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Abstract

Effective coordinated actions by a team of robots operating
in close proximity to one another is an important requirement
in many emerging applications, ranging from warehousing
and material movement to the conduct of autonomous house-
keeping and maintenance of deep space habitats during un-
manned periods. Yet, such multi-robot planning problems re-
main a significant challenge for contemporary planning tech-
nologies, due to several complicating factors: goals must be
assigned to robots and accomplished over time in the pres-
ence of complex temporal and spatial constraints in a manner
that optimizes overall team performance, attention must be
given to the durational uncertainty inherent in robot task exe-
cution, and planning must be responsive to changing and un-
expected execution circumstances. In this paper, we present
T—-HTN, a novel planner that attempts to overcome this chal-
lenge by coupling the structure and efficiency of Hierarchical
Task Network (HTN) models with the flexible scheduling in-
frastructure of timeline-based planning systems. We present
initial results on a simple set of multi-robot problems that
show the potential of T-HTN in comparison to a state-of-the-
art PDDL-style temporal planner.

Introduction

Generation of multi-robot plans that optimize overall team
performance in the presence of tight temporal-spatio con-
straints remains a significant challenge for contemporary
automated planning frameworks. On one hand, heuristic,
action-based temporal planners (both PDDL-style (Coles
et al. 2010; Do and Kamhbampati 2003; Eyerich, Mat-
muller, and Roger 2009) and HTN-style (Qi et al. 2017))
typically achieve tractability by constraining the plan gen-
eration process to forward state-space search (i.e., expand-
ing plans in a strict time-forward order). This assumption
can be quite awkward for satisfying certain types of tem-
poral constraints (e.g., task deadlines), and more generally
can be quite limiting with respect to optimizing team per-
formance objectives across a set of goals (e.g., minimizing
makespan, maximizing the number of goals satisfied). On
the other hand, timeline-based planners (e.g., (Muscettola
et al. 1992, 1998; Fratini, Pecora, and Cesta 2008; Verfail-
lie and Lematre 2003; Umbrico et al. 2017) provide a flex-
ible, Simple Temporal Network (STN)-based infrastructure
(Dechter, Meiri, and Pearl 1991) that allows planning ac-
tions to be inserted opportunistically at various time points

across an agent’s planning horizon during plan generation
so as to better optimize global properties of the plan (such
as its makespan). But timeline-based systems lack general
principles for global search control, and tend to be driven by
use of hand-crafted, domain specific heuristics that do not
transfer easily to new problems.

Drawing inspiration from previous work in constraint-
based scheduling (Smith, Becker, and Kramer 2004; Rubin-
stein, Smith, and Barbulescu 2012), wherein global search
control revolves around allocation of resources to instanti-
ated task networks, this paper proposes a multi-agent plan-
ning and scheduling framework that attempts to combine the
strengths of both action-based and timeline-based planning
approaches, and describes its initial implementation in a pro-
totype planning system called T-HTN. To overcome the in-
efficiency and idiosyncrasy of reasoning about actions at the
individual component level, T-HTN couples timeline-based
reasoning with an HTN planning model designed for re-
source allocation. By introducing hierarchical structure that
organizes task decomposition around allocation of resources
to tasks and placement of their constituent actions on re-
source timelines, T—HTN is able to achieve both search ef-
ficiency and flexibility, while retaining the representational
expressiveness and generality of state-of-the-art temporal
planning frameworks.

Some previous efforts have attempted to exploit the struc-
ture imposed by an HTN planning model within a rich
temporal reasoning infrastructure. In (Qi et al. 2017), the
SHOP2 planner was extended to include a temporal rea-
soning component and provide the ability to generate plans
with durative actions. However SHOP2’s reliance on for-
ward plan-space search was retained to avoid the added com-
plexity of timeline-based reasoning, and hence the issue of
plan quality in the case of multiple goals and actors was
not addressed. On the timeline-based planning front, recent
work by (Umbrico et al. 2017) has also proposed the use of
hierarchical structure as a means of directing search con-
trol. However, this framework is rooted in the dynamical
systems origin of the timeline-based planning paradigm of
modeling and controlling a system of physical components
over time, and hence their notion of hierarchy focuses only
on aggregate physical system structure. Perhaps closest in
spirit to our approach is the recently introduced FAPE plan-
ner (Bit-Monnot et al. 2020), which also aims at integrating



Figure 1: Consider two URS robotic arm manipulators
mounted on shared railway network who are tasked to move
the red cube from its initial location to a target location
within a specified deadline.

HTN and timeline-based planning to gain search efficiency.
However, FAPE is designed to accommodate a mix of gen-
erative and HTN planning. It incorporates a mix of search
control strategies to this end, and in the case of a fully speci-
fied HTN model (our interest in this paper), FAPE falls back
on the same forward heuristic search algorithm that limits
other HTN planners. T-HTN, in contrast, retains the flexibil-
ity to opportunistically expand the developing plan and cen-
ters plan expansion around allocation of resources to achieve
search efficiency.

In this paper, we summarize the T-HTN planner, and
present initial experimental results on a set of simple multi-
robot planning problems that show its potential in compar-
ison to POPF (Coles et al. 2010), a state-of-the-art action-
based temporal planner.

Running Example

Figure 1 introduces a simple problem, motivated by our re-
search interest in robotic systems for autonomous mainte-
nance of deep space habitats, that we will use as a running
example throughout the paper. In this scenario, two URS
robotic manipulators are mounted on a shared railway net-
work. The network is divided into rail blocks and two en-
sure safe operation, only one robot can occupy a given rail
block at a time. Three attributes are used to model the state
of each robot at any point in time: the rail block it is oc-
cupying, the position of its arm and the state of its gripper.
Initially, each robot arm starts in the “home” (contracted)
position, which is required for rail travel, and each arm’s
gripper state is empty. Each arm has primitive actions for
travelling across rail blocks (rail_move), for grasping (grasp)
and releasing (release) objects, and for returning the arm to
its home position (move_to_home_state). Figure 2 shows a
move-item HTN for the example problem.

Technical Approach

Like all timeline-based planning systems, T-HTN replaces
the classical planning representation of current state as a
forward-rolling collection of facts with an explicit charac-
terization of its evolution over time, where various aspects
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Figure 2: Compiled HTN decomposition tree for the work-
ing example as described in Figure 1

of state (referred to as state variables) are represented as se-
quences of facts (or state values) that are true over time. By
definition, this change results in a greatly expanded search
space vis a vis traditional HTN planning formalisms, as
states corresponding to specific intervals across the plan-
ning horizon must now be examined to situate actions in
the plan. To gain search efficiency in this expanded search
space, T-HTN introduces and exploits additional problem
structure. Specifically, we ascribe special status to objects
declared as resources and assume that all primitive (leaf)
nodes in a HTN plan (referred to as actions) will ultimately
be allocated to and scheduled on the specific resource(s) that
will carry them out. Accordingly each declared resource has
an associated state variable that represents the resource’s
availability over time, referred to as its timeline. When an
action in the plan is scheduled on a resource r, an action
token is inserted onto r’s timeline for the determined inter-
val. This action token indicates all aspects of the action’s
state that are true at the start, end or throughout the sched-
uled interval, and the key assumption is that these aspects of
state will change only as new actions are subsequently in-
serted before or after this action token on r’s timeline. The
insertion of an action token on r’s timeline may also result
in derivative state changes to other timelines (e.g., the ef-
fects of a grasp action will dictate the start of a change to
the location of the grasped item). To allow for specifying
this additional resource structure, T-HTN uses an extended
version of HDDL (Holler et al. 2020) for representing the
domain and problem inputs.

Language Extensions

Using a model similar to the one used in the Action Nota-
tion Modeling Language (ANML) (Smith, Frank, and Cush-
ing 2007) for representing resources and complex objects,
T-HTN uses types to designate objects as resources. In
this paper we restrict attention to resources of type dis-
crete_reusable_resource. The aspects of state that are stored
with an action token on a given resource’s timeline are spec-
ified as an optional second form on the type definition that
denotes variable-type pairs (delimited by matching curly
brackets). When objects of a resource type are created, rele-
vant aspects of state are initialized by providing an optional
second argument (also delimited by curly brackets and in
the form of predicate = value). As new action tokens are
inserted onto a resource timeline, the preconditions and ef-



fects of the corresponding actions will dictate how relevant
aspects of state will change. The following snippet is an
example definition of robot and rail_block resource
types and initialization of a pair of robots:

1 Definition:

2 (:types

3 robot {?block - rail_block

4 ?arm-position - state

5 ?gripper-state - item} -

6 discrete_reusable_resource

)

7 Initialization:

8 (:objects

9 ur5A, ur5B - robot)

10 (:object—instances

11 ur5A {block = blocka,

12 arm-position = home, gripper
—-state = empty}

13 ur5B {block = blockD,

14 arm-position = home, gripper

-state = empty})

A second extension that T-HTN makes to HDDL in-
volves specification of temporal constraints. In this case,
we borrowed directly from PDDL 2.1, incorporating its
:duration field and the temporal qualifiers (atstart,
atend, overall) used in preconditions and effects into
the action definition of HDDL. For example:

1 (:action move_to_home_state

2 :parameters (?r - robot)

3 :duration (= ?duration 10)

4 :precondition (and

5 (atstart (unsafe state
?r.arm-position)))

ceffect (and

(atend (= ?r.arm-position

home) ))

~N

8 )

By definition, any resource that is allocated to an action is
unavailable overall of the action’s scheduled interval.

A third extension to HDDL allows for the use of special-
ized algorithms for handling specific planning sub-problems
efficiently. In our running example, algorithms for solving
the multi-agent path-finding problem (MAPF) are relevant
to the movement of robots along the rail network in service
of tasks in a collision-free manner. Rather than modeling the
movement possibilities as adjacent blocks on the rail and
trying all combinations until a goal location is found, ap-
plication of a specialized planner can quickly determine an
efficient route by coupling a shortest-path algorithm with a
collision-avoidance strategy. This extension is achieved in
T-HTNwith two additional constructs: (1) the definition of a
functional predicate with f-predicate and (2) the defini-
tion of functional methods with £-method keywords. Us-
ing these constructs, one can tie specialized external plan-
ners to the domain representation based on their unique
name identifiers. Functional methods are slightly different in
their representation than standard methods in terms of their
defined task network. Since they are connected to a special-
ized external planner, we provide a simple wrapper function

whose name is restricted to be the same as the correspond-
ing functional method. Its purpose is to first convert the input
from the parsed format to the API that the specialized plan-
ner supports and then to convert the output of the specialized
planner into a sequence of actions and temporal constraints
that it can be linked into the overall task network. The fol-
lowing snippet shows a specification of these constructs for
the MAPF planner in our example scenario:

1 Predicate:

2 (:f-predicates

3 (clear ?from ?to - rail_block)

4 )

5

6 Method:

7 (:f-method m_clear_and_move

8 :parameters (?r - robot

9 ?to - rail_block)

10 :task (clear_and_move ?r ?to)

11 :precondition (and

12 (atstart (not (clear

13 ?r.block ?to))))

14 reffect (and

15 (atend (clear ?r.block ?to))
)

16 )

A final extension to HDDL allows for specifying a
broader set of temporal constraints between tasks. HDDL
allows specification that tasks must be done in a particu-
lar order for example, but does not allow specification that
a task must be done immediately after another task com-
pletes. To address this limitation, T-HTN introduces the
:sync—-constraints field to the :method construct,
in which any set of pairwise constraints can be added. Us-
ing built-in constraint types, this construct supports gen-
eral specification of Allen temporal relations between tasks.
In the following example using :sync-constraints,
meets denotes that taskl must start immediately after
taskO completes.

1 (:method m_pick_item

2 :

3 :ordered-subtasks (and

4 (task0 (grasp ?r ?2i))

5 (taskl (move_to_home_state ?r)))
6 :sync-constraints (and

7 (task0 meets taskl))

8 )

Core Search Procedure

Leveraging the domain representation, T-HTN employs an
incremental algorithm for generating and feasibly inserting a
new task plan into the current global multiagent plan/sched-
ule. It first enumerates all possible decompositions of the in-
coming request and then instantiates a task network for each
decomposition that is tied to an underlying STN. Each pos-
sible task network instantiation still needs to be grounded
with a specific set of resource assignments, and the choice
of resources can significantly affect overall plan quality. Al-
ternative sets of resource assignments for a given instanti-



ated task network are explored by applying a backward time-
line scanning procedure to each. For a given set of resource
choices, the scanning procedure is applied to determine the
set of slots on relevant resource timelines where actions can
be feasibly scheduled. We believe this ability to (1) organize
the search around alternative sets of resource choices and
(2) exploit timeline structure to determine feasible options
is key to achieving overall planning/scheduling efficiency in
multi-agent domains.

Enumerating Decompositions As mentioned before,
T—HTN uses the standard HTN task decomposition process
by methods to produce an AND/OR HTN that represents al-
ternative solution paths. Once the path decomposition tree
is generated, the next step is to enumerate all the possible
decompositions, by combinatorically expanding the existing
OR nodes. Algorithm 1 provides an efficient, high-level, re-
cursive algorithm that enumerates all paths in the tree while
guaranteeing that no potential alternatives are skipped. This
algorithm follows from a straightforward depth-first search
procedure where, at each level, we keep track of the choices
made thus far and then recursively maintain a cartesian prod-
uct of all such decisions. The worst-case time complexity of
Algorithm 1 is dominated by the size of the cartesian prod-
uct, which is computed in Line 15.

Algorithm 1: Algorithm to return all the possible instantia-
tions of a given path decomposition tree.

1: procedure ENUMERATE
DECOMPOSITIONS(vertex)
Initialize empty leafs vector
if vertex is a leaf then
Add vertexto leafs
return leafs
else if vertex is OR then
for all children c of vertex do
leafs +=
ENUMERATE DECOMPOSITIONS(C)
9: end for

AN A S ol

10: else

11: Initialize empty op vector

12: for all children c of vertex do

13: op += ENUMERATE DECOMPOSITIONS(c)
14: end for

15: leafs = cartesian_product(op)

16: end if

17: return leafs

18: end procedure

Instantiating Alternative Task Networks For each pos-
sible alternative decomposition in turn, T-HTNinstantiates a
task network that is tied with the underlying STN and con-
tains tokens corresponding to constituent tasks and actions.
Each token designates a start and end time point for a par-
ticular task/action, and, if the token corresponds to an ac-
tion, the corresponding duration constraint is enforced be-
tween the start and end time points. Plans are generated for
a task network by scheduling its action tokens on the time-

lines of compatible resources. An action token is scheduled
on a compatible resource timeline by searching for slots,
i.e., temporal intervals of availability between tokens on the
timeline, in which the action token can be feasibly inserted.

Algorithm 2: Algorithm to return an instantiated task net-
work (connected to the underlying STN) that enforces all
pre-specified temporal constraints.

1: procedure EXPAND(vertex, tree, STN)
Create a token for vertex
Connect token to tree
if vertex is not leaf then
for all children c of vertex do
EXPAND(c, tree)
end for
Add synchronization constraints to the STN
9: Add contains constraints to the STN
10: end if
11: return tree
12: end procedure
13: procedure INSTANTIATE TASK NET(search, STN)

14: Instantiate an empty tree

15: tree < EXPAND(search.root, tree, STN)
16: Add the release time constraint to search.root
17: Add the due date constraint to search.root

18: return tree

19: end procedure
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Figure 3: Instantiated task network for the working example
as described in Figure 1. Nodes in red represent the high-
level tasks, and the nodes in green represent the action prim-
itives. The blue edges correspond to the release time and
due date constraints, while the red edges correspond to the
contains constraint. The black edges correspond to the pre-
specified synchronization rules.

T—-HTN enforces a contains temporal constraint between
each higher-level token and its corresponding decomposi-
tions so that the two levels are temporally linked. Such con-
straints ensure that any temporal constraints imposed on an
aggregate task are also applied to its constituent sub-tasks.
If the constituent sub-tasks of an aggregate task are known
to be ordered, then the contains constraint need only be en-
forced between the start time point of the parent task to the
start time point of the first task in ordered decomposition



and the end time point of the last sub-task in the ordered
decomposition to the end time point of the parent task. Ab-
solute temporal constraints, such as release times and due
dates, are asserted to corresponding root task and propagated
down the network via the contains constraints. To efficiently
compute all resource and parameter assignments, we segre-
gate choices based on whether they have been already made
or not. Decisions that have been made prior are moved to a
closed set, while the decisions that remain to be made are
moved to the open set. A cartesian product is then com-
puted on all the possible assignments of open set parameters
and these are used to ground the generated task network for
scheduling. Algorithm 2 provides a high-level overview of
how task network generation proceeds. Assuming that there
can be V nodes in the generated tree, the worst-case time
complexity of the algorithm is O (V') since each vertex needs
to be visited at least once so that it can be part of the task
network. Figure 3 shows the generated task network for the
working example as described in Figure 1.

Finding slots Once the instantiated task network is built,
it acts as a template for all possible resource and parameter
assignments. For each possible combination of assignments,
T—HTN determines the set of feasible slots by a backward
timeline scanning process that repeatedly attempts to back-
ward schedule the action tokens in the instantiated task net-
work at each possible start point. The timeline scanning pro-
cess iterates through all required resource timelines in re-
verse order, identifying sequential pairs of tokens currently
on the timeline that delineate potential slots. The search of
slots pivots around resources of type robot, while consider-
ing other required resources (e.g., rail_blocks) as dependent
resources. The action tokens of the instantiated task network
are only scheduled on robot and rail-block timelines.

At the same time, the effects of an inserted action may
also imply changes to other, dependent state variable time-
lines. For each combination of slots identified on a resource
timeline and its dependent state variable timelines, T-HTN
queries the underlying STN to confirm the feasibility of that
slot based on current temporal bounds. This process helps
prune infeasible combinations of slots early on, and thereby
speeds up the scanning process. Following these checks,
T—HTN constructs a coherent world state of the environment
by iteratively modifying the initial world state with the ef-
fect literals encapsulated by the currently considered slots.
This updated world state is utilized to check the precondi-
tions of actions, and assuming that all preconditions are ver-
ified, the temporal constraints imposed on the action token
corresponding to the action are enforced in the underlying
STN. This includes retraction of the sequencing constraint
between the two tokens on the timeline surrounding the cur-
rent slot, and the posting of two new sequencing constraints
to insert the new action token into this slot. If all of these
constraints can be consistently asserted, the slot is a feasible
assignment for the action token. T-HTN uses this procedure
to generate sets of feasible slot assignments (options) for all
action tokens in an instantiated task network by trying to
schedule each of the possible combinations of assignments
in their Cartesian product. The maximum number of options

generated before terminating the search can be restricted by
setting a customizable variable to the preferred number. Fi-
nally, once all options have been generated, they are evalu-
ated according to some set of objective criteria (e.g., mini-
mize overall task makespan, complete task as early as possi-
ble, reduce disruption to plans of other robots), and T-HTN
commits to the best option.

Algorithm 3: Algorithm to find a set of feasible slots for a
given instantiated task network while attempting to satisfy
any failing precondition literals.
1. procedure SATISFY PRECONDITION(11it,
task_net, STN)
2: Find the satisfying task tk

3: Identify tk’s required resources and parameter
assignments
4 if tk is an action primitive then
5: Create t oken corresponding to tk
6: Add token to task._net
7: Add temporal constraints of token to STN
8 else
9 tokens < Call the specialized external
planner
10: for all token in tokens do
11: Add token to task_net
12: Add temporal constraints of token to STN
13: end for
14: end if

15: end procedure
16: procedure FIND SLOTS(task_net, STN)

17: Instantiate an empty slots data structure

18: for all Leaf tasks tk in task_net.leafs do

19: Collect tk’s required resource R assignments

20: for all Slots s over R do

21: Check temporal bounds of s using STN

22: Compute the world state ws using s

23: for all Precondition literal p over tk do

24: if p fails against ws then

25: SATISFY PRECONDITION(p,

task_net, STN)

26: end if

27: end for

28: Enforce temporal constraints of tk onto the
STN

29: slots+=s

30: end for

31: end for

32: return slots

33: end procedure

Note that sometimes it is hard to encapsulate the entire
precondition check within single or multiple literals. By uti-
lizing the functional predicate constructs introduced earlier,
we use specialized algorithms to compute such prerequi-
site checks efficiently and optimally where appropriate!. If,
however, any precondition literal fails either via a functional

'In our current context, this refers to the MAPF solver men-
tioned earlier.



predicate call or via a violation of a constant literal in the
process of checking preconditions against an updated world
state, we attempt to satisfy such failing preconditions in two
different ways. First, we iterate through the list of actions
and identify potential actions whose effects match the fail-
ing precondition. If we find such an alternative, the newly
instantiated tokens are then added to the same task network,
and the procedure continues normally. Second, we iterate
through the list of functional methods and identify poten-
tial solutions whose effects match the failing precondition.
If we find such a method, we call the specialized planner
associated with that functional method. We update the task
network by adding all newly generated action tokens, after
which the procedure continues normally. Whenever T-HTN
finds an alternative action or method, it validates that alter-
native by comparing its set of preconditions with the up-
dated world state. If there is any violation, T-HTN contin-
ues to look for other alternatives until they are exhausted.
Since this process can potentially lead to infinite recursion,
we employ a conservative approach where the act of sat-
isfying preconditions is terminated after the first recursive
level. Algorithm 3 provides a high-level overview of the out-
lined search procedure. Assuming that there are 7' leaf ac-
tions to be scheduled and at most N potential slots for each
such task, then the worst-case complexity of the algorithm is
O(TN) which is going to be heavily dominated by the size
of slots since as each leaf gets scheduled N > T

To summarize, our developed framework, T-HTN com-
bines Algorithms 1, 2 and 3 to satisfy any incoming request
given a set of timelines tied to an underlying STN. It first
parses the incoming request and generates a corresponding
path decomposition tree that gets processed by Algorithm
1 to generate all possible alternative decompositions. Each
decomposition is then passed to Algorithm 2 to form a cor-
responding task network that enforces all the relevant tem-
poral constraints in the underlying STN. The generated task
network is then passed to Algorithm 3, which finds a set of
feasible slots on the required resource timelines while at-
tempting to satisfy any failing precondition literals. Since
Algorithms 2 and 3 are repeated for all possible decomposi-
tions, the overall complexity of T-HTN also depends on the
total number of such possible decompositions as defined by
the input HTN. Assuming that there are at most D such de-
compositions, the worst-case complexity of our approach is
O(DTN) which is heavily dominated by Algorithm 3.

Looking back at the working example, assuming the robot
parameter assignment in the corresponding task network
shown in Figure 3 was URSA, it is clear to observe that
URS5B must move out of the way for the actions to take
place successfully. This means that when T—-HTN tries to
schedule the instantiated task network with URSA as the
robot parameter assignment, a satisfying precondition pro-
cedure is triggered that calls the m_clear_and_move func-
tional method. This method is internally linked to the spe-
cialized MAPF solver, which computes the best joint rail
moves for both robots. Moreover, to pick the box, URSA
is first expected to be close to the object before attempting
the grasp. This prerequisite condition also fails, triggering
another reachable functional method that is also tied to
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Figure 4: Updated instantiated task network for the work-
ing example as described in Figure 1. Nodes in red repre-
sent the high-level tasks, and the nodes in green represent
the action primitives. The nodes in magenta were added to
the original task network by a specialized planner who was
triggered by T-HTN to satisfy a failing precondition. The
blue edges correspond to the release time and due date con-
straints, while the red edges correspond to the contains con-
straint. The black edges correspond to the pre-specified syn-
chronization rules.

the MAPF solver. In this case the path of the calling robot
to the required destination is computed and installed in the
plan. This results in the generation of an updated task net-
work, which is shown in Figure 4. Figure 5 provides a final
snapshot of the timelines generated by T-HTN as a result
of scheduling the problem scenario outlined in the working
example.

Continual Multiagent/Multi-Robot Planning

The core search procedure just summarized is repeat-
edly applied to incrementally generate, extend and man-
age multiagent/multi-robot plans over time as new pending
requests and unexpected execution results that require re-
planning are received. New tasks are allocated to specific re-
sources and integrated into the overall plan as new requests
are received. In some cases, the remaining temporal flexi-
bility in the current plan/schedule (or equivalently the con-
tinuing availability of required resources) will seamlessly
accommodate additional requests. In other, more resource-
constrained situations, the addition of new tasks may result
in the delay or removal of some less important, previously
scheduled tasks. In re-planning settings, it may also be the
case that some previously planned/scheduled actions may no
longer be relevant and can be retracted to create resource
availability for performing corrective tasks. This inherently
incremental search approach to planning and scheduling is
well suited to such continual planning problems.

Experiments

To benchmark T-HTN’s performance, we designed a multi-
request variant of the original scenario, which involves mov-



Figure 5: Final snapshot of the timelines generated by T-HTN in response to scheduling the working example outlined in Figure
1. The red node encapsulates the task network, which was shown in Figure 4 and the blue arrows signify the release time and
due date constraints. The pink arrows relate to the (0, 0o) sequencing constraint. In contrast, the brown arrows mark the (0, 0)
contains constraint that joins the tokens on the robot and corresponding dependent timelines. The head and tail tokens on all the
timelines act as auxiliary tokens, which do not have any significance apart from helping in a coherent token insertion procedure.

ing random objects from one location to another in the pres-
ence of a rail network that acts as a shared global resource
constraint between the two robotic manipulators. Each re-
quest specifies the movement of a distinct, unique object
from its initial location to another pre-specified destination
location. All requests were given the same release-time and
deadline constraints to facilitate comparative analysis. For
the experiments, T-HTN utilizes an objective metric to prior-
itize plans that minimize makespan. The entire T-HTN plan-
ner, including the domain representation parser, was built in
C++.

To evaluate the potential of the T-HTN framework, we
compare its performance to another state-of-the-art plan-
ner that can be configured to optimize for makespan called
POPF (Coles et al. 2010). POPF is a forward-chaining tem-
poral planner built on the foundations of grounded forward
search in combination with linear programming to handle
continuous linear numeric change. Within the POPF domain
specification, we specify one global deadline to be enforced
on all requests, which is consistent with the common release
and due dates specified in T-HTN input requests. We com-
pare the two planners based on two metrics: computational
cost to generate the plan and the resulting plan makespan.
The experiments vary in the number of rail blocks, increas-
ing the number of resources that must be managed, and the
number of requests, which increases the size of the overall
plan. We consider an experimental design that varies both
the number of rail blocks and the number of requests from 5
to 25 in increments of 5. A time limit of 10 minutes was im-
posed for solution of any problem instance. All experiments
were run on a Dell machine with Intel(R) Core(TM) i7-4790

CPU @ 3.60GHz to ensure a fair comparison.

Tables 1 and 2 show the results obtained relative to both
performance objectives. With respect to makespan (Table 1),
it can be seen that T-HTN outperforms POPF on the major-
ity of problem instances solved by both techniques.

The more significant results are shown in Table 2. T-HTN
dominates with respect to computational cost across all
experiments and the differential increases significantly as
problem size increases. Notably, POPF increasingly times
out before generating a solution as the size of the problem
grows. A natural question to ask with respect to computa-
tional cost is what impact the specialized MAPF algorithm
had on comparative computational cost. To provide some in-
sight, we conducted additional comparative experiments on
problems involving just a single request that required multi-
ple rail block moves, and in these experiments, it was found
that T-HTN and POPF produced comparable compute times.
Their average compute times over 10 different problem in-
stances of single requests were 0.073 and 0.005 seconds re-
spectively. Hence, it appears that the combinatorics of order-
ing multiple task requests dominates the computational cost
of POPF solutions.

Summary

In this paper, we have presented a multiagent / multi-robot
planning framework that combines the structural advantages
of an HTN representation with the expressiveness and flex-
ibility of timeline-based planning frameworks. We have ar-
gued that by emphasizing resource allocation as the basic
decision-making focus, it is possible to overcome the com-
plexity of the resulting expanded search space and efficiently



Requests 5 10 15 20 25
Blocks POPF T-HTN POPF T-HTN POPF T-HTN POPF T-HTN POPF T-HTN
5 620 600 1320 1040 1960 1500 2400 2000 3320 2580
10 800 800 2480 1340 Timeout 2120 Timeout 2300 Timeout 3000
15 1220 1020 1900 2060 Timeout 2320 Timeout 3620 Timeout 5040
20 960 1620 3600 2560 Timeout 3320 Timeout 4620 Timeout 5780
25 Timeout 1320 2280 2200 Timeout 3620 Timeout 5020 Timeout 5260

Table 1: Comparison of POPF and T-HTN with respect to the makespan of the generated plan.

Requests 5 10 15 20 25
Blocks POPF T-HTN POPF T-HTN POPF T-HTN POPF T-HTN POPF T-HTN
5 0.22 0.23 33 0.54 15.14  2.03 5132 343 196.26 10.61
10 100.72  0.37 25590 0.87 Timeout 2.99 Timeout 5.63 Timeout 5.78
15 2.64 0.50 94.00 1.62 Timeout 3.61 Timeout 7.42 Timeout 11.56
20 0.92 0.91 327.62 2.84 Timeout 4.43 Timeout 17.29 Timeout 15.93
25 Timeout 0.76 73.69 212 Timeout 6.10 Timeout 10.88 Timeout 14.28

Table 2: Comparison of POPF and T-HTN with respect to their computational times in seconds for generating a valid plan.

produce high quality multiagent plans.

To demonstrate this claim, we have developed the T-HTN
planner/scheduler. Starting with the HDDL domain repre-
sentation language, we introduced extensions to give re-
sources and resource timelines special status, to include du-
rative actions and incorporate complex temporal constraints
between them, and to enable the use of specialized algo-
rithms to solve well understood planning sub-problems. We
then presented a core search algorithm that exploits these
representational extensions to generate multiagent plans effi-
ciently. Initial comparative experiments carried out in multi-
robot scenarios involving two URS robot arms mounted on
a shared rail network provided evidence in support of our
overall design hypothesis.

Future Work

One immediate direction for future research is more exten-
sive experimentation and analysis of T-HTN’s performance
characteristics. The results we have presented are prelim-
inary and restricted to relatively simple sets of two-robot,
object movement scenarios. We would like to expand exper-
imentation to include other International Planning Competi-
tion (IPC) domain problems of general interest to the plan-
ning community. One complication here is mapping these
domains and problems into the T-HTN’s extended HDDL
representation.

With regard to further development of T-HTN, a num-
ber of simplifying assumptions were made in its initial im-
plementation that provide focal points for future research.

First, resource timelines have been realized exclusively as
single capacity resources (i.e., resources capable of doing
just one task at a time). Although it appears straightforward,
one short-term extension will be to extend resource time-
line representations to accommodate multi-capacity robotic
systems that can simultaneously accomplish multiple tasks
(e.g., perform a visual inspection while carrying out a move-
object request).

A second related simplification made in T-HTN was to
restrict any agent (resource) from interleaving the execu-
tion of multiple task requests. Although interleaved accom-
plishment of multiple requests could lead to more efficient
overall behavior in some circumstances, it also runs the risk
of search space explosion. How to selectively relax this as-
sumption is a longer term resource challenge.
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