
Incremental Domain Model Acquisition with a Human in the Loop

Alan Lindsay, Ronald P. A. Petrick
Automated Planning Lab,

Department of Computer Science,
Heriot-Watt University, Scotland, UK
{alan.lindsay,r.petrick}@hw.ac.uk

Abstract

The creation and maintenance of a domain model is a well
recognised bottleneck in the use of automated planning; in-
deed, ensuring a planning engine is fed with an accurate
model of an application is essential in order that generated
plans are effective. There have been great advances in mod-
elling assisting and model generation tools, including domain
model acquisition tools that can handle noisy input. One of
the key issues with many of the approaches to domain model
acquisition (especially those learning from noisy observa-
tions), is that they create imperfect models. In this work we
consider the development of the planning model as an iter-
ative process. We start with a domain expert and an empty
planning model. We expect that the expert has an accurate
model of the problem domain and can provide (noisy) ex-
ample plans and also validate plans. Our approach involves
maintaining a partial model as a set of structural elements, in-
spired by the LOCM approach to domain model acquisition.
The user’s input is used to incrementally improve the partial
model, selecting an appropriate model that explains the ob-
servations so far. We present a preliminary evaluation, which
aims to assess the feasibility of approach.

Introduction
In Automated Planning the planning model plays a funda-
mental role. However, modelling has been identified as a
bottleneck, due to the skills required to develop these mod-
els. This has inspired a variety of methods for support-
ing the authoring of domain models, including frameworks
similar to Integrated Development Environments for use
by software engineers, e.g., the GIPO (Simpson, Kitchin,
and McCluskey 2007), itSIMPLE (Vaquero et al. 2007)
and KIWI (Wickler, Chrpa, and McCluskey 2014) systems.
These modelling tools are useful for rapid development of
domains by an experienced domain modeller. Frameworks
also exist to refine (Lindsay et al. 2020) or extend (Porte-
ous et al. 2021) existing planning models, thus reducing the
burden of modelling a complete domain model. Another av-
enue of research to aid in the modelling process is based on
learning models from observations: namely that of domain
model acquisition.

Domain model acquisition is the problem of learning a
formal domain model of a system from some form of input
data. A key issue in domain model acquisition is to learn
usable planning models from noisy data. This is because in

a) (move truck loc-1 loc-2) b) (move truck loc-1 loc-2)

(load box-1 truck loc-2) (load box-1 truck loc-2)

(move truck loc-2 loc-3) (move truck box-1 loc-3)*
(unload box-1 truck loc-3) (unload box-1 __ loc-3)**

Figure 1: The first plan (a) shown is an example plan from
a typical transportation domain. The second plan (b) shows
the same plan with noise (*) and missing information (**).

real world scenarios it can be difficult to ensure clean input
data. However, it is a challenging problem as the candidate
space for models grows quickly with properties of the do-
main. This combines with the requirement of accuracy in the
domain model acquisition process, as even a single error in
the final model can result in incorrect plans or unreachable
goals.

In this work we notice that the use of such a model will
require supervision and a user who can step in and provide
plans when the system fails. We build this role explicitly
into our framework. Thus we consider an incremental pro-
cess of domain model acquisition, where the system builds
knowledge and examples about the domain through a series
of episodes. Starting from an empty model, the user’s input
(noisy plans and plan validation) is used to maintain a par-
tial model, which captures the system’s knowledge of the
domain. We base our approach on the LOCM-family of do-
main model acquisition approaches, which synthesise plan-
ning models from action sequences (with total plan costs).
The partial model is represented by a set of structural el-
ements inspired by the LOCM approach to domain model
acquisition. In our preliminary evaluation we examine the
feasibility of our approach and use our system to learn mod-
els in the gripper domain.

In the next section we provide background to the LOCM
approach, and then overview the related work; we present an
incremental domain model acquisition framework and de-
scribe how it is used to learn dynamic models; the process
for completing the dynamic models is then presented, be-
fore we consider some of the issues encountered so far; we
present a preliminary evaluation and finish with the conclu-
sions.

Background
In this section we provide an overview of the LOCM ap-
proach and then present some terminology.

TruckBox

at

Move.1
Load.2
Unload.2at in

Load.1

Unload.1

Figure 2: The finite state machines derived by LOCM for a
transportation domain. There are two state machines: one for
the box type, and another for the truck.

The LOCM system (Cresswell, McCluskey, and West
2009, 2013) forms the basis for the work in this paper, there-
fore we provide an introduction to the most relevant parts of
the LOCM system. To do this we use a running example of
a simple transportation domain, with trucks tasked with re-
distributing packages on a network of locations. There are
three operators: move, load and unload and an example
plan is presented in Figure 1 a.

The LOCM domain model acquisition system works by
building finite state machines for each type of object in a
planning domain, asserting that the behaviour of each object
can therefore be defined as a finite state machine. It oper-
ates with the assumption that each action parameter asserts
a transition in the associated object’s state machine. Each
object in a plan can be seen as going through a sequence of
transitions, where a transition is defined by an action name
and a parameter index. For the plan in Figure 1 a) for ex-
ample, the object box-1 has the transition sequence load.1,
unload.1. In case the domain relies on an implicit zeroth pa-
rameters, a dummy object is added to each action, resulting
in an extra transition for each action. This is important, as the
structure of the plans can carry extra object-independent in-
formation about the domain structure (e.g., the implicit robot
in Gripper).

The domain model that LOCM learns for this domain can
be described by the state machines in Figure 2 (omitting the
location and zero space machines as these are fully permis-
sive), where there are two state machine that capture inter-
esting structure: one for the box and one for the truck types.
A crucial assumption in the LOCM system is that each tran-
sition appears at most once in each state machine. In order to
construct the state machines for each type, LOCM performs
an incremental unification of states, based on the transition
sequences seen in the input. The consequence of the rule
that each transition appears at most once, is that for a tran-
sition sequence pair (t0, t1) the end state of the t0 transition
is the start state of the t1 transition. Note, importantly, that
a transition pair can change the structure of the generated
state machine significantly. This is important in the context
of this work, because even a small amount of noise can lead
to incorrect state machines being learnt, and hence provides
strong motivation to find ways of dealing with noise. We re-
fer to the set of state transition pairs as a transition matrix
(TM).

The final aspect of the LOCM system to discuss is the
learning of state parameters. State parameters define tem-
porary relationships that exist between different object state
machines, typical examples include the location of a truck
in a logistics domain. In general, if a state in a LOCM state
machine has a parameter, this means that for each pair of
consecutive transitions in and out of the state there is a tran-
sition index in each that always has the same value. They ef-
fectively provide constraints between the parameters of the
actions that affect the state machine with the parameter. The
transition positions for the box type of Figure 2 are shown
in Table 1.

Noisy Plans
In (Gregory, Lindsay, and Porteous 2017), an approach to
extending LOCM for noisy domains was presented. The in-
tention in that work was to use a constraints based approach
to incrementally remove transition pairs and add state pa-
rameters, using constraints determined by the noisy input
plans to determine whether the modification was valid. Al-
though the approach could reduce the number of errors in
the model (and plans), the eventual model would typically
include inaccuracies. In this work we develop a framework
that places a user in the loop, with the key aim that the even-
tual model is useful for planning.

In this work, we consider an observed plan, πo, is a se-
quence of observed actions, πo = ao0, . . . , a

o
m and a collec-

tion of plans for the same domain can be denoted, Πo =
πo
0, . . . , π

o
n. Each of these sequences of actions is associated

with a true sequence that was being observed, which we de-
note πT . We use ΠT for a collection of true plans and aT

for the true action. This is related to the problem formula-
tion in (Zhuo and Kambhampati 2013).

Related Work
Within the field of domain model acquisition a variety of
input types, used processes and target representations have
been investigated. Most systems use information, such as ac-
tion sequences, predicates, initial and goal states and possi-
bly intermediate states, e.g., ARMS (Wu, Yang, and Jiang
2007) and LAMP (Zhuo et al. 2010). More recent systems
use sequences of images (Asai and Fukunaga 2018) and
natural language action descriptions (Lindsay et al. 2017)
and have examined learning and refining models from noisy
data (Mourao et al. 2012; Lindsay et al. 2020). Approaches
have targeted a wide range of target fragments of the
PDDL language, from propositional (Wu, Yang, and Jiang
2007; Cresswell and Gregory 2011), including ADL (Zhuo
et al. 2010); to learning action costs (Gregory and Lindsay

Transition In Parameter Out Parameter

load.1 load.2 load.3
unload.1 unload.3 unload.2

Table 1: Table of the state parameter transitions for the box
type of Figure 2.

2016) and numeric constraints (Segura-Muros, Pérez, and
Fernández-Olivares 2018).

Our work focuses on the LOCM-family of approaches,
e.g., (Cresswell, McCluskey, and West 2009; Cresswell and
Gregory 2011; Gregory and Cresswell 2015; Gregory and
Lindsay 2016). A key focus in these works is to use a
minimal amount of input, and using action headers as the
input. Most other systems use other information, such as
predicates, initial and goal states and intermediate states,
e.g., ARMS (Wu, Yang, and Jiang 2007) and LAMP (Zhuo
et al. 2010). In these systems static predicates are typically
learned along with the dynamic predicates, as they form part
of the state trace information. LOP and ASCoL (Jilani et al.
2015) provide alternative approaches for deriving static in-
formation. LOP provides a general approach to identifying
missing static predicates and we have modified the approach
to support our approach (Lindsay 2021).

In terms of framework, it has been common to assume that
domain model acquisition is an isolated preprocess to plan-
ning. However, in (Ng and Petrick 2019) they consider an
incremental approach to learning in a reinforcement learn-
ing setting. User in the loop has also been considered in
both modelling assisting tools (Simpson, Kitchin, and Mc-
Cluskey 2007; Vaquero et al. 2007; Wickler, Chrpa, and Mc-
Cluskey 2014) and domain model acquisition (Walsh and
Littman 2008). In (Walsh and Littman 2008) they considers
an oracle, and consider cases where the oracle can both pro-
vide plan traces (including state information) and validate
action sequences (including state information). They do not
consider noisy input and also require complete intermedi-
ate state information. The expert in the loop framework that
we adopt tackles the model reconciliation problem posed
in (Sreedharan et al. 2020). The expert knows the model that
is required and the planner initially has an empty model.
Through communication and model updates, the system’s
model is improved so that it is closer to the target model. In
(Sreedharan et al. 2020) the system produces explanations
to assist the user in making changes to the model. In our ap-
proach, the system makes the model changes, reducing the
burden of requiring a domain engineer.

Incremental Domain Model Acquisition
Framework

We observe that in many cases, an approach to domain
model acquisition that results in a noisy model will require
some form of supervisor. In our framework we make the role
of the domain expert (the supervisor) explicit. The supervi-
sor plays a similar role as the domain engineer in (Sreedha-
ran et al. 2020), except in our approach, the system is per-
forming the model updates and the expert is able to perform
some simpler functions such as plan validation and suggest-
ing plans. We assume that the domain expert has an accurate
model of a system, MT (the target model). The intention
is that during initial iterations the expert will need to pro-
vide feedback on the system’s attempts and ultimately solve
the problems. As more observations are made, the system’s
knowledge of the model builds and the generated plans will
be more effective. A key aspect of this work is the use of

Algorithm 1 AN INCREMENTAL MODEL LEARNING AL-
GORITHM, WITH A DOMAIN EXPERT IN THE LOOP
(ULOCM):

1: function ULOCM
2: K ← []; result← ∅
3: while true do
4: p,Kp ← Usr select problem()
5: K ← K ∪Kp

6: M ← Sys make best model(p,K)
7: needsUsrP lan← FALSE
8: π ← Sys get plan(p,M)
9: if π then

10: result← Usr validate plan(p, π)
11: Sys update K(p, π, result,K)
12: if result == FAILED then
13: needsUsrP lan← TRUE
14: else if Usr has alternative(p, π) then
15: needsUsrP lan← TRUE
16: end if
17: end if
18: if π == ∅ OR needsUsrP lan then
19: π′ ← Usr get plan(p)
20: Sys noisy updateK(p, π

′,K)
21: end if
22: end while
23: end function

structural elements in order to organise the partial knowl-
edge about the model. Over time it is expected that the user’s
plans will include any of these structural elements that are
required to capture a model effectively. The details of these
structures and how they are used to generate a model is pre-
sented in the next section.

The scenario we envisage involves a single problem do-
main, with a set of environments, each distinguished by a
special symbol. These may be alternative system starting
configurations, floors of a building, or towns for supporting
logistics. We expect that for each starting configuration, the
set of applicable actions is available. This can be considered
as background knowledge and is specified once per new en-
vironment. An important concept that unpins the LOCM ap-
proaches is the use of actions and action sequences as the
communication between the user and the system. This was
achieved for the dynamic model in (Cresswell, McCluskey,
and West 2009) and for the initial and goal states in (Cress-
well, McCluskey, and West 2013). We have extended this
idea in (Lindsay 2021) by allowing the model’s static rela-
tionships to be specified by the reachable actions (see the
section ‘Completing the Partial Model’).

User Functions
We expect that the domain expert will be an active partici-
pant in the loop, capable of performing three functions: indi-
cating the initial/goal state, proposing a plan and validating
a system plan. We observe that errors are common during
text entry. For example, noise may be introduced when the
user is entering a complete plan. However, where the system

can provide alternatives that the user must select between,
we assume the user can provide accurate information.

For each episode the user can specify the initial (goal)
states by indicating for each object which of the applicable
actions can be performed first (last). For the goal the user
only needs to specify values when they want to constrain the
object’s final action (e.g., only for objects with a goal). For
more details refer to Section ‘Completing the Partial Model’.

If the system fails to create an executable plan, or if the
user decides to provide an alternative the user will be asked
to propose a plan, π. We anticipate that in communicating
their plans the user may introduce noise, πo. To minimise
the assumptions that are made about the distribution of the
noise, we limit the use of the plans. Firstly, we use the plans
to provide confirmation that the problem is solvable. Sec-
ondly, we assume that the plans (over time) will exhibit ex-
amples of all of the structural elements required to define an
accurate model.

Given a plan, π, generated by the system, the expert will
be asked to validate the plan and indicate the failure point, if
appropriate. Note that the user is never expected to provide a
noiseless plan. Each of these validated plans provides both a
positive example (the sequence of actions before the failure
point) and a negative example (the complete sequence).

The uLOCM Approach
The pseudo-code for the approach is presented in Algo-
rithm 1 and relies on user functions (distinguish by a pre-
fix ‘Usr’) and additional system function (prefix ‘Sys’).
The system has an initially empty model and builds its
knowledge of the domain incrementally through successive
episodes (lines 3 − 22). Central to the approach is the sys-
tem’s growing knowledge about the problem domain (vari-
able K), and the use of this knowledge to propose a model
(Sys make best model, line 6). Each episode starts (line
4) with the user selecting an episode (and indicating the first
and (where appropriate) final actions for each object). The
system then makes its best fit model (see the next section)
and attempts to generate a plan (see section ‘Completing the
Partial Model’). If a plan is generated (line 9) then it will
be validated by the user and the knowledge of the system
will be updated to include the result of the validation. If the
plan is validated then if the user has no alternative to pro-
pose (line 14) then the next episode will begin. We simulate
the user wanting to make an alternative plan suggestion with
a probability with a parameter (not used in the evaluation).
Otherwise, or if a plan was never found, the user will provide
a (noisy) plan and the system’s knowledge about the domain
will be updated (lines 19− 20).

Partial Dynamic LOCM Model
At the heart of the uLOCM approach is the incremental
building of the system’s knowledge about the problem do-
main. A key aspect of our approach is the use of structural
elements in order to organise this partial knowledge. This
section describes these structures used to maintain partial
knowledge, the maintenance of these structures and the cre-
ation of a dynamic model that is both consistent with the

Algorithm 2 GIVEN THE CURRENT KNOWLEDGE ABOUT
THE PROBLEM, THIS ALGORITHM FINDS A MODEL THAT
IS CONSISTENT WITH THE OBSERVATIONS AND EXPLAINS
THE NEGATIVE EXAMPLES (MAKEDYNAMICMODEL):

1: function MAKEDYNAMICMODEL(K)
2: TMs← getSpaceOfTMs(K)
3: candidateTMs← enforceValTMs(K,TMs)
4: for all cTM ∈ candidateTMs do
5: FSMs← makeFSMs(cTM)
6: sSPs← getSpaceOfSPs(K,FSMs)
7: candidateSPs← pruneRftPSPs(K, sSPs)
8: for all cSP ∈ candidateSPs do
9: M ← makeModel(FSMs, cSP)

10: if testModel(M) &
coversExamples(K, cTM, cSP) then

11: return M
12: end if
13: end for
14: end for
15: end function

observations, but also explains the negative examples from
the user validations.

Structures for Recording Partial Knowledge
If we denote the set of transitions, T, a set of confidence val-
ues C = {No,MaybeNot, Unknown,Maybe, Y es}, we
define the current knowledge about the problem structure as
K = ⟨KPTM ,KPSP ⟩, with KPTM : T × T 7→ C and
KPSP : T× Z×T× Z 7→ C. KPTM records the current
knowledge about observed and valid transition pairs. The
possible values are {Unknown,Maybe, Y es}, with each
transition pair starting on Unknown. KPTM records the
current knowledge about observed and refuted partial state
parameters, and each partial state parameters can map to the
values: {No,MaybeNot, Unknown}. We use partial state
parameters to record the knowledge about state parameters
because they are independent of any particular transition ma-
trix.

Updating the Partial Knowledge
The main types of information are a validated plan or user
provided noisy plan. Each noisy plan is recorded as possible
structures, which will be explored during the construction of
a dynamic model, below. The validated plan is broken into
two. The steps prior to the failure point are used as a positive
example, which can be used to confirm structure. The second
part is collected and used as a negative example, which must
be explained by any created model.

Given a noisy plan πo, we update both KPTM and KPSP .
We analyse the sequence, using the LOCM approach to un-
cover all transition pairs (PTMs), t1, t2. If a transition pair
has not been observed: KPTM (t1, t2) == Unknown then
we update the knowledge: KPTM (t1, t2) = Maybe. Oth-
erwise no change is made. This indicates that the pair is
potentially valid and can be explored in the creation of the
model. We similarly analyse the sequence, using the LOCM

approach to uncover all information about every partial state
parameter (PSP), t1, p1, t2, p2. If refuting observations are
made: where consecutive actions for an object o match with
t1 and t2, but the parameters at p1 and p2 do not match,
and KPSP (t1, p1, t2, p2) == Unknown then we update
the knowledge: KPSP (t1, p1, t2, p2) = MaybeNot.

Given a validated sequence π, we can also update
both KPTM and KPSP . We analyse the sequence, us-
ing the LOCM approach to uncover all transition pairs
(PTMs), t1, t2. If a transition pair has not been validate:
KPTM (t1, t2) ̸= Y es then we update the knowledge:
KPTM (t1, t2) = Y es. Otherwise no change is made. This
indicates that the pair is valid and will be part of any can-
didate model. We similarly analyse the sequence, using the
LOCM approach to uncover all information about the par-
tial state parameters (PSPs), t1, p1, t2, p2. If refuting obser-
vations are made: where consecutive actions for an object o
match with t1 and t2, but the parameters at p1 and p2 do not
match, and KPSP (t1, p1, t2, p2) ̸= No then we update the
knowledge: KPSP (t1, p1, t2, p2) = No.

Creating a Consistent and Example Covering
Dynamic Model
The next step is to generate a single dynamic model that is
consistent with the partial knowledge and explains the neg-
ative examples. The pseudo-code for our approach is pre-
sented in Algorithm 2 and constitutes the specification of
and search through a space of candidate dynamic models.
The creation of the model consists of two main loops: firstly
the selection of a transition matrix and secondly the selec-
tion of a set of state parameters. This division is natural as
state parameters can only be defined in terms of a specific
state, which relies on a specific set of transition pairs.

The first step (line 2) is to get the space of TMs, which is
defined using the partial knowledge. This space consists of
all combinations of TMs for PTMs that have been observed
in any of the traces (i.e., they have value Maybe or Y es in
KPTM). However, if we have knowledge of definite PTMs
(=Y es) then these must be part of any candidate TM. Any
inconsistent candidates are pruned (line 3). The algorithm
then loops through each candidate TM and attempts to find a
completion of the model that can be validated (lines 4−14).
In our implementation we start with the most complete TM
(the least constrained model).

The finite state machines (FSM) for the candidate TM
is generated (see the background) and the space of SPs is
discovered for each of the FSM states. This is achieved
by merging PSPs that are not fully refuted (i.e. an PSP
t1, p1, t2, p2 with KPSP (t1, p1, t2, p2) ̸= No), which is all
PSPs where a counter example has not been seen in the val-
idated sequences. Of this space, we insist on enforcing the
SPs if there are no countering examples (even in the noisy
traces). That is if the PSPs that form an SP do not have
MaybeNot values or No values in KPSP we enforce the
constraint (line 7). The algorithm then loops through each of
the remaining candidate SPs and tests whether the resulting
model is feasible. In our implementation we start with the
empty set of SPs (the least constrained model) and to im-
prove efficiency we only add additional constraints if the re-

sulting model leads to solvable problems (adding additional
constraints to an unsolvable problem will not lead to a solv-
able problem).

The dynamic model is made by adding the SPs to the FSM
states and outputting the resulting structures (Cresswell, Mc-
Cluskey, and West 2009). Problem models are also created
and we describe the process of specifying the initial state,
goal and static relationships in the following section. The
model is then tested in two ways (line 9): the model is used
to solve the problems that we have observed to be solvable
(i.e., the ones that the expert has already provided a solu-
tion for); and the structures are tested to ensure that all of
the negative examples are covered. If the candidate model
passes both of these tests then it is returned.

Completing the Partial Model
In the previous section we presented our approach for se-
lecting a dynamic model to explain a set of observations. In
order to complete the model requires the specification of the
initial and goal states and the static relationships (as is the
case with other versions of LOCM). Our aim in this work
was to use only actions and action sequences for communi-
cation between the user and system. In this section we we
briefly outline how this is done for the initial and goal states
(as presented in (Cresswell, McCluskey, and West 2013))
and then describe our approach to specifying static relation-
ships (Lindsay 2021).

Initial and Goal State Specification
In (Cresswell, McCluskey, and West 2013) an approach is
presented in order that the initial (dynamic part) and goal
states of the model can be specified without using the auto-
matically generated state labels. In their approach they use
the actions that will be used first by each object for the ini-
tial state and similarly last actions for objects with goals.
These actions are then used to identify the appropriate ma-
chine state for each object and select the parameters for state
parameters. For example, if one of the first actions of object
Box1 is (loadbox1 truck1 loc1) then given the state ma-
chines in Figure 2, the box is in the at state.

Static Relationship Learning
We have developed an approach for identifying static pred-
icates from a correct model of the system’s dynamics (e.g.,
as typically output by LOCM I or II) and the set of reachable
actions. Our approach is based on the LOP approach (Gre-
gory and Cresswell 2015), which learns static relations by
comparing optimal input plans with the optimal plans found
using the partial domain model. The comparison between
the optimal plans is used as a Boolean function that provides
evidence to support the hypothesis that a static relation has
gone undetected. Instead of using optimal plans, we define
an alternative Boolean function, which identifies the missing
constraints by comparing the actions allowed by the partial
model with the set of reachable actions. This has two bene-
fits: firstly, we do not rely on the user (or our planner) being
able to provide optimal solutions; and secondly, we can use
the set of applicable actions in any future scenario to calcu-
late the ground static relationships for a specific problem.

Acquiring Positive and Negative Examples for Static Re-
lationships Static predicates act as constraints that clas-
sify action headers as valid and invalid. In this work we have
considered learning this classifier using positive and nega-
tive examples. As presented in the previous section, we have
a partial model, MP , which we assume accurately captures
the dynamics of the target system. We will use MT to denote
the target system.

The applicable actions are provided as input for each sce-
nario (see Section ‘The uLOCM Approach’) and can be used
directly as the positive examples, E+. We assume that there
are a set number of environments from which problems are
drawn and that providing the applicable actions for these en-
vironments can be done accurately offline.

The negative examples can then be identified by expand-
ing states using the partial model and recording those not in
the applicable actions. In particular, we consider the fron-
tier between sequences of actions that are valid (sequences
of reachable actions generated by the partial model) in the
target system and the first action that is not allowed in the
target system. Consider an action trace, s0, a1, . . . , an, sn,
which is valid in the partial model, MP . For some index, k,
we assume that all actions, ai (i < k) are in the target ac-
tions (ai ∈ AT). Consequently, sk−1 is a valid state in MT ,
because we have assumed that the dynamics of the model
are captured correctly. If the next action, ak, is not in the
applied actions (ak ̸∈ AT) then we call ak a frontier action.
We call these frontier actions, as they indicate the separating
line between the valid part of an action sequence (that transi-
tions only using actions in the target model) and the remain-
der of the invalid sequence. Notice that any frontier action
must have a missing constraint in MP . As such these fron-
tier actions become the negative examples, E−. The method
outputs the sets of positive and negative examples.

Identifying Static Relationships From Examples Fol-
lowing (Gregory and Cresswell 2015), we aim to find tuples
of parameters for each action that concisely capture the static
relation. The first step is to identify a (potentially empty) tu-
ple, for each action, which identifies the action parameters
that must be involved in the static.

Definition 1 (Static Parameter Tuple). A static parameter
tuple is a tuple, T = (i0, . . . , im), for an action, a =
(opname, p0, . . . , pn), which identifies the action parame-
ters, (pi0 , . . . , pim) that must be involved in the static. In
this section we adapt the LOP approach in order to use the
positive and negative examples identified above.

Part 1: Parameters Involved in Static Relationships
The first stage in the LOP approach involves identifying
the minimal static parameter tuple for each action. Our al-
gorithm is presented in Algorithm 3 and generalises Algo-
rithm 2 in (Gregory and Cresswell 2015). The starting point
is to assume that all of the tuples are involved in the static
parameter tuple. For example, the tuple {0,1,2} would be
the starting point for the move action in our transportation
example, which has three parameters. The system then in-
crementally considers removing each parameter from the tu-
ple. At each step the tuple is tested to determine whether it

Algorithm 3 MINIMAL STATIC PARAMETER TUPLE
FINDER (MSPT): Given an action a, and a Boolean func-
tion: tuples test, find the minimal static parameter tu-
ple that satisfies the function.

1: function MSPT(a, tuples test)
2: minSPT ← parameters(a)
3: for all p ∈ minSPT do
4: minSPT ′ ← (minSPT\{p})
5: if tuples test([minSPT ′]) then
6: minSPT ← minSPT ′

7: end if
8: end for
9: return minSPT

10: end function

is still sufficient. For the move action the approach consid-
ers the tuples in order: For example, considering: {2,3} and
{1,3}, which both fail, before trying {1,2}, which satisfies
the test. The process is then repeated, until no parameters
can be removed. No further parameters can be removed and
{1,2} is returned.

In LOP that test was done using the principle of pre-
serving optimality. We generalise this as a tuples test
Boolean function that is passed as an argument. And in our
approach we test whether the tuple is sufficient to explain
the positive and negative examples. This is based on the fol-
lowing observations:

• Static relationships are either positive or negative for all
examples in a problem,

• For an action to be applicable, all associated static propo-
sitions must hold and so each positive example indicates
that the associated static propositions are True.

• The negative examples indicate that at least one of the
relevant static propositions does not hold.

It is sufficient to set all values to False, unless they are
required by a positive example. After allocating a value to
each static proposition we can determine whether the allo-
cation of values to tuples is consistent with the examples. If
the allocation is consistent then the tuple is sufficient. Refer
to (Lindsay 2021) for a full presentation of the approach.

Technical Considerations
In developing this framework around LOCM, there have
been several issues that have arisen. In this section some of
these are discussed.

Single Sided State Parameters
When making the FSM for an object, the state machine can
have input (or output) states, which have no inputs (outputs).
In certain domains these state machines are natural. More
over, any additional relationships that might lead to restric-
tions on the actions applicable transitioning out of (or into)
the state can be handled by static facts. However, these struc-
tures cause a problem when they occur through a limitation
in the training data. For example, in generating an FSM for

t1 t2 Occ hit
drop.2 move.2 1 false
move.1 drop.2 1 false
move.1 pick.2 1 false
move.2 move.1 1 true
pick.2 move.2 1 false
drop.1 drop.1 6 false
drop.3 drop.3 6 false
pick.1 pick.1 9 false
pick.3 pick.3 14 false
pick.2 drop.2 25 true
drop.2 pick.2 34 true
drop.1 pick.1 37 true
drop.2 move.1 290 true
move.2 pick.2 312 true
pick.2 pick.2 402 true
drop.2 drop.2 419 true
drop.3 pick.3 481 true
move.2 drop.2 532 true
pick.2 move.1 550 true
move.1 move.2 570 true
pick.1 drop.1 906 true
pick.3 drop.3 908 true

Table 2: Occurrence and validity, for each observed transi-
tion pair in noisy plans. The pair is valid (a true hit) if it is in
the target model. Zero parameter results omitted for space.

a package in a transportation problem it is common, particu-
larly when using plans as input data, that the FSM will have
three states: at.1, in.1, at.1. This is because in many logis-
tics plans the package will only be loaded into a truck and
then unloaded at its goal. Notice that it is not a constraint of
the problem and so there are no negative examples to learn
statics from. This means that it is impossible to capture con-
straints (e.g., the fact that a package is located at a specific
location) about the initial (final) states in these cases.

As a solution we extended the machinery to handle sin-
gle sided state parameters. These operate only on input and
output transitions and act as parameters that can be used to
constrain the initial and final states.

Target Model Limitations
The LOCM approaches make certain assumptions about the
structure of the planning model to be learnt. In LOCM these
assumptions include that each object belongs to a single
FSM and that transitions only appear once in each FSM.
As a consequence, some of the potential transition matri-
ces are implicitly extended with additional transition pairs.
Our system searches through the distinct transition matrices,
as this allows it to be readily extended to target LOCM2 do-
mains. The system does record the extended transition ma-
trices in order that it does not repeat computation. However,
as is demonstrated in the evaluation, this can be insufficient
in domains with many transitions.

Heuristic Guidance
The space of possible model configurations generated in Al-
gorithm 2 will typically be large. It is therefore important to
use heuristic guidance to direct search towards more likely

models. One instance of this suggested in (Gregory, Lind-
say, and Porteous 2017) is to use the number of occurrences
of each transition pairs, with the assumption that erroneous
structures will be observed less frequently than valid struc-
tures. Figure 2 illustrates that using occurrence to order the
transition pairs might be an instructive heuristic in the grip-
per domain (see Section ‘Evaluation’ for the experimental
setup). In particular, when ordered by occurrence, all 8 of
the false positives occur in the lowest 10 (including the zero
machine) transitions pairs.

In a similar manner, candidate state parameters can be or-
dered so that those with few counter examples are ordered
first.

Evaluation
In this section we make a preliminary evaluation of the pre-
sented approach to domain model acquisition. We have im-
plemented the framework presented above within a frame-
work that can simulate user input. We have used two do-
mains in this evaluation: gripper and logistics. For each do-
main, we provided 5 example scenarios: their reachable ac-
tions, initial and final states (given as an action that will be
applicable first and last respectively).

User Simulation The framework also takes the target do-
main and problem models, which it uses to simulate user in-
put. At the beginning of each episode the framework selects
a problem symbol randomly. If the system generates a plan
then the framework simulates the plan in the target model
and indicate whether the simulation succeeded and whether
the goal was achieved (note that no-goal simulations are very
common side-effects of missing state parameters, which can
lead to empty plans). If the plan fails, the step that the plan
becomes invalid is indicated. Unless the plan achieves the
goal, the framework then generates a plan to solve the prob-
lem. This process is parameterised to allow us to examine
how the plan quality and communication noise impact the
performance of the system. The first parameter, γ0, is used to
control the plan quality. During forward chaining search, γ0
is used to determine whether to follow heuristic guidance, or
whether to choose a random action. The second parameter,
γ1, is used to add noise to the generated plan. In particular,
give the plan: op0(args00, ..,); ...opn(args

n
0 , ..,), γ1 is used

on each symbol to determine whether the symbol remains
the same or is modified. In this work we use γ0 = 0.3 and
γ1 = 0.01.

Feasibility Study
The key aim in the present work is to assess its feasibil-
ity and we have analysed the several key properties of the
framework. For the purpose of these analyses we provide
average (standard deviation) results for a thousand runs.

The Sufficient Number of Observations The approach
starts with no example plans, and consequently, no informa-
tion to populate the transition matrix. The first analysis we
make is to count number of noisy plans required to observe
all of the transition pairs in the target model. In particular,
we randomly select a problem and the framework simulates

the user generating a plan (as described above) and this is
repeated. After each plan we test whether all of the transi-
tion pairs in the target model have been observed and if they
have then we stop. At this step our approach at least has the
possibility of discovering the target model.

In gripper, an average of 10.75 (9.64) user generated noisy
plans were required to observe sufficient transition pairs to
create the target model. For the Logistics domain an average
of 7.99 (6.40) plans were sufficient.

Discovering the Target TM Given that we have observed
sufficient plans, we next examine how much search effort is
required to discover the target model. We first generate fifty
plans for each of the five problems and test that this is at least
sufficient for the target TM. We then use the search approach
—ordering by number of occurences— to count the number
of nodes expanded before the target node is discovered.

In gripper, On average 12948.07 (STD: 15151.40) TMs
were added to queue, and 668.50 (794.87) distinct TMs were
expanded. However, these only corresponded to 12.02 (3.27)
unique LOCM I state machines. Consequently, the system
would only need to explore on average twelve SP comple-
tions to discover the target model. Within the possible space
of subsets of 33 potential candidate transition pairs, this ap-
pears promising.

In Logistics the space is much larger (the target model has
113 transition pairs) and the search through distinct TMs is
prohibitively expensive. In particular, the extension of the
TM to align with LOCM assumptions can add over 40 transi-
tion pairs. This means it is a challenge for search to even find
a node with a distinct state. In our tests the first new LOCM
TM was found after 50000 nodes were explored. This find-
ing suggests that we should implement a specialised search
to directly support the LOCM target representation. It also
suggests that it may be necessary to get definite information
without a complete model, as this will allow the system to
prune more alternative models earlier.

Case Study: Gripper
In this section we use the framework to learn model for
the gripper domain. Starting from an empty set of plans
and background knowledge we iterate through a series of
episodes. At each iteration a problem is selected and the user
seeks a plan from the system. The system attempts to find a
model that is consistent with its knowledge of the problem
(and the other scenarios it has information of) and to gener-
ate a plan. The plan is validated and the system’s knowledge
is updated. In cases of failure, the user provides a solution.
For the purposes of this study, we have used 250 episodes in
each run and repeated each run 1000 times.

We believe that key measures for assessing the approaches
usability are:

i. the number of plans that the user must provide feedback,

ii. the number of plans that the user must provide,

iii. the first episode that the system generates a valid plan and

iv. the last episode that a valid plan is not provided by the
planner.

Notice that we assume that the user is always to some ex-
tent responsible, then the user must validate all plans that
are produced. However, these figures give some idea of the
effort and how much trust the system might gain.

The averaged results for the 250 episodes are as follows:
the user had to provide feedback for 3.15 (1.49) plans; the
user provided 16.40 (20.45) plans; the system first generated
a valid plan at episode 8.65 (5.17); and the last failure was in
episode 18.60 (22.03). During the first phase, the system is
gaining information about the domain and has not observed
all of the transition pairs. We would have expected that the
number of failed episodes would be similar to the sufficient
number of episodes to see the transition pairs in the target
model (see ‘The Sufficient Number of Observations’). How-
ever, we noticed that there was a single outlier (included in
the figures) that had around 100 failed iterations. The typi-
cal behaviour of the system is that the system produces a few
plans for the user to validate and then once it has observed
all of the transitions in the target model it will discover a
successful model within one or two iterations. More analy-
sis is required to understand the reason for the unexpected
result.

Overall these results appear promising for the gripper do-
main. However, the study has identified weaknesses too. Un-
til a plan is generated, none of the structural features can
be confirmed, meaning that each structural element must be
considered a candidate for removal. We note that the gen-
erated models might be used within a model-lite (Zhuo and
Kambhampati 2017) framework, which might allow a plan
to be generated and the user to provide earlier validation.
Also, it is well known that certain transition pairs only occur
rarely in plans, meaning that many episodes can conclude
with no change to the situation. It will be interesting to con-
sider the utility of allowing additional specially constructed
action sequences to be presented to the user, to provide ad-
ditional validation.

Conclusions and Future Work

In this work we have considered the problem of domain
model acquisition in the context of noisy input plans. We
have presented a framework that allows for a series of
episodes with the system’s knowledge about the domain
growing over time. We proposed a realistic scenario, where a
supervisor would be responsible for checking the plans and
providing plans when the system fails. We make explicit the
role of a supervisor as a necessary part of the framework. We
have presented our system, which maintains a partial knowl-
edge of the domain and can create a model that is consistent
with its current knowledge. In a preliminary evaluation we
analysed the feasibility of the approach, and show that while
the approach seems feasible in small domains, it is currently
not suitable for more complicated domains. In the future will
perform a more comprehensive evaluation of the system and
extend the system so that it can make use of model-lite ap-
proaches to planning. We will also investigate the use of al-
ternative model learners within the framework.

References
Asai, M.; and Fukunaga, A. 2018. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence.

Cresswell, S.; and Gregory, P. 2011. Generalised Domain
Model Acquisition from Action Traces. In Proc. of the 21st
Int. Conf. on Automated Planning and Scheduling (ICAPS).

Cresswell, S.; McCluskey, T.; and West, M. 2013. Acquir-
ing planning domain models using LOCM. The Knowledge
Engineering Review 28(2): 195 – 213.

Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of Object-Centred Domain Models from Plan-
ning Examples. In Proc. of the 19th Int. Conf. on Automated
Planning and Scheduling. AAAI Press.

Gregory, P.; and Cresswell, S. 2015. Domain Model Acqui-
sition in the Presence of Static Relations in the LOP Sys-
tem. In Proc. of 25th Int. Conf. on Automated Planning and
Scheduling (ICAPS), 97–105.

Gregory, P.; and Lindsay, A. 2016. Domain Model Acquisi-
tion in Domains with Action Costs. In Proc. of the 26th Int.
Conf. on Automated Planning and Scheduling (ICAPS).

Gregory, P.; Lindsay, A.; and Porteous, J. 2017. Domain
model acquisition with missing information and noisy data.
In Proc of the ICAPS Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS).

Jilani, R.; Crampton, A.; Kitchin, D. E.; and Vallati, M.
2015. ASCoL: A Tool for Improving Automatic Planning
Domain Model Acquisition. In AI*IA 2015, Advances in Ar-
tificial Intelligence - XIVth International Conference of the
Italian Association for Artificial Intelligence, Ferrara, Italy,
September 23-25, 2015, Proceedings, 438–451.

Lindsay, A. 2021. Reuniting the LOCM Family: An Alter-
native Method for Identifying Static Relationships. In Pro-
ceedings of the ICAPS Workshop on Knowledge Engineer-
ing for Planning and Scheduling (KEPS).

Lindsay, A.; Franco, S.; Reba, R.; and McCluskey, T. L.
2020. Refining Process Descriptions from Execution Data
in Hybrid Planning Domain Models. In Proceedings of the
30th International Conference on Automated Planning and
Scheduling (ICAPS).

Lindsay, A.; Read, J.; Ferreira, J. F.; Hayton, T.; Porteous, J.;
and Gregory, P. J. 2017. Framer: Planning models from natu-
ral language action descriptions. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS).

Mourao, K.; Zettlemoyer, L.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In Uncertainty in Artifical Intelli-
gence, 614 – 623. URL http://arxiv.org/abs/1210.4889.

Ng, J. H. A.; and Petrick, R. P. 2019. Incremental Learning
of Planning Actions in Model-Based Reinforcement Learn-
ing. In IJCAI, 3195–3201.

Porteous, J.; Ferreira, J. F.; Lindsay, A.; and Cavazza, M.
2021. Automated Narrative Planning Model Extension.
Journal of Autonomous Agents and Multi-Agent Systems .

Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares,
J. 2018. Learning Numerical Action Models from Noisy
and Partially Observable States by means of Inductive Rule
Learning Techniques. In Proceedings of the ICAPS Work-
shop on Knowledge Engineering for Planning and Schedul-
ing (KEPS).
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. Knowledge Eng.
Review 22(2): 117–134. doi:10.1017/S0269888907001063.
URL http://dx.doi.org/10.1017/S0269888907001063.
Sreedharan, S.; Chakraborti, T.; Muise, C.; Khazaeni, Y.;
and Kambhampati, S. 2020. –D3WA+–A Case Study of
XAIP in a Model Acquisition Task for Dialogue Planning. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, 488–497.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE 2.0: An Integrated Tool for Designing Plan-
ning Domains. In International Conference on Automated
Planning and Scheduling, 336–343.
Walsh, T. J.; and Littman, M. L. 2008. Efficient Learning of
Action Schemas and Web-Service Descriptions. In Proc. of
23rd AAAI Conference on Artificial Intelligence.
Wickler, G.; Chrpa, L.; and McCluskey, T. L. 2014. KEWI -
A Knowledge Engineering Tool for Modelling AI Planning
Tasks. In International Conference on Knowledge Engineer-
ing and Ontology Development, 36–47.
Wu, K.; Yang, Q.; and Jiang, Y. 2007. ARMS: An automatic
knowledge engineering tool for learning action models for
AI planning. The Knowledge Engineering Review 22(2):
135–152. ISSN 0269-8889. doi:http://dx.doi.org/10.1017/
S0269888907001087.
Zhuo, H. H.; and Kambhampati, S. 2013. Action-model ac-
quisition from noisy plan traces. In Twenty-Third Interna-
tional Joint Conference on Artificial Intelligence.
Zhuo, H. H.; and Kambhampati, S. 2017. Model-lite
planning: Case-based vs. model-based approaches. Artifi-
cial Intelligence 246: 1–21. ISSN 0004-3702. doi:https:
//doi.org/10.1016/j.artint.2017.01.004. URL https://www.
sciencedirect.com/science/article/pii/S000437021730005X.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence 174(18): 1540–1569.

