,¬dne3}⟩

Note that, for reasons of space, we have shortened pause
to p and done to d in the snippet above.



POLY EXP POLY− EXPL

soundness
✓

Lemma 2 (⇐) in
Percassi et. al, 2021c

✓
Lemma 1 (⇐) in

Percassi et. al, 2021c

✓
Prop. 1 in

Percassi et. al, 2021b

✓
Prop. 1 (⇐)

completeness
✓

Lemma 2 (⇒) in
Percassi et. al, 2021c

✓
Lemma 1 (⇒) in

Percassi et. al, 2021c

✗ in the general case
Prop. 1 in

Percassi et. al, 2021b
✓ if Π is 1-lhs

Prop. 3 in
Percassi et. al, 2021b

✓
Prop. 1 (⇒)

|FZ | |F |+Ntot + 1 |F | |F | |F |
|XZ | 2 · |X| |X| |X| |X|
|AZ | |F |+Ntot + 1 |A|+ 1 |A|+ 1 |A|+ 1

|WZ | Ntot 2|P | |P | O(2|Nmax|)

Table 1: Properties of soundness and completeness and size of the numeric translated tasks obtained through Z ∈
{EXP, POLY, POLY−, EXPL} for a PDDL+ task Π.

The simulation of the advancement of time requires the
execution of a sequence of operators, that is

⟨start, seq(

AP︷ ︸︸ ︷
SIM-ne1, SIM-ne2, SIM-ne3, SIM-ne4), end⟩

where seq(·) is an arbitrary permutation of the AP oper-
ators, and the successor state after δ passes is computed
incrementally. The usage of start, which makes a copy of
each numeric variable, guarantees that regardless of the se-
quence chosen by seq(·) the outcome is always equivalent
and consistent with the semantics of discrete PDDL+.

POLY− The PDDL2.1 problem obtained using POLY− dis-
cretised in t = δ is ΠPOLY− = ⟨F,X, I,G,A ∪ {SIM}, c⟩
such that:
SIM =⟨⊤, {f1 ▷ {⟨inc, x2, x4 · δ⟩}, f2 ▷ {⟨inc, x1, x3 · δ⟩},

x1 > 0 ▷ {⟨inc, x2, x3 · δ⟩}}⟩

Note that Π is not a 1-lhs because ne1 and ne2 affect the
same variable, i.e., x2, and so the transformation POLY−

could not preserve the solution space of Π. So, if the state s
in which SIM is executed is such that s |= f1 ∧ x1 > 0,
then two conditional contradicting conditional effects af-
fecting x2 are triggered, causing an invalid transition. We
can define the set of forbidden state for ΠPOLY− as follows
FS(ΠPOLY−) = {s ∈ states(Π), s |= f1 ∧ x1 > 0}
EXPL The PDDL2.1 problem obtained using POLY− dis-
cretised in t = δ is ΠEXPL = ⟨F,X, I,G,A ∪ {SIM}, c⟩
such that SIM = ⟨⊤,Wx1 ∪Wx2 ∪Wx3 ∪Wx4⟩ and:

Wx1
={⟨x1 > 0⟩ ∧ ¬f1 ▷ {⟨inc, x2, x3 · δ⟩},
¬⟨x1 > 0⟩ ∧ f1 ▷ {⟨inc, x2, x4 · δ⟩},
⟨x1 > 0⟩ ∧ f1 ▷ {⟨inc, x2, (x3 + x4) · δ⟩}}

Wx2
={f2 ▷ {inc, x1, x3 · δ}} Wx3

= {}, Wx4
= {}

In EXPL we generate a set of conditional effect for each
numeric variable, i.e., Wx1

, Wx2
, Wx3

and Wx4
. Each of

these sets, enumerates all local context which can determine
how the related numeric variable change as time passes.

This local enumeration allows to significantly reduce the
number of conditional effects from 2|P | − 1 = 23 − 1 = 7 to
2|E(x1)| − 1 + 2|E(x2)| − 1 + 2|E(x3)| − 1 + 2|E(x4)| − 1 =
22 − 1 + 22 − 1 + 20 − 1 + 20 − 1 = 4, thus preserving the
completeness of the translation.

In summary, we get that |WEXP| = 7, |WPOLY| = 3,
|W−

POLY| = 3 and |WL
EXP| = 4.

Experimental Results
Our analysis aims to corroborate the theoretical considera-
tions from an empirical point of view by measuring the per-
formance of all the discussed translations within an optimal
search setting.

As the basis of our experiments, we used ENHSP20 (Scala
et al. 2020), which allows tackling numeric planning tasks
with non-linear dynamic and supports the use of customised
search strategies. We consider two optimal search settings
in which the admissible heuristics hblind and hmax are used in
turn, the latter in its numeric generalisation (Scala, Haslum,
and Thiébaux 2016). We focus on optimal search because it
tends to be more sensitive to the characteristics of the search
space, and can therefore shed some light on the relative use-
fulness of the translations. We compare the performance
achieved by the considered settings over the translated nu-
meric problems obtained with EXP, POLY, POLY− and EXPL

used with δ = 1 followed by the (unchanged) translation that
handles events (whose documentation is provided in (Per-
cassi, Scala, and Vallati 2021c)). All experiments were run
on an Intel Xeon Gold 6140M CPU with 2.30 GHz. For
each instance, we allotted 180 seconds and limited mem-
ory to 8 GB. As benchmarks, we consider the following
linear domains: SOLAR-ROVER (ROVER), LINEAR-CAR
(LIN-CAR), LINEAR-GENERATOR (LIN-GEN), URBAN-
TRAFFIC-CONTROL (UTC) from (Vallati et al. 2016), BAX-
TER from (Bertolucci et al. 2019) and OVERTAKING-CAR
(OT-CAR). In addition, we also include two non-linear do-
mains, i.e., DESCENT and HVAC. The benchmark suite and
the translator are available at https://bit.ly/30gMyNW. Out
of the considered benchmark domains, 4 satisfy the 1-lhs
property: ROVER, LIN-CAR, OT-CAR and HVAC. The re-



hblind Coverage Time Exp. Nodes (x 1000)
Domain POLY POLY− EXP EXPL POLY POLY− EXP EXPL POLY POLY− EXP EXPL

ROVER (20) 1 1 1 1 61.2 20.3 33.7 21.1 12012.8 3622.3 3622.3 3630.7
LIN-CAR (10) 10 10 10 10 3.3 3.0 2.9 2.7 199.9 27.1 27.1 27.1
LIN-GEN (10) ✗ 1 1 1 1 3.1 3.2 3.3 2.7 83.9 24.7 22.7 23.7
BAXTER (20) ✗ 4 7 0 6 51.3 9.2 — 10.4 1294.4 122.7 — 177.6
OT-CAR (20) 5 5 5 5 16.8 3.7 4.6 5.9 2643.7 252.3 252.3 252.3
DESCENT (20) ✗ 2 0 3 3 19.6 — 8.5 9.6 443.6 — 134.1 166.0
HVAC (20) 0 0 0 0 — — — — — — — —
Σ 23 24 20 26
hmax Coverage Time Exp. Nodes (x 1000)
Domain POLY POLY− EXP EXPL POLY POLY− EXP EXPL POLY POLY− EXP EXPL

ROVER (20) 1 1 1 1 121.8 28.7 54.1 24.9 11898.0 3512.7 3512.7 3518.8
LIN-CAR (10) 10 10 10 10 3.2 2.9 3.3 3.1 39.2 25.1 27.1 25.1
LIN-GEN (10) ✗ 1 2 2 3 3.5 2.7 2.6 2.6 83.9 5.0 2.0 2.0
BAXTER (20) ✗ 4 7 0 7 44.8 6.5 — 11.6 1041.4 68.2 — 161.4
OT-CAR (20) 5 5 5 5 16.2 5.2 5.5 5.5 1270.7 277.6 277.6 277.6
DESCENT (20) ✗ 2 0 3 3 13.6 — 8.7 9.2 246.2 — 112.1 152.8
HVAC (20) 0 16 16 16 — 3.5 3.5 3.5 — 6.9 6.9 6.9
Σ 23 41 37 45

Table 2: Performance achieved by hblind (upper) hmax (lower) when run on models generated using the POLY, POLY−, EXP and
EXPL translations with δ = 1. Results are presented in terms of coverage (number of solved instances), average runtime, and
average number of nodes expanded during the search process. Averages are calculated considering instances solved by all the
approaches. “—” indicates that no instances can be considered for the average calculation. ✗ is used to indicate domain models
that do not satisfy the 1-lhs property. For these domains, there is no guarantee of optimality for the solution found over the
POLY− models.

maining domains, i.e. LIN-GEN, UTC, BAXTER and DE-
SCENT, do not satisfy the mentioned property.

Table 2 shows the optimal search performance on the
considered benchmarks, translated with all the possible
schemata when the two heuristics are used. UTC is omitted
because none of the approaches is capable of solving any
instance.

At a first glance it is easy to notice that (i) EXPL is prefer-
able for both heuristics in terms of coverage, and (ii) POLY,
due to the numerous transitions required to make time flow,
is penalised compared to all other approaches. Indeed, all ap-
proaches except POLY allow a significant coverage increase
when hmax is used in place of hblind.

It can also be noted that in all the 1-lhs domains the per-
formance in terms of expanded nodes is substantially equiv-
alent between POLY−, EXP and EXPL.

Considering hmax, EXP performs well in terms of coverage
in almost all the domains due to the fact that they all have
on average few processes, except for BAXTER, which has
on average about 56 processes. Indeed, EXP does not solve
any instance on this domain. EXPL manages to handle this
domain quite well. BAXTER has in fact the following struc-
ture: µ(Nmax) = 9, min(Nmax) = 6 and max(Nmax) = 12.

Notably, POLY− allows achieving good coverage perfor-
mance when hmax is used. With the exception of DESCENT,
where no instance is solved, the incompleteness of the trans-
lation did not turn out to be a problem in terms of solvabil-
ity. It is worth reminding that, using POLY− on non 1-lhs
tasks does not guarantee the optimality of the solutions, as
some solutions could be removed from the solution space

due to the incompleteness of this translation. Therefore the
comparison of performance POLY− and the other considered
translations should be considered only indicative.

Overall, the results seem to support the theoretical consid-
erations. In domains characterised by few processes, SIM-
based methods are preferable to POLY and are roughly equiv-
alent. Conversely, when the PDDL+ tasks include numerous
processes, as in BAXTER, EXP becomes infeasible while
EXPL allows delivering the best performance. Finally, the
incompleteness of POLY−, although often advantageous in
terms of speedup, may lead to cases where all the solutions
are pruned from the search space, as in DESCENT.

Discussion
In this work, we studied a range of existing translations
from discrete PDDL+ to numeric PDDL2.1 in order to under-
stand their characteristics and to provide a means to compare
them. This analysis led to the design of a new translation,
namely EXPL, which aims to be a synthesis of the strengths
of the others.

The EXP translation is a baseline with more didactics than
practical purposes, but it has the advantage of not signif-
icantly lengthening the numeric plans with respect to the
corresponding PDDL+ plans. However, always enumerating
all the possible global contexts has the obvious limitation of
being infeasible for PDDL+ problems involving many pro-
cesses.

On the contrary, POLY, in which the time flow involves the
execution of a polynomial number of actions (with respect
to a constant of the task, i.e., Ntot) leads to a greater search



effort which is however compensated by a greater coverage
(at least in the sub-optimal context as shown in (Percassi,
Scala, and Vallati 2021c)).

POLY− produces tasks having the same structure as those
produced by EXP, having the same advantage in terms of
search compared to POLY, but its incompleteness allows it to
be used safely only for those tasks that satisfy the syntactic
1-lhs property, which is quite restrictive. However, POLY−

hinted that knowing the characteristics of the problem at
hand can lead to extremely efficient translations.

The novel EXPL has the same advantages as EXP and
POLY− but, differently from EXP, which is always exponen-
tial with respect to the |P | regardless of the structure of the
problem considered, it generates numeric tasks which are
exponential with respect to a constant of the problem, i.e.
Nmax. Since we assume that the worst-case for EXPL in prac-
tical domains, i.e. all the processes affect all the numeric
variables, is extremely rare then is it likely that in general
Nmax ≪ Ntot holds when P is large. It follows, that sta-
tistically, EXPL will generate more feasible problems than
its structure-insensitive EXP counterpart. However, we are
aware that in some contexts Nmax could be very large and
EXPL may not be more preferable than POLY.

We see several avenues for future work. We are interested
in exploring the online selection of the best translation to be
used according to the structure of the problem considered.
We are also interested in investigating the possibility of au-
tomatically combining different translations, to further adapt
to the structure of the problem at hand.
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