
Exploiting Solution Order Graphs and Path Decomposition Trees for More
Efficient HTN Plan Verification via SAT Solving

Songtuan Lin1, Gregor Behnke2, Pascal Bercher1

1 School of Computing, The Australian National University, Canberra, Australia
2 ILLC, University of Amsterdam, Amsterdam, The Netherlands
{songtuan.lin, pascal.bercher}@anu.edu.au, g.behnke@uva.nl

Abstract

The task of plan verification is to decide whether a given plan
is a solution to a planning problem. In this paper, we study the
plan verification problem in the context of Hierarchical Task
Network (HTN) planning. Concretely, we will develop a new
SAT-based approach via exploiting the data structures solu-
tion order graphs and path decomposition trees employed by
the state-of-the-art SAT-based HTN planner which transforms
an HTN plan verification problem into a SAT formula. Addi-
tionally, for the purpose of completeness, we will also reim-
plement the old SAT-based plan verifier within an outdated
planning system called PANDA3 and integrate it into the new
version called PANDAπ .

Introduction
Plan verification is the task of deciding whether a given plan
is a solution to a planning problem. Research over the plan
verification problem has drawn increasing attention in the
last few years for its potential usages in numerous appli-
cations, e.g., in mixed initiative planning (see the work by
Behnke, Höller, and Biundo (2017) for more details) and in
International Planning Competition where a plan verifier is
used to validate plans produced by participated planners.

We consider the plan verification problem in the context
of HTN planning, which is a hierarchical approach to plan
in which so-called abstract tasks are kept being refined un-
til primitive ones (i.e., actions) are obtained. The HTN plan
verification problem has been proved to be NP-complete
(Behnke, Höller, and Biundo 2015; Bercher et al. 2016), and
there exist three HTN plan verification approaches, namely,
the SAT-based approach (Behnke, Höller, and Biundo 2017),
the parsing-based approach (Barták, Maillard, and Cardoso
2018; Barták et al. 2020, 2021), and the planning-based ap-
proach (Höller et al. 2022) which transform a plan verifica-
tion problem into a SAT problem, a language parsing prob-
lem, and an HTN planning problem, respectively. In this pa-
per, we will develop a new SAT-based plan verification ap-
proach exploiting two data structures employed in the state-
of-the-art SAT-based HTN planner (Behnke, Höller, and Bi-
undo 2018, 2019a).

Specifically, we will adapt solution order graphs (SOGs)
and path decomposition trees (PDTs) which are two data
structures for formatting and storing refinement processes
in an HTN planning problem. The core aspect of HTN plan

verification, which is similar to solving an HTN planning
problem, is to find a refinement process except that in plan
verification, we demand that the refinement process must re-
sult in the given plan. These two data structures have been
shown to be efficient in solving an HTN planning problem,
but they are not exploited by the old SAT-based approach.
Hence, we will adapt these data structures in our new SAT-
based approach to see whether the performance can be im-
proved. In order to distinguish our new SAT-based approach
from the existing one, we call it the SOG-based approach
and the existing one the DT-based approach where the term
‘DT’ refers to decomposition trees which we will introduce
later on, and it is the core of the existing SAT approach. We
emphasize ‘SOG’ because the majority of this paper aims to
explain how to exploit SOGs in plan verification.

Apart from developing the new SOG-based plan verifica-
tion approach, we will also reimplement the (old) SAT-based
verifier. The old verifier is a part of an outdated HTN plan-
ning system called PANDA3, which is written in JAVA and is
now deprecated. Recently, a new version of PANDA called
PANDAπ has been developed which is written in C++. Thus,
we would also like to rewrite the old verifier in C++ and in-
tegrate it into PANDAπ for the purpose of completeness.

HTN Formalism
Before explaining the SOG-based approach, we first intro-
duce the HTN formalism employed in the paper, which is an
adoption of the one by Bercher, Alford, and Höller (2019).
We start with the concept of task networks.

Definition 1. A task network tn is a tuple (T,≺, α) where
T is a set of task identifiers, ≺ ⊆ T × T specifies the partial
order defined over T , and α is a function that maps a task
identifier to a task name.

Two task networks tn = (T,≺, α) and tn′ = (T ′,≺′, α′)
are said to be isomorphic, written tn ∼= tn′, iff there exists
a one-to-one mapping φ : T → T ′ such that for all t ∈ T ,
α(t) = α′(φ(t)), and for all t1, t2 ∈ T , if (t1, t2) ∈ ≺,
(φ(t1), φ(t2)) ∈ ≺′.

Given a task network tn, the notations T (tn), ≺(tn), and
α(tn) refer to the task identifier set, the partial order, and
the identifier-name mapping function of tn, respectively. For
convenience, we also define a restriction operation.

Definition 2. Let D and V be two arbitrary sets, R ⊆ D ×
D be a relation, f : D → V be a function and tn be a
task network. The restrictions of R and f to some set X are
defined by
• R|X = R ∩ (X ×X)
• f |X = f ∩ (X × V)
• tn|X = (T (tn) ∩X,≺(tn)|X , α(tn)|X)

Task names are further categorized as being primitive and
compound. A primitive task name p, also called an action, is
mapped to its precondition, add, and delete list by a function
δ written δ(p) = (prec, add, del), where add and del are
called the effects of p. On the other hand, a compound task
name c can be refined (decomposed) into a task network tn
by some method m = (c, tn).
Definition 3. Let tn = (T,≺, α) be a task network, t ∈
T be a task identifier, c be a compound task name with
(t, c) ∈ α, and m = (c, tnm) be a method. We say m de-
composes tn into another task network tn′ = (T ′,≺′, α′),
written tn →m tn′, if and only if there exists a task network
tn′

m = (Tm,≺m, αm) with tn′
m

∼= tnm such that
• T ′ = (T\{t}) ∪ Tm.
• ≺′ = (≺∪≺m ∪≺X)|T ′ with ≺X = {(t1, t2) | (t1, t) ∈
≺, t2 ∈ Tm} ∪ {(t2, t1) | (t, t1) ∈ ≺, t2 ∈ Tm}.

• α′ = (α\{(t, c)}) ∪ αm.
An HTN planning problem is then defined as follows.

Definition 4. An HTN planning problem P is defined as a
tuple (D, cI , sI) where D is called the domain of P . The
domain D is a tuple (F,Np, Nc, δ,M) in which F is a finite
set of facts (i.e., propositions), Np is a finite set of primitive
task names, Nc is a finite set of compound task names with
Nc ∩ Np = ∅, δ : Np → 2F × 2F × 2F maps primitive
task names to their preconditions and effects, and M is a
set of (decomposition) methods. cI ∈ Nc is the initial task,
which can be viewed as a task network consisting of solely
one compound task, and sI ∈ 2F is the initial state.

As mentioned in the introduction, the core aspect of solv-
ing an HTN planning problem (and solving a plan verifica-
tion problem) is to find the decompositions which lead to
a solution. Hence, before presenting the precise definition
of a solution to an HTN planning problem, we would like
to introduce the concept of decomposition trees (Geier and
Bercher 2011) which capture such decomposition processes
in an HTN planning problem.
Definition 5. Given a planning problem P , a decomposition
tree g = (V,E,≺g, αg, βg) with respect to P is a set of
labeled directed trees where V and E are the sets of vertices
and edges respectively, ≺g is a partial order defined over V ,
αg : V → Np ∪Nc labels a vertex with a task name, and βg

maps a vertex v ∈ V to a method (c, tn) ∈ M .
A decomposition tree is valid iff for each t ∈ T (tnI),

there exists a root vertex r ∈ V labeled with α(tnI)(t), and
for each v ∈ V with βg(v) = m, m = (c, tn), and c ∈ Nc,
the following holds.
1) αg(v) = c.
2) tn is isomorphic to the task network induced by the chil-

dren of v denoted as ch(v), i.e.,
tn ∼= (ch(v),≺g|ch(v), αg|ch(v))

3) For any child vc of v and any v′ ∈ V , if (v′, v) ∈ ≺g ,
(v′, vc) ∈ ≺g , and if (v, v′) ∈ ≺g , (vc, v′) ∈ ≺g .

4) There are no other ordering constraints in ≺g except
those demanded by 2) and 3).

The yield of a decomposition tree g, written yield(g),
is the task network (T,≺, α) such that T is the set of all
leafs of g, i.e., the set of all vertices which have no chil-
dren, (t1, t2) ∈ ≺ iff (t1, t2) ∈ ≺g for any t1, t2 ∈ T , and
α(t) = αg(t) for all t ∈ T .

Lastly, the solution criteria for HTN planning problems
are defined as follows.

Definition 6. Let P be an HTN planning problem. A solu-
tion to P is a task network tn such that all tasks in it are
primitive, there exists a valid decomposition tree g with re-
spect to P such that yield(g) = tn, and it possesses a lin-
earization of the tasks that is executable in the initial state.

Note that a solution to an HTN planning problem is a par-
tially ordered task network, which is not a plan we refer to
in practice, i.e., a plan is normally referred to as a sequence
of actions (primitive tasks). Hence, we formally define the
plan verification problem for HTN planning as follows.

Definition 7. Given a plan π = ⟨p1 · · · pn⟩ (n ∈ N) which
is a sequence of primitive tasks and an HTN planning prob-
lem P , the plan verification problem for HTN planning is to
decide whether there is a task network tn = (T,≺, α) such
that it is a solution to P , |T | = n, and it possesses a lin-
earization tn = ⟨t1 · · · tn⟩ such that it is executable in the
initial state of P , and for each 1 ≤ i ≤ n, α(ti) = pi.

Implementation of the SOG-based Approach
Having presented the HTN formalism, we now move on to
introduce our SOG-based plan verification approach. We be-
gin with introducing the data structures path decomposition
trees (PDTs) and solution order graphs (SOGs) by Behnke,
Höller, and Biundo (2019a).

Informally speaking, a PDT with depth K (K ∈ N) stores
all possible decomposition trees with depth at most K in an
HTN planning problem.

Definition 8. A path decomposition tree TK of a certain
depth K (K ∈ N) with respect to an HTN planning problem
P is a labelled directed tree (V,E, γ) of depth K in which V
is the set of vertices, E is the set of edges, γ : V → 2Nc∪Np

mapping each vertex to a set of task names, γ(r) = {cI}
with r ∈ V being the root of the tree (i.e., the vertex with-
out ancestors), and for every inner vertex v ∈ V which is
neither the root nor a leaf (i.e., a vertex without children),
it holds that for each c ∈ γ(v) ∩ Nc and every m ∈ M
with m = (c, tn) and tn = (T,≺, α), there exists a sub-
set S = {v′1, · · · v′|T |} of v’s children such that there exists
a bijective mapping βm from S to T which is also called
a child arrangement function of v′, and for every v′ ∈ S,
α(βm(v′)) ∈ γ(v′).

We use L(TK) to refer to the set of all leafs of TK . From
the definition, one might recognize that L(TK) stores the
yields of all decomposition trees of depth smaller or equal to
K. Hence, the idea of solving a plan verification problem in

terms of PDTs is straightforward, that is, after constructing
a PDT with a certain depth K, we check whether we can
select a decomposition tree from it whose yield possesses
a linearization which is identical to the plan. Particularly,
Behnke, Höller, and Biundo (2017) have shown that for any
instance of the plan verification problem, we can calculate
the upper bound K such that the given plan is a solution iff it
can be obtained from a decomposition tree of depth smaller
or equal to K.

The decision procedure can be captured by a SAT for-
mula. Particularly, the SAT clauses for constructing a PDT
with a certain depth and selecting a decomposition tree from
the PDT have already been given by Behnke, Höller, and Bi-
undo (2019a), which are still exploited in the context of plan
verification. Consequently, in this paper, we focus on con-
structing the clauses expressing the constraint that the yield
of the selected decomposition tree must possess a lineariza-
tion that is identical to the plan to be verified.

To this end, we shall also introduce the data structure
solution order graphs (SOGs) by Behnke, Höller, and Bi-
undo (2019a), which can significantly reduce the number of
clauses and state variables required in constructing SAT for-
mulae.
Definition 9. The solution order graph S(TK) = (V̂ , Ê) of
a PDT TK of a certain depth K is a directed graph in which
V̂ = L(TK) is the set of vertices, and an edge (v1, v2) ∈ Ê
iff for the least common ancestor v of v1 and v2, every
method m = (c, tn) with c ∈ γ(v)∩Nc and tn = (T,≺, α),
and the child arrangement function βm, there exist two chil-
dren v̂1, v̂2 of v such that (βm(v̂1), βm(v̂2)) ∈ ≺.

Intuitively, the SOG of a PDT TK contains the yields of
all possible decomposition trees of depth smaller or equal to
K, and for each such yield (T,≺, α), (t1, t2) ∈ ≺ for some
t1, t2 ∈ T iff there is an edge from v1 to v2 where v1, v2 are
two vertices corresponding to t1 and t2, respectively.

Having presented the definitions of SOGs and PDTs, we
now introduce the SAT clauses encoding that the yield of a
decomposition tree selected from a SOG must possess a lin-
earization that is identical to a given plan. For this, we can
assume that we already have the SOG S(TK) of a PDT TK
in hand, because the remaining parts, i.e., constructing the
PDT, extracting the SOG, selecting the yield of a decompo-
sition tree from the SOG, and the SAT clauses for encod-
ing these processes, have all been described in the work by
Behnke, Höller, and Biundo (2019a).

Further, since the selection of decomposition trees has al-
ready been encoded, we can simplify our goal as construct-
ing SAT clauses to encode that for a SOG, there must be a
subset of the vertex set such that there is a total order of this
subset respecting the edges (i.e., we can view each edge as
an ordering constraint), and this chain forms the given plan
via selecting a task name for each vertex from its label set,
i.e., the set of all possible task names assigned to the vertex.

Given a plan π = ⟨p1 · · · pn⟩ and a SOG S(TK) = (V̂ , Ê)
of a PDT TK = (V,E, γ), we start by introducing the SAT
variables used to construct the clauses. For each v ∈ V̂ and
every task name t ∈ γ(v), we construct a state variable vt
indicating whether t in v is selected. For every 1 ≤ i ≤

n and v ∈ V̂ with pi ∈ γ(v), the variable mi
v indicates

whether pi is mapped to the vertex v, and the variable f i
v

indicates whether mapping pj to v is forbidden for every 1 ≤
j ≤ i. In other words, if f i

v is set to true, then any pj with
1 ≤ j ≤ i cannot be mapped to v. For convenience, for each
pi, 1 ≤ i ≤ n, we use V(pi) to refer to the set of all vertices
v such that pi ∈ γ(v). Conversely, for every v ∈ V̂ , V−1(v)
refers to the set of all integers i with pi ∈ γ(v). For every
v ∈ V̂ , av indicates whether the vertex v is activated. The
activation of a vertex here is associated with the selection of
a decomposition tree, i.e., if a vertex is activated, then it must
be a leaf of the selected decomposition tree, see the work by
Behnke, Höller, and Biundo (2019a) for more details.

We first construct the clauses F1 to enforce the constraint
that for every task pi (1 ≤ i ≤ n), if it is mapped to a vertex
v with v ∈ V(pi), then pi in γ(v) must be selected.

F1 =
∧

1≤i≤n

∧
v∈V(pi)

mi
v → vpi

Next, we construct the clauses to enforce that if a task pi
(1 ≤ i ≤ n) is forbidden to be mapped to a vertex v ∈ V̂ ,
then the mapping cannot happen.

F2 =
∧

1≤i≤n

∧
v∈V(pi)

f i
v → ¬mi

v

Further, we shall encode the transition of forbiddenness.

F3 =
∧

2≤i≤n

∧
v∈V(pi)

f i
v → f i−1

v

Another important constraint we have to deal with is that
the mapping between the plan and the SOG must respect the
edges (i.e., ordering constraints). For every v ∈ V̂ , we use
V+(v) to refer to the set of all predecessors of v, i.e., the set
of all vertices that are reachable from v. This constraint is
then expressed as follows.

F4 =
∧

2≤i≤n

∧
v∈V(pi)

∧
v′∈V+(v)

mi
v → f i−1

v′

Informally, the formula F3 enforce that for any primitive
task pi with 2 ≤ i ≤ n, if it is mapped to a vertex v in the
SOG, then any predecessor of v is not allowed to be mapped
to pi−1 for the purpose of respecting ordering constraints.

The next formula encodes the constraint that every action
in the plan must be mapped to at least one vertex in the SOG.

F5 =
∧

1≤i≤n

(∨
v∈V(pi)

mi
v

)
Simultaneously, every action in the plan is allowed to be

mapped to at most one vertex in the SOG. To encode this
constraint, we adopt the encoding by Sinz (2005) which en-
forces that, given a set X of SAT variables, at most one of
them can be set to true. To ease the notation, we use M(X)
to refer to the encoding. Hence, the constraint in our context
is expressed as follows.

Transport Woodworking UM-Translog Satellite Monroe-Partially-Observable PCP Monroe-Fully-Observable
Total Instances 188 137 52 246 103 26 129
SOG-based 188 (100.00%) 137 (100.00%) 52 (100.00%) 246 (100.00%) 102 (99.03%) 26 (100.00%) 128 (99.22%)
DT-based 138 (73.40%) 95 (69.34%) 52 (100.00%) 246 (100.00%) 0 (0.00%) 25 (96.15%) 0 (0.00%)

Table 1: The number of solved instances in each domain. The header shows the name of each domain. The first row indicates
the total number of instances in each domain. The last two rows indicate the number of solved instances by the two approaches.

F6 =
∧

1≤i≤n

M({mi
v | v ∈ V(pi)})

Lastly, for every vertex in the SOG, if it is activated, then
exactly one action in the plan is mapped to it.

F7 =
∧
v∈V̂

av →
((∨

i∈V−1(v)

mi
v

)
∧M({mi

v | i ∈ V−1(v)})
)

The formula encoding that there exists a yield of a decom-
position tree in the SOG whose linearization is identical to
the given plan is thus the conjunction of the previous clauses.

Apart from implementing this SOG-based approach, we
also reimplement the DT-based approach (Behnke, Höller,
and Biundo 2017). Since the reimplementation is simply a
translation from the original JAVA code to the C++ code,
we omit the discussion of the technique details here. For
more information, we refer to the original work by Behnke,
Höller, and Biundo (2017).

Empirical Evaluation
We now compare the performance of our SOG-based ap-
proach with the reimplemented DT-based one. We used the
benchmark set from the IPC 2020 on HTN Planning1. The
benchmark set contains 1067 instances from 9 domains.
However, two domains in the benchmark set, i.e., ‘Rover’
and ‘Barman-BDI’, feature so-called method preconditions,
which are not yet supported by both SOG-based and DT-
based (re)implemented in the paper. Consequently, our ex-
periments are run on the remaining 7 domains which include
881 plan instances in total. For each instance, we gave it 10
minutes timeout and 8GB memory limit. All input planning
problems were first grounded by the PANDAπ grounder
(Behnke et al. 2020).

The SOG-based approach successfully solved 879 in-
stances and only failed in two (i.e., the two instances ran out
of the timeout). The two failed instances are from the do-
mains ‘Monroe-Fully-Observable’ and ‘Monroe-Partially-
Observable’, respectively. In contrast, the reimplementation
of the DT-based approach only solved 556 instances. Partic-
ularly, it failed in all instances from the domains ‘Monroe-
Fully-Observable’ and ‘Monroe-Partially-Observable’, be-
cause the planning problems from these two domains con-
tain too many methods and tasks which results in exceed-
ing the memory limit. Tab. 1 shows the number of instances
solved by these two approaches in each domain.

1https://github.com/panda-planner-dev/ipc-2020-
plans/tree/master/po-plans

Figure 1: The runtimes against the percentages of solved in-
stances by the SOG-based and the DT-based approach.

Further, Fig. 1 depicts the runtimes against the percent-
ages of solved instances by the two approaches. From the
figure, we can see that the new approach is significantly bet-
ter than the old one. More concretely, over 70% of instances
can be solved in one second by the new approach, whereas
the number is only about 20% for the old approach.

Future Work and Discussion
In future work, we are going to implement an optimization
in both approaches which discards the primitive tasks in a
given planning problem which are not in a plan to be veri-
fied together with all compound tasks that can only be de-
composed into them. The optimization is employed in the
old SAT approach implemented in JAVA but not yet deliv-
ered by our reimplementation. One might recognize that the
performance of our reimplementation is slightly worse than
the old one in JAVA (the evaluation results are shown in the
work by Höller et al. (2022)), and we assume that the under-
performance is caused by the lack of the optimization.

Additionally, the optimization is also implemented in the
planning-based approach (Höller et al. 2022) which trans-
forms a plan verification problem into a planning problem.
The planning-based approach happens to produce a SAT for-
mula that is similar to the one produced by our SOG-based
approach while the SAT planner is exploited. This is how-
ever not surprising because both our SOG-based plan veri-
fication approach and the SAT-based planner rely on PDTs
and SOGs. Thus far, the performance of the planning-based
approach with the SAT planner is also slightly better than
our SOG-based approach which can solve all instances in
the 7 domains on which we ran the empirical evaluation, and
we believe that the reason for this is also the optimization.

More importantly, there are two functionalities that are

yet delivered in both approaches implemented in the paper.
The first is to support method preconditions. Although many
HTN planning formalisms presented in literature do not fea-
ture method preconditions, they occur quite often in prac-
tice, e.g., in almost all totally ordered (TO) HTN planning
domain from the IPC 2020 on HTN planning. Hence, for the
purpose of providing an independent plan verifier for IPC,
supporting method preconditions is mandatory.

The second functionality we want to implement is calcu-
lating a tight bound for the maximal depth of a decompo-
sition tree. As mentioned earlier, a plan is a solution to a
planning problem if and only if there exists a decomposition
tree of depth smaller or equal to a certain bound. Thus far,
the two approaches implemented in the paper calculate such
a bound in a loose way, i.e., the obtained bound is signif-
icantly larger than the optimal one. As a consequence, our
implementations will be less efficient when verifying a plan
that is not a solution, because in such a case, both approaches
need to construct a PDT (DT) of depth up to the bound.
Hence, in the future work, we will adapt the approach by
Behnke, Höller, and Biundo (2019b) for calculating an opti-
mal bound for a decomposition tree.

As a preliminary work, this paper only did the compari-
son between the two (re)implemented approaches. In future
work, we would like to give a complete comparison between
our approaches and other existing ones, e.g., the parsing-
based one (Barták, Maillard, and Cardoso 2018; Barták et al.
2020, 2021) and the planning-based one (Höller et al. 2022).
On top of that, we would also investigate some theoretical
properties of our approaches, e.g., the size of a SAT formula
obtained.

Conclusion
In this paper, we developed a new SAT-based HTN plan ver-
ification approach which we call SOG-based approach and
reimplemented an existing one (which we call DT-based ap-
proach). The empirical results show that the SOG-based one
is significantly better than the reimplemented one. How-
ever, due to the lack of certain optimization techniques,
the reimplementation of the DT-based approach slightly un-
derperforms the original one in JAVA, and the SOG-based
approach is also defeated by the state-of-the-art planning-
based plan verification approach. Hence, we will further im-
prove the (re)implementations in our future work.

References
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Vali-
dation of Hierarchical Plans via Parsing of Attribute Gram-
mars. In Proceedings of the 28th International Conference
on Automated Planning and Scheduling, ICAPS 2018, 11–
19. AAAI.
Barták, R.; Ondrcková, S.; Behnke, G.; and Bercher, P.
2021. On the Verification of Totally-Ordered HTN Plans.
In Proceedings of the 33rd IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2021, 263–267.
IEEE.
Barták, R.; Ondrcková, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A Novel Parsing-based Approach for Ver-

ification of Hierarchical Plans. In Proceedings of the 32nd
IEEE International Conference on Tools with Artificial In-
telligence, ICTAI 2020, 118–125. IEEE.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the Com-
plexity of HTN Plan Verification and Its Implications for
Plan Recognition. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling, ICAPS
2015, 25–33. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This Is a Solu-
tion! (... But Is It Though?) - Verifying Solutions of Hierar-
chical Planning Problems. In Proceedings of the 27th Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2017, 20–28. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT -
Totally-Ordered Hierarchical Planning Through SAT. In
Proceedings of the 32nd AAAI Conference on Artificial In-
telligence, AAAI 2018, 6110–6118. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2019a. Bringing
Order to Chaos - A Compact Representation of Partial Or-
der in SAT-Based HTN Planning. In Proceedings of the
33rd AAAI Conference on Artificial Intelligence, AAAI 2019,
7520–7529. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2019b. Finding Op-
timal Solutions in HTN Planning - A SAT-based Approach.
In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, IJCAI 2019, 5500–5508. IJCAI.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On Succinct Groundings of HTN Planning Prob-
lems. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, 9775–9784. AAAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI 2019, 6267–
6275. IJCAI.
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a Name? On Implications of Preconditions and
Effects of Compound HTN Planning Tasks. In Proceedings
of the 22nd European Conference on Artificial Intelligence,
ECAI 2016, volume 285, 225–233. IOS.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, IJ-
CAI 2011, 1955–1961. AAAI.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In Proceedings of the 32nd International
Conference on Automated Planning and Scheduling, ICAPS
2022. AAAI.
Sinz, C. 2005. Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints. In Proceedings of the
11th Principles and Practice of Constraint Programming,
CP 2005, 827–831. Springer.

