
Teaching an HTN Learner

Ruoxi Li1, Mark Roberts2, Morgan Fine-Morris2,3, Dana Nau1

1Dept. of Computer Science and Institute for Systems Research, Univ. of Maryland, College Park, MD, USA
2Navy Center for Applied Research in AI, Naval Research Laboratory, Washington, DC, USA

3Department of Computer Science, Lehigh University, Bethlehem, PA 18015, USA
rli12314@cs.umd.edu, mark.roberts@nrl.navy.mil, nau@umd.edu, mof217@lehigh.edu

Abstract
We describe Teachable-HTN-Maker, a modified version of
the well-known HTN-Maker algorithm that learns Hierarchi-
cal Task Network (HTN) methods. Instead of learning meth-
ods from all subsequences of a solution plan as HTN-Maker
does, Teachable-HTN-Maker learns from a curriculum con-
sisting of examples that are presented in a meaningful order.
We compare Teachable-HTN-Maker against HTN-Maker in
two planning domains, and observe that it learns fewer meth-
ods and better ones.

1 Introduction
Curriculum learning (Bengio et al. 2009) is a training strat-
egy for machine learning. It was inspired by the observation
that humans and animals learn much better when the exam-
ples are not randomly presented but organized in a meaning-
ful order that starts by illustrating simple concepts and grad-
ually introduces more complex ones. In this paper we in-
vestigate how to apply this strategy to improve HTN-Maker
(Hogg, Muñoz-Avila, and Kuter 2016).

HTN-Maker learns methods for annotated tasks from sub-
sequences of a solution plan. However, it tries to learn meth-
ods for all of the annotated tasks from all of the subse-
quences. Many of the methods learned by are not useful be-
cause they have undesirable preconditions or decomposition
strategies. As a result, an HTN planner that uses methods
learned by HTN-Maker may not perform efficiently.

In this paper we make the following contributions:
• We describe Teachable-HTN-Maker, a modified version

of HTN-Maker. Instead of examining every subsequence
of a solution plan, Teachable-HTN-Maker examines only
the subsequences that we tell it to examine in an order
that we specify. This modification makes it possible for
Teachable-HTN-Maker to learn from curricula.

• We compare Teachable-HTN-Maker and HTN-Maker on
two sets of planning problems. One is to move a stack
of n blocks in the Blocks World, maintaining their order
(which requires moving the stack twice). The other is to
deliver n packages in the Logistics domain. In our exper-
iments, Teachable-HTN-Maker learned fewer methods
and better ones than HTN-Maker, and did so with less
running time. A planner using the methods learned by
Teachable-HTN-Maker solves more problems with lower
runtime than with the methods learned by HTN-Maker.

2 Background and Related Work
Automated planning systems typically require that a do-
main expert provide knowledge about the dynamics of the
planning domain. In classical planning, the domain knowl-
edge includes semantic descriptions of actions. In Hierarchi-
cal Task Networks (HTNs), the domain knowledge includes
structural properties and potential hierarchical problem-
solving strategies. A significant knowledge engineering bur-
den for a domain expert is required to write HTN decom-
position methods. HTN-Maker (Hogg, Muñoz-Avila, and
Kuter 2016) overcomes this burden, in part, by learning
HTN methods after analyzing the semantics of a solution
plan for planning problems.

Several other works have investigated ways to learn HTN
methods (Lotinac and Jonsson 2016; Zhuo, Munoz-Avila,
and Yang 2014; Xiao et al. 2020). Furthermore, Choi and
Langley (2005) have investigated how to learn hierarchical
logic programs that are analogous to HTN methods. How-
ever, none of those investigations used curricula.

Algorithm 1 describes the high-level operation of HTN-
Maker. Its input includes the domain D, initial states from
a planning problem P in a planning domain, an execution
trace E (which can be a plan produced by a planner), a set
T of annotated tasks to be accomplished, and the Boolean
choice p of whether pruning is enabled. Each task’s anno-
tations include preconditions that need to be true to accom-
plish the task, and effects that must be true after accomplish-
ing the task (see Figures 2 and 3 for examples).

During the learning process, if pruning is enabled, newly
learned methods from the following two categories will be
pruned by (i.e., removed from the set of learned methods):
1) subsumed methods, where method m1 subsumes method
m2 if there exists a substitution that may be applied to m2

such that both have the same head and subtasks and the pre-
condition of the m2 implies the precondition of m1; and 2)
unneeded methods: if the preconditions of a subtask are ful-
filled, the subtask could just be called directly.

The procedure LearnMethods performs the analysis for
τ on the subtrace E [start, end]. HTN-Maker analyzes all
O(k2) subtraces for an E of length k, and often learns many
methods with undesirable preconditions or decomposition
strategies. To address these issues, we modify HTN-Makerf
(distribution version ch-htn-tools-1.1) to use a curriculum to
guide the learning process.



Algorithm 1: A high-level description of HTN-Maker.
Input: domain D, problem P , solution trace E ,
Annotated tasks T , Pruning enabled p
Output: A set of HTN methodsM

1: M = ∅
2: for end← 1 to |E| do
3: for start← end down to 1 do
4: for τ in T do
5: LearnMethods(start, end, τ,D,P, E ,M, p)
6: returnM

Algorithm 2: Teachable-HTN-Maker.
Input: domain D, problem P , solution plan E ,
curriculum C
Output: A set of HTN methodsM

1: M = ∅
2: for (start, end, τ) in C do
3: LearnMethods(start, end, τ,D,P, E ,M, p)
4: returnM

3 Teachable HTN-Maker
Suppose we want to teach an HTN method learner how to
solve some task τ . A curriculum would start by teaching the
learner how to solve very simple subtasks of τ , then increas-
ingly complicated subtasks, until we teach it how to solve
τ itself. If the learner learns from plan traces, then the plan
traces for the subtasks of τ will be subtraces of the plan trace
for τ . More specifically, if E is a plan trace for τ , then the
plan trace for each subtask τi is a subtrace E [starti, endi]
of E . Thus we can represent our curriculum as a sequence of
triples of the form (starti, endi, τi).

Teachable-HTN-Maker is a modified version of HTN-
Maker that takes such triples as input, and analyzes only
these triples rather than analyzing every subsequence of E .
The pseudocode is in Algorithm 2.

4 Experimental Setup
To examine whether a curriculum can improve upon the
methods learned by HTN-Maker, we compared Teachable-
HTN-Maker and HTN-Maker in the Blocks World domain
and the Logistics domain from the 2nd International Plan-
ning Competition (IPC-2). Although these domains are con-
ceptually simple, large problems remain a challenge for
planners. For our comparisons, we measured the total num-
ber of methods each system learned (with or without prun-
ing) and the time they took to learn those methods, and we
evaluated the methods’ planning performance.

Blocks World Domain The first domain includes a num-
ber of blocks sitting on a table (possibly on top of each
other), and a robotic hand that can grasp one block at a time.
The objective is to learn methods to move a stack of n blocks
using the robotic hand, keeping the top-to-bottom order of
the blocks the same as in the original stack.

For example, let τ1 be the task of moving a stack of two
blocks (A and B) from block C onto the table, while main-

Figure 1: To move two blocks A and B from block C to the
table while maintaining their order, the plan π1 inverts their
order (state s1), then inverts it again (state s2).

(:task Make-1Pile
:parameters

(?a)
:precondition

(and)
:postcondition

(and
(on-table ?a)
(clear ?a)))

(:task Make-2Pile
:parameters

(?a ?b)
:precondition

(and)
:postcondition
(and (on-table ?b)

(on ?a ?b)
(clear ?a)))

Figure 2: Example annotated tasks in the Blocks World.

taining their order (i.e. A on B). Let π1 be the following plan
for that task:

Action 1: unstack(A,B)
Action 2: putdown(A)
Action 3: unstack(B,C)
Action 4: stack(B,A)

Action 5: unstack(B,A)
Action 6: putdown(B)
Action 7: pickup(A)
Action 8: stack(A,B)

Figure 1 shows what the plan does.
To teach how to accomplish τ1, we can use the curriculum

shown below. It consists of seven subplans of π1, starting
with simpler ones and combining them into progressively
harder ones. For each subplan, the curriculum includes the
annotated task (see Figure 2 for examples) that the subplan
accomplishes.

Subplan of π1 Annotated Task
1. Actions 1 and 2 Make-1Pile
2. Actions 3 and 4 Make-2Pile
3. Actions 1 through 4 Make-2Pile
4. Actions 5 and 6 Make-1Pile
5. Actions 7 and 8 Make-2Pile
6. Actions 5 through 8 Make-2Pile
7. Actions 1 through 8 Make-2Pile

The preconditions of the methods learned from this curricu-
lum include cases where part of the stack has already been
moved, but not cases where a block is held in the robot hand.

Logistics Domain The objective in the Logistics domain
is to move packages among locations in various cities, using
trucks within cities and airplanes between cities. Let τ2 be
the task of moving three packages p1, p2, p3 within a city,
from locations p1s, p2s, p3s to p1d, p2d, p3d, respectively.
Let π2 be the following plan for τ2:

Action 1: drive-to(p1s)
Action 2: load(p1)
Action 3: drive-to(p1d)
Action 4: unload(p1)
Action 5: drive-to(p2s)
Action 6: load(p2)

Action 7: drive-to(p2d)
Action 8: unload(p2)
Action 9: drive-to(p3s)
Action 10: load(p3)
Action 11: drive-to(p3d)
Action 12: unload(p3)



Here is a curriculum to teach how to perform τ2. As before,
each curriculum entry includes a subplan of π2 and an anno-
tated task (see Figure 3) that the subplan accomplishes:

Subplan of π2 Annotated Task
1. Actions 1 through 4 Deliver-1Pkg
2. Actions 5 through 8 Deliver-1Pkg
3. Actions 1 through 8 Deliver-2Pkg
4. Actions 9 through 12 Deliver-1Pkg
5. Actions 1 through 12 Deliver-3Pkg

Methods First, we randomly generate problems with cor-
responding solution traces for moving a stack of n blocks in
the Blocks World domain and delivering n packages in the
Logistics domain. Then we compare the average number of
methods learned (with and without pruning) as well as the
time (ms) taken by HTN-Maker and our Teachable-HTN-
Maker. After we learn HTN methods for each problem, we
evaluate the methods by using them to solve the planning
problems using an HTN planner: HTN-Maker’s implemen-
tation of the SHOP (Nau et al. 1999) planning algorithm.
Finally, we compare the average length of the plan gener-
ated by the HTN planner as well as the running time (ms)
for those problems. For each stage of experiments (method
learning or planning with the learned methods), for each
problem domain (Blocks World or Logistics), as well as
for each configuration of learning approaches (HTN-Maker
or Teachable-HTN-Maker) and pruning strategies (with or
without pruning), we allow a limit of 2 hours of running
time on each test suite.

5 Results and Discussion
The results of the method learning experiments (Figure 4a)
show that Teachable-HTN-Maker learns significantly fewer
methods in less time than HTN-Maker (both with and with-
out pruning). HTN-Maker’s run time increases with problem
size, such that it cannot solve problems with larger than a
certain amount of blocks or packages. The evaluation results
(Figure 4b) show that the HTN planner takes significantly
less time to solve more problems using the methods learned
by Teachable-HTN-Maker (both with and without pruning).

In the Logistics domain, the number of methods learned
increases exponentially with the number of packages. This is
caused by the existence of alternative ways to bind variable
names to object names when learning methods for Deliver-
nPkg tasks. More specifically, when learning methods for
the task Deliver-2Pkg from a solution plan that first has
package A then package B delivered to the destination, there
are 3 possible ways to bind the object names in the domain to
the variable names in the annotated task: 1) o1 to A and o2 to
B, 2) o1 to B and o2 to A, or 3) both o1 and o2 to B. We have
not yet implemented a solution to prevent unwanted name
binding or to prune the unwanted methods caused by un-
wanted name binding. Nevertheless, Teachable-HTN-Maker
still learns fewer methods with the same deficiency.

HTN-Maker nondeterministically chooses subtask group-
ings to form methods when there are several possibilities.
The implementation tested in the evaluations caused the al-
gorithm to make deliberate choices when a method decom-
positions is learned from right to left, such that the right

(:task
Deliver-1Pkg

:parameters
(?o - obj
?d - location)

:precondition
(and)
:effect
(and (at ?o1 ?d)))

(:task Deliver-2Pkg
:parameters
(?o1 - obj
?o2 - obj
?d - location)

:precondition
(and)
:effect

(and (at ?o1 ?d)
(at ?o2 ?d)))

Figure 3: Example annotated tasks in the Logistics domain.

subtask (if any) always corresponds to a previously learned
method instance that extends over the largest subplan (if
there are multiple ones). For the Blocks World example
problem described previously (Figure 1), the method learned
from the 7th curriculum step (Figure 5) effectively moves
a stack of blocks b and a from above c onto table while
maintaining the order by dividing the task into two sub-
tasks that respectively reach state s1 and s2. The learned
method has ((MAKE-2PILE ?a ?b) (MAKE-2PILE ?b
?a)) as subtasks (Figure 5). Respectively, the original
HTN-Maker learns a method that has ((UNSTACK ?a ?b)
(MAKE-2PILE ?b ?a)) as subtasks, where the subtask
(MAKE-2PILE ?b ?a) takes the remaining 7 out of 8 total
actions. The method learned with the curriculum is concep-
tually more desirable.

In the Blocks World domain, the plans produced by the
planner using methods learned by HTN-Maker are slightly
shorter than the plans produced by the planner using meth-
ods learned by Learnable-HTN-Maker. For example, to
move a stack of 2 blocks A and B (over C) onto the table
while maintaining the order (Figure 1), it takes 6 actions: un-
stack A from B, put down A, unstack B from C, put down B,
pick up A, and stack A on B. On the contrary, the plan pro-
duced by the planner using methods learned by Teachable-
HTN-Maker has 8 actions. As the number of blocks in-
creases, the length difference between the plans decreases
by percentage. However, it takes significantly longer time to
find the plans using methods learned by HTN-Maker.

In the Logistics domain, the planner couldn’t solve prob-
lems with more than 3 packages using the methods learned
by HTN-Maker, and with the pruned methods couldn’t
solve any of the problems. In contrast, when using methods
learned by Teachable-HTN-Maker (with or without prun-
ing), the planner always found a solution. In Figure 4(b),
notice that when the HTN planner used Teachable-HTN-
Maker’s methods (without pruning) for 5 packages, its av-
erage running time was relatively large. In another set of
experimental runs (not shown here) on the same problems,
its average running time was much smaller. We believe the
variation in running time was because the HTN planner ran-
domized its choices among applicable HTN methods. We
will further investigate this in the future.

6 Conclusions
We have described Teachable-HTN-Maker, a modified ver-
sion of HTN-Maker learns using a curriculum. Our prelim-



Number of blocks Number of packages Number of blocks Number of packages

Blocks World Logistics (semi-log scale) Blocks World Logistics
(b) Planning with the learned methods(a) Method learning

Figure 4: The plots show (a) average number of methods learned and running time for HTN-Maker and Teachable-HTN-Maker,
both with and without pruning; and (b) the HTN planner’s average plan length and running time on the same problems using
the learned methods. In the Blocks World problems, each problem is to move a stack of n blocks, maintaining their order; and
each data point is the average of 20 randomly generated problems of size n (2 ⩽ n ⩽ 40). In the Logistics problems, each
problem is to deliver n packages, and each data point is the average of 5 randomly generated problems of size n (2 ⩽ n ⩽ 10).

On some of the larger problems, no results are shown for HTN-Maker or the HTN planner using the HTN-Maker methods
because our 2-hour time limit (see “Methods” in the main text) was exceeded before reaching those problems.

In (b), the zero values for HTN-Maker with pruning in the Logistics problems mean that the HTN planner could not solve
the problems using the learned methods.

(:method MAKE-2PILE
:parameters (?b - BLOCK ?a - BLOCK)
:vars (?c - BLOCK)
:precondition(and (not (= ?b ?a))
(ON ?b ?c) (ON ?a ?b) (not (= ?a ?c))
(not(= ?b ?c)) (CLEAR ?a) (HAND-EMPTY))
:subtasks ((MAKE-2PILE ?a ?b)
(MAKE-2PILE ?b ?a)))

Figure 5: Final method learned for Figure 1.

inary experiments in the Blocks World domain and Logis-
tics domain show that it learns significantly fewer and better
methods with less computational effort.

Future Work In future work, we will evaluate our ap-
proach in more sophisticated problems with more varieties
of annotated tasks and in more domains, e.g., the Depots,
Zeno Travel, and Satellite domains, and domains from the
2020 IPC for Hierarchical Planning (Höller et al. 2020). It
is both a challenge and an opportunity to figure out how to
generate optimal curriculum as the planning problem gets
more sophisticated. We will also consider evaluating how
different curricula influence the performance of Teachable-
HTN-Maker, and evaluate the methods in different problems
of the same kind instead of only evaluating them in the ex-
actly same problem where they were learned.

The annotated tasks input to HTN-Maker do not specify
any precondition, this allows HTN-Maker to learn meth-
ods for the same annotated task from subtraces with dif-

ferent starting positions. The learned methods would re-
spectively have different preconditions, including the ones
we are not interested in. A straightforward augmentation
to HTN-Maker is to specify preconditions in the annotated
tasks and let those preconditions to be checked when learn-
ing methods from a subtraces. We would like to compare our
approach with the augmented version.

Method instances learned from different subtraces can be
generalized into the same lifted method (e.g., the method in-
stances learned from step 1 and 4 of Blocks World curricu-
lum). However, HTN-Maker cannot recognize the seman-
tic equivalence among those subtraces, and therefore spends
unnecessary computational resources on learning the same
lifted methods from such subtraces. We hope to significantly
strengthen the system by making it learn each lifted method
only once. This is analogous to DreamCoder (Ellis et al.
2020), which learns concepts incrementally.

Acknowledgments. At UMD, this work has been sup-
ported in part by ONR grant N000142012257 and NRL grants
N0017320P0399 and N00173191G001. At NRL, Mark Roberts
thanks ONR and NRL for funding this research. The information
in this paper does not necessarily reflect the position or policy of
the funders, and no official endorsement should be inferred.

References
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th an-
nual international conference on machine learning, 41–48.



Choi, D.; and Langley, P. 2005. Learning teleoreactive logic
programs from problem solving. In International Confer-
ence on Inductive Logic Programming, 51–68. Springer.
Ellis, K.; Wong, C.; Nye, M.; Sable-Meyer, M.; Cary, L.;
Morales, L.; Hewitt, L.; Solar-Lezama, A.; and Tenen-
baum, J. B. 2020. Dreamcoder: Growing generalizable, in-
terpretable knowledge with wake-sleep bayesian program
learning. arXiv preprint arXiv:2006.08381.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2016. Learning
hierarchical task models from input traces. Computational
Intelligence, 32(1): 3–48.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI 2020), 9883–9891. AAAI Press.
Lotinac, D.; and Jonsson, A. 2016. Constructing hierarchical
task models using invariance analysis. In ECAI 2016, 1274–
1282. IOS Press.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceed-
ings of the 16th international joint conference on Artificial
intelligence-Volume 2, 968–973.
Xiao, Z.; Wan, H.; Zhuo, H. H.; Herzig, A.; Perrussel, L.;
and Chen, P. 2020. Refining HTN Methods via Task Inser-
tion with Preferences. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, 10009–10016.
Zhuo, H. H.; Munoz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Artificial intelligence, 212: 134–157.


