
32nd International Conference on
Automated Planning and Scheduling

June 13–24, 2022, virtually from Singapore

HPlan 2022
Proceedings of the 5th Workshop on

Hierarchical Planning

Program Committee

Ron Alford The MITRE Corporation
Gregor Behnke University of Amsterdam
Pascal Bercher The Australian National University
Arthur Bit-Monnot Laboratory for Analysis and Architecture of Systems,

LAAS-CNRS, Toulouse, France.
Alberto Camacho University of Toronto
Mauŕıcio Cećılio Magnaguagno PUCRS
Lavindra de Silva University of Cambridge
Juan Fernández-Olivares University of Granada
Alban Grastien The Australian National University
Daniel Höller Saarland University, Saarland Informatics Campus
Jane Jean Kiam University of the Bundeswehr Munich
Songtuan Lin The Australian National University
James Mason Jet Propulsion Laboratory
Simona Ondrčková Charles University
Sunandita Patra IIT Kharagpur
Dominik Schreiber Karlsruhe Institute of Technology
Vikas Shivashankar Amazon Robotics
Shirin Sohrabi IBM
David Speck University of Freiburg

Álvaro Torralba Aalborg University
Julia Wichlacz Saarland University
Ying Xian Wu The Australian National University
Zhanhao Xiao Sun Yat-sen University

Organizing Committee

Pascal Bercher The Australian National University
Jane Jean Kiam University of the Bundeswehr Munich, Germany
Arthur Bit-Monnot Laboratory for Analysis and Architecture of Systems,

LAAS-CNRS, Toulouse, France.
Ron Alford The MITRE Corporation

ii

Preface

The motivation for using hierarchical planning formalisms is manifold. It ranges from an explicit and
predefined guidance of the plan generation process and the ability to represent complex problem solving
and behavior patterns to the option of having different abstraction layers when communicating with a
human user or when planning cooperatively. This led to numerous hierarchical formalisms and systems.
Hierarchies induce fundamental differences from classical, non-hierarchical planning, creating distinct
computational properties and requiring separate algorithms for plan generation, plan verification, plan
repair, and practical applications. Many techniques required to tackle these – or further – problems in
hierarchical planning are still unexplored. With this workshop, we bring together scientists working on
many aspects of hierarchical planning to exchange ideas and foster cooperation.

In 2022, the 5th edition of the workshop, we, for the second time, received an astonishing 14 submis-
sions that underwent review (a 15th was submitted but couldn’t be completed before the deadline when
reviewing started), 9 of which were accepted unconditionally and 3 further ones got accepted after a
round of revision. As in all previous HPlan-workshops, each paper received at least three reviews,
while some received four if the reviewers disagree. To ensure the high quality of reviews comparable
to major top-tier conferences, each reviewer was assigned at most 2 submissions according to their
preferences and expertise, which were expressed during the paper bidding phase.

Like in previous years, a range of topics is addressed in the papers of this workshop. You find a ta-
ble of contents later in the proceedings, which include both scientific papers as well as challenge papers.

Furthermore, as in previous years, we also encourage presentation of work accepted or published at
other conferences or journals. This year, we have a presentation on a previous work published at AAAI
on Propositional Dynamic Logic and another published at FLAIRS on plan verification. This way,
the authors can share their findings at the ICAPS event, and specifically with the attendees of the
HPlan-workshop and therefore with the hierarchical planning community.

Due to the high number of accepted papers, we planned a 6-hour workshop. All papers are shortly
announced with teaser talks of 5 to 7 minutes, and then discussed in more depth in two virtual
poster sessions, each taking 75 and 90 minutes respectively and hosting 7 posters each, carried out
via gather.town. We have witnessed vivid and constructive discussions during the poster sessions in
the previous years, taking even hours longer than the officially allocated 6 hours. We believe that the
attendees can continue this year to enjoy the convivial poster sessions to discuss.

As in previous years, we also feature an invited talk, this year by Ugur Kuter, who introduces his work
on a framework for collaborative decentralized planning and the importance of hierarchical represen-
tation and reasoning in this. On the next pages you will find an abstract of the talk, as well as a bio
of the speaker.

Pascal, Jane, Arthur, Ron
HPlan Workshop Organizers,
June 2022

iii

iv

Invited Talk

Each year so far we had one or two invited talks. This year, our invited talk is by Ugur Kuter.

Hierarchies in Decentralized Collaborative Planning

This talk will introduce a framework for collaborative decentralized planning for a spectrum of user-
centered and fully-autonomous, and thus, diverse, elastic, and possibly virtual, collaborative teams.
We stand on the great strides from previous distributed AI ideas, combining those with modern ad-
vances in AI planning, thereby reflecting and explicitly representing and working with issues such as
information locality, uncertainty, communications, and others. We will discuss the essential features
of this framework, argue why we found hierarchical representations and reasoning important in our
applications. We will describe some of the challenges that we face in this domain, and some of the
initial approaches we took towards addressing these challenges.

Bio

Ugur Kuter, Research Fellow, Smart Information-Flow Technologies (SIFT)

Dr. Kuter is studying intelligence and intelligent behavior in both
individuals and groups, human and computational. He is particu-
larly interested in understanding and developing intelligent systems
that can observe, think, and (inter-)act with other such systems,
including humans. Over the years, a large part of Dr. Kuter’s re-
search is involved particularly around Automated (AI) Planning,
Machine Learning, Reasoning with / about Uncertainty, Automa-
tion Self-Confidence, Knowledge Representations, Graph Analysis,
Semantic, Social Networks, Game Theory, Evolutionary Computa-
tion, and recently, Quantum Cognition. Dr. Kuter has co-authored
more than 100 peer-viewed research publications, including several
best papers and other awards.

v

vi

Table of Contents

Scientific Papers

An Accurate HDDL Domain Learning Algorithm from Partial and Noisy Observations

Maxence Grand, Damien Pellier, and Humbert Fiorino
. 1 – 9

An Efficient HTN to STRIPS encoding for Concurrent Plans

Nicolas Cavrel, Damien Pellier, and Humbert Fiorino
. 10 – 18

Chronicles for Representing Hierarchical Planning Problems with Time

Roland Godet and Arthur Bit-Monnot
. 19 – 23

Exploiting Solution Order Graphs and Path Decomposition Trees for More Efficient HTN
Plan Verification via SAT Solving

Songtuan Lin, Gregor Behnke, and Pascal Bercher
. 24 – 28

Learning Decomposition Methods with Numeric Landmarks and Numeric Preconditions

Morgan Fine-Morris, Michael W. Floyd, Bryan Auslander, Greg Pennisi, Kalyan Gupta, Mark Roberts,
Jeff Heflin, and Héctor Muñoz-Avila
. 29 – 37

Learning Operational Models from Demonstrations: Parameterization and Model Qual-
ity Evaluation

Philippe Hérail and Arthur Bit-Monnot
. 38 – 46

On the Efficient Inference of Preconditions and Effects of Compound Tasks in Partially
Ordered HTN Planning Domains

Conny Olz and Pascal Bercher
. 47 – 51

On Total-Order HTN Plan Verification with Method Preconditions – An Extension of
the CYK Parsing Algorithm

Songtuan Lin, Gregor Behnke, Simona Ondrčková, Roman Barták, and Pascal Bercher
. 52 – 58

vii

T-HTN: Timeline-Based HTN Planning for Multiple Robots

Viraj Parimi, Zachary Rubinstein, and Stephen Smith
. 59 – 67

Teaching an HTN Learner

Ruoxi Li, Mark Roberts, Dana Nau, and Morgan Fine-Morris
. 68 – 72

Urban Modeling via Hierarchical Task Network Planning

Michael Staud
. 73 – 77

Challenge Papers

Towards Hierarchical Task Network Planning as Constraint Satisfaction Problem

Tobias Schwartz, Michael Sioutis, and Diedrich Wolter
. 78 – 82

viii

ix

An Accurate HDDL Domain Learning Algorithm from Partial and Noisy
Observations

Maxence Grand, Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes, LIG, Grenoble, France

{Maxence.Grand, Damien.Pellier, Humbert.Fiorino}@univ-grenoble-alpes.fr

Abstract

The Hierarchical Task Network (HTN) formalism is very ex-
pressive and used to express a wide variety of planning prob-
lems. In contrast to the classical STRIPS formalism in which
only the action model needs to be specified, the HTN formal-
ism requires to specify, in addition, the tasks of the problem
and their decomposition into subtasks, called HTN methods.
For this reason, hand-encoding HTN problems is considered
more difficult and more error-prone by experts than classical
planning problem. To tackle this problem, we propose a new
approach (HierAMLSI) based on grammar induction to ac-
quire HTN planning domain knowledge, by learning action
models and HTN methods with their preconditions. Unlike
other approaches, HierAMLSI is able to learn both actions
and methods with noisy and partial inputs observation with a
high level or accuracy.

1 Introduction
The Hierarchical Task Network (HTN) formalism (Erol,
Hendler, and Nau 1994) is very expressive and used to ex-
press a wide variety of planning problems. This formalism
allows planners to exploit domain knowledge to solve prob-
lems more efficiently (Nau et al. 2005) when planning prob-
lems can be naturally decomposed hierarchically in terms
of tasks and task decompositions. The standard language
used to model HTN problem is HDDL (Hierachical Domain
Description Language) (Höller et al. 2020). In contrast to
the classical PDDL language used to model STRIPS prob-
lems in which only the action model needs to be specified,
HDDL requires to specify the task model of the problem.
A task model can be primitive and compound. A primitive
task model is described by PDDL operators. A compound
tasks model is described using HTN methods. An HTN
method describes the set of primitive and/or compound task
required to decompose a specific compound task. For this
reason, hand-encoding HTN problems is considered more
difficult and more error-prone by experts than classical plan-
ning problem. This makes it all the more necessary to de-
velop techniques to learn HTN domains.

Many machine learning approaches have been proposed
to facilitate the acquisition of PDDL domain acquisition and
to learn the underlying action model, e.g, ARMS (Yang,
Wu, and Jiang 2007), FAMA (Aineto, Celorrio, and Onain-
dia 2019), LOCM (Cresswell, McCluskey, and West 2013),

LSONIO (Mourão et al. 2012), AMLSI (Grand, Fiorino, and
Pellier 2020a,b). In these approaches, training data are either
(possibly noisy and partial) intermediate states and plans
previously generated by a planner, or randomly generated
action sequences (i.e. random walks). On the other hand,
few approaches have been proposed to learn HTN domains.
However, it is possible to mention CAMEL (Ilghami et al.
2002), HTN-Maker (Hogg, Munoz-Avila, and Kuter 2008;
Hogg, Kuter, and Munoz-Avila 2009), LHTNDT (Narge-
sian and Ghassem-Sani 2008) or HTN-Learner (Zhuo et al.
2009). The major drawbacks of these approaches are: (1)
they consider to have complete and noiseless observations
as input; (2) they only learn HTN methods except HTN-
Learner, i.e., they consider that the action model is known a
priori and (3) the learned domains are not accurate enough
to be used ”as is” in a planner. A step of expert proofread-
ing is still necessary to correct them. Even small syntactical
errors can make sometime the learned domains useless for
planning

To deal with these drawbacks, we propose in this paper,
a new learning algorithm for HDDL domains, called Hi-
erAMLSI. HierAMLSI is based on AMLSI (Grand, Fior-
ino, and Pellier 2020a,b), a PDDL domain learner based on
grammar induction. HierAMLSI takes as input a set of par-
tial and noisy observations and learns a full HDDL planning
domain with action model and HTN methods. We show ex-
perimentally that HierAMLSI is highly accurate even with
highly partial and noisy learning datasets minimising HDDL
domain proofreading by experts. In many HDDL ICP bench-
marks HierAMLSI does not require any correction of the
learned domains at all.

The rest of the paper is organized as follows. In section 2
we present the problem statement. In section 3 we give some
backgrounds on the AMLSI approach. In section 4, we detail
the HierAMLSI steps. Then, section 5 evaluates the perfor-
mance of HierAMLSI on IPC benchmarks. Finally, Section
6 concludes with the related works.

2 Formal Framework
Section 2.1 introduces a formalization of STRIPS planning
domain learning consisting in learning a transition function
of a grounded planning domain and in expressing it as PDDL
operators and Section 2.2 extends this formalization to HTN
domains.

Proceedings of the 5th Workshop on Hierarchical Planning

1

2.1 STRIPS Planning
In this section we use definitions and notations proposed by
(Höller et al. 2016) and adapt them to the learning problem.

A STRIPS planning problem is a tuple P =
(L,A, S, s0, s, δ, λ), where L is a set of logical propositions
describing the world states, S is a set of state labels, s0 ∈ S
is the label of the initial state, and g ⊆ S is the set of goal
labels. λ is an observation function λ : S → 2L that as-
signs to each state label the set of logical propositions true
in that state. A is a set of action labels.Action precondi-
tions, positive and negative effects are given by the functions
prec, add and del that are included in δ = (prec, add, del).
prec is defined as prec : A → 2L. The functions add and
del are defined in the same way. Without loss of generality,
we chose this unusual formal framework inspired by (Höller
et al. 2016) in order to define the STRIPS learning problem
as the lifting of a state transition system into a propositional
language.

The function τ : A×S → {true, false} returns whether
an action is applicable to a state, i.e. τ(a, s) ⇔ prec(a) ⊆
λ(s). Whenever action a is applicable in state si, the state
transition function γ : A × S → S returns the resulting
state si+1 = γ(si, a) such that λ(si+1) = [λ(si) \ del(a)]∪
add(a).

A sequence (a0a1 . . . an) of actions is applicable to a state
s0 when each action ai with 0 ≤ i ≤ n is applicable to
the state si. Given an applicable sequence (a0a1 . . . an) in
state s0, γ(s0, (a0a1 . . . an)) = γ(γ(s0, a0), (a1 . . . an)) =
sn+1. It is important to note that this recursive defini-
tion of γ entails the generation of a sequence of states
(s0s1 . . . sn+1). A goal state is a state s such that g ∈ G
and λ(g) ⊆ λ(s). s satisfies g, i.e. s |= g if and only if s
is a goal state. An action sequence is a solution plan to a
planning problem P if and only if it is applicable to s0 and
entails a goal state.

In formal languages, a set of rules is given that de-
scribe the structure of valid words and the language is the
set of these words. For STRIPS planning problem P =
(L,A, S, s0, G, δ, λ), this language is defined as (0 ≤ i ≤
n):
L(P) = {ω = (a0a1 . . . an)|ai ∈ A, γ(s0, ω) |= g}

We know that the set of languages generated by STRIPS
planning problems are regular languages (Höller et al.
2016). In other words, a STRIPS planning problem P =
(L,A, S, s0, G, δ, λ) generates a language L(P) that is
equivalent to a Deterministic Finite Automaton (DFA) Σ =
(S,A, γ). S and A are respectively the nodes and the arcs of
the DFA, and γ is the transition function.

For any arc a ∈ A, we call pre-set of a the set
preset(a) = {s ∈ S | γ(s, a) = s′} and post-set of a the set
postset(a) = {s′ ∈ S | γ(s, a) = s′} (see Figure 1).

A STRIPS learning problem is as follow: given a set of
observations Ω ⊆ L(P), is it possible to learn the DFA Σ,
and then infer P ?

For instance, suppose Ω = {a, ab, ba, bab, abb, . . . } such
that s0

a−→ s2, s0
a−→ s2

b−→ s2, s0
b−→ s1

a−→ s2, s0
b−→ s1

a−→
s2

b−→ s2, s0
a−→ s2

b−→ s2
b−→ s2 . . . (Grand, Fiorino, and Pel-

lier 2020b) show that it is possible to learn Σ (see Figure 1)

s0start

s2

s1

b

a

a b

postset(a)

preset(a)

Figure 1: An example of DFA with pre-states and post-states

and infer P with actions {a, b}, the initial state s0 and some
states marked as goal G = {s2}.

2.2 HTN Planning
By extension based on the notation of (Höller
2021), an HTN planning problem is a tuple
P = (L,C,A, S,M, s0, wI , g, δ, τ, λ, σ, ζ). As for
STRIPS problems, L is a set of logical propositions
describing the world states, S is a set of state labels, s0 ∈ S
is the label of the initial state, g ⊆ S is the set of goal label,
λ is the observation function and preconditions, positive
and negative effects are given by the functions prec, add
and del included in δ.

A is the set action (or primitive task) labels and C is a set
of compound (or non primitive) task labels, with C∩A = ∅.
Tasks are maintained in task networks. A task network is
a sequence of tasks (for simplicity, we consider only To-
tally Ordered domain). Let T = C ∪ A. A task network
is an element out of T ∗ (∗ is the Kleene operator). Com-
pound tasks are decomposed using methods. The set M con-
tains all method labels. Methods are defined by the function
σ : M → C × T ∗. Then, a coumpound task c is decompos-
able in a state s if and only if there exists a revelant method
m ∈ M such that: σ(m) = (c, ϕ) and prec(m) ∈ s. The
function ζ : T ∗ × S → T ∗ gives the decomposition func-
tion. For a totally orderer task network ω = ω1tω2, ζ is
defined as follows:

ζ(ω1tω2, s) =

ω1tω2 if t is a primitive task
ω1ϕω2 if t is a coumpound task

and t is decomposable in γ(ω1, s)
∅ Otherwise

As ω1tω2 is a totally ordered task network, ω1 contains only
primitive tasks. We denote ω →∗ ω′ that ω can be decom-
posed into ω′ by 0 or more method applications. Finally, ωI

is the initial task network.
A solution to an HTN planning problem is a task network

ω with:
1. ωI →∗ ω, i.e. it can be reached by decomposing ωI .
2. ω ∈ A∗, i.e. all tasks are primitive.
3. γ(s0, ω) |= g, i.e. ω is applicable in so and results in a

goal state.
Finally, we can define an HTN planning problem P =

(L,C,A, S,M, s0, wI , g, δ, τ, λ, σ, ζ) as a formal language:

L(P) = {ω = (t0t1 . . . tn)|ti ∈ A, γ(s0, ω) |= g, ωI →∗ ω}

Proceedings of the 5th Workshop on Hierarchical Planning

2

An HTN learning problem is as follow: given a set of ob-
servations Ω ⊆ L(P), is it possible to learn P ?

Unlike STRIPS planning problems, the language L(P)
is not necessary regular (Höller et al. 2014) and cannot be
represented as a DFA. As mentioned by (Höller et al. 2014;
Höller 2021), L(P) is the intersection of two languages:

1. LH(P) = {ω ∈ A∗|wI →∗ ω} which is defined by the
decomposition hierarchy, i.e. by the compound tasks and
methods.

2. LC(P) = {ω ∈ A∗|γ(s0, ω) ∈ g} which is defined by
the state transition system defined by the preconditions
and effects of the primitive tasks. This language is regu-
lar.

The key idea of our approach is to learn the DFA Σ =
(S,A, γ) corresponding to the regular language LC(P), and
modify the DFA to approximate the language L(P) with the
DFA Σ = (S, T, γ) and then infer P .

3 The AMLSI Approach
In this section we will summarized the AMLSI approach
on which HierAMLSI is based. For more detail see (Grand,
Fiorino, and Pellier 2020b,a).

AMLSI generates the set of observations Ω by using
random walks to learn Σ = (S,A, γ) and deduce P =
(L,A, S, s0, G, δ, λ). AMLSI assumes L, A, S, s0 known
and the observation function λ possibly partial and noisy (a
partial observation is a state where some propositions are
missing and a noisy observation is a state where the truth
value of a proposition is erroneous). No knowledge of the
goal states G is required. Once Σ is learned, AMLSI has to
deduce δ from the transition function γ. Concretely, δ can
be represented as a STRIPS planning domain containing all
the actions of the problem P and by induction the classical
PDDL operators.

The AMLSI algorithm consists of 4 steps: (1) generation
of the observations, (2) learning the DFA corresponding to
the observations, (3) induction of the PDDL operators from
the learned DFA; (4) finally, refinement of these operators to
deal with noisy and partial state observations:

Step 1: AMLSI generates a random walk by applying an
action from the initial state of the problem. If the action is
applicable in the current state the sequence of actions from
the initial state is valid and is added to I+, the set of posi-
tive samples. Otherwise the random walk is stopped and the
sequence is added to I−, the set negative samples.

Step 2: To learn the DFA Σ = (S,A, γ) AMLSI uses a
variant (Grand, Fiorino, and Pellier 2020b) of a classical reg-
ular grammar learning algorithm called RPNI (Oncina and
Garcı́a 1992). The learning is based on both I+ and I−.

Step 3: AMLSI begins by inducing the preconditions and
effects of the actions. For the preconditions prec(a) of ac-
tion a, AMLSI computes the logical propositions that are in
all the states preceding a in Σ:

prec(a) = ∩s∈preset(a)λ(s)

For the positive effects add(a) of action a, AMLSI com-
putes the logical propositions that are never in states before
the execution of a, and always present after a execution:

add(a) = ∩s∈preset(a)λ(s) \ prec(a)
Dually,

del(a) = prec(a) \ ∩s∈postset(a)λ(s)

Once preconditions and effects are induced, actions are
lifted to PDDL operators based on OI-subsumption (sub-
sumption under Object Identity) (Esposito et al. 2000): first
of all, constant symbols in preconditions and effects are sub-
stituted by variable symbols. Then, the less general precon-
ditions and effects, i.e. preconditions and effects encoding
as many propositions as possible, are computed as intersec-
tion sets. This generalization method allows to ensure that
all the necessary preconditions, i.e. the preconditions allow-
ing to differentiate the states where actions are applicable
from states where they are not, to be rightfully coded in the
corresponding operators.

Step 4: To deal with noisy and partial state observations,
AMLSI starts by refining the operator effects to ensure
that the generated operators allow to regenerate the induced
DFA. To that end, AMLSI adds all the effects ensuring that
each transition in the DFA are feasible. Then, AMLSI refines
the preconditions of the operators. As in (Yang, Wu, and
Jiang 2007), it makes the following assumptions: the nega-
tive effects of an operator must be used in its preconditions.
Thus, for each negative effect of an operator, AMLSI adds
the corresponding proposition in the preconditions. Since ef-
fect refinements depend on preconditions and precondition
refinements depend on effects, AMLSI repeats these two re-
finements steps until convergence, i.e., no more precondition
or effect is added. Finally, AMLSI performs a Tabu Search to
improve the PDDL operators independently of the induced
DFA, on which operator generation is based. Once the Tabu
Search reaches a local optimum, AMLSI repeats all the three
refinement steps until convergence.

4 The HierAMLSI approach
HierAMLSI generates the set of observations Ω by us-
ing random walks to learn Σ = (S, T, γ) and deduce
P = (L,C,A, S,M, s0, wI , g, δ, τ, λ, σ, ζ). HierAMLSI
makes the same assumptions than AMLSI: L, A, S, s0 are
known but also C, the decomposition function ζ and the
observation function λ possibly partial and noisy (a partial
observation is a state where some propositions are missing
and a noisy observation is a state where the truth value of a
proposition is erroneous). No knowledge of the goal states g
is required. Once Σ is learned, HierAMLSI has to deduce δ
from the transition function γ and σ from the decomposition
function ζ.

Like AMLSI, HierAMLSI uses random walks to generate
Ω and makes the same assumptions.

HierAMLSI has been devised to solve HTN learning
problems. In practice, it computes P as HDDL domain and
problem files (Höller et al. 2020; Höller et al. 2019).

Proceedings of the 5th Workshop on Hierarchical Planning

3

Regarding the training dataset, HierAMLSI uses random
walks to generate Ω. HierAMLSI makes the same assump-
tions than AMLSI. Once the DFA is learned, HierAMLSI
generates the set of methods σ and infers the action precon-
dition, positive and negative effect functions in δ from the
state transition function γ. Finally, the methods and opera-
tors of the HDDL domain file are induced from σ and δ.

The HierAMLSI approach consists of 4 steps:
1. Generation of the observations. HierAMLSI produces a

set of observations Ω by using a random walk. In section
4.1, we will present how HierAMLSI is able to efficiently
exploit these observations by taking into account not only
the fact that some task are decomposable in certain states
and their decomposition but also that others are not.

2. DFA Learning. HierAMLSI learns a DFA approximating
the language L(P) (see Section 4.2).

3. HTN Methods generation. HierAMLSI generates from
the DFA learned previously a set of HTN Methods al-
lowing to decompose all tasks observed in Ω (see Section
4.3).

4. Action model and HTN Methods precondition learn-
ing. Once HTN Methods have been learned, HierAMLSI
have to learn the action model, i.e. primitive tasks pre-
conditions and effects and the HTN Methods precon-
ditions. To do this, HierAMLSI treat HTN Methods as
primitive tasks and learn an action model containing both
methods and primitive tasks using the learning and re-
finement techniques proposed by the AMLSI approach
(see Section 3).

The rest of this Section will be illustrated using the IPC1

Gripper domain. In this domain, a robot moves balls in dif-
ferent rooms using its two grippers r and l. This domain
contains three compound tasks: goto(ra) the robot goes into
the room ra, move1ball(b1 ra) the robots move the ball b1
in the room ra and move2balls(b1 b2 ra) the robot moves
balls b1 and b2 in the room ra.

4.1 Observation Generation
The data generation process is similar to the generation
method of the AMLSI algorithm (Grand, Fiorino, and Pellier
2020b). To generate the observations in Ω, HierAMLSI uses
random walks by querying a blackbox. HierAMLSI chooses
randomly a (primitive or compound) task t. If the task t is
decomposable, the blackbox returns the final decomposition
ϕ containing only primitive task and this decomposition is
added to the current primitive task sequence. This procedure
is repeated until the selected task is not applicable to the
current state. The applicable prefix of the primitive task se-
quence is then added to I+, the set of positive samples, and
the complete sequence, whose last task is not applicable, is
added to I−, the set of negative samples. Random walks are
repeated until I+ and I− achieve an arbitrary size.

4.2 DFA Learning
As mentioned in Section 2 the language L(P) is not neces-
sary regular, then the purpose of this step is to learn a DFA

1https://www.icaps-conference.org/competitions/

Algorithm 1: Heuristic HTN Methods learning
1 Initialization(M)
2 for i = 1 : |C| do
3 for c ∈ C do
4 M ′[c]← greedy(c,M, i)
5 for c ∈ C do
6 if |M ′[c]| < |M [c]| then
7 M [c]←M ′[c]
8 return M

approximating this language. More precisely, the DFA learn-
ing step is divided in 2 steps: (1) HierAMLSI learns a DFA
corresponding to the language LC(P) which is defined by
the state transition system defined by the preconditions and
effects of the primitive tasks and (2) HierAMLSI adds tran-
sitions to represent compound tasks in the DFA to allow to
approximate the language L(P).

Step 1: Primitive task DFA Learning HierAMLSI starts
by using the DFA Learning algorithm proposed by (Grand,
Fiorino, and Pellier 2020b) to learn the DFA containing only
primitive tasks.

Step 2: Task DFA Induction Once the Primitive Task
DFA has been learned, HierAMLSI induces the Task DFA
by adding compound task transition in the DFA, i.e. by
adding transitions whose labels are compound task la-
bels. For instance, suppose we have the compound task
move2balls(b1 b2 rb) has been decomposed by primi-
tive tasks (move(ra rb), pick(b1 r rb), pick(b2 l rb),
move(rb ra), drop(b1 r ra), drop(b2 l ra)) in node 0 and
reached the node 6. Then we add the following transitions
in the DFA γ(move2balls(b1 b2 rb), 0)→ 6. Figure 2 gives
an example of Task DFA.

4.3 HTN Methods Learning
Once the Task DFA is induced HierAMLSI can directly ex-
tract HTN Methods from the Task DFA. However, it is pos-
sible that a large number of HTN Methods has been gener-
ated. For instance, let’s take the Task DFA in Figure 2. For
the compound task move1ball(?b ?r) HierAMLSI can gen-
erate several methods:
ϕ1 = (move(?r ?r1), pick(?b ?g ?r1),move(?r1 ?r), drop(?b ?g ?r))
ϕ2 = (pick(?b ?g ?r1),move(?r1 ?r), drop(?b ?g ?r))
ϕ3 = (goto(?r1), pick(?b ?g ?r1),move(?r1 ?r), drop(?b ?g ?r))
ϕ4 = (goto(?r1), pick(?b ?g ?r1), goto(?r), drop(?b ?g ?r))

. . .

Some of these decomposition are redundant. To facili-
tate proof reading we want a more compact description of
the HTN Methods. More precisely, we want minimizing the
set of methods allowing to decompose observed compound
tasks. Then, the HTN Methods learning problem can be re-
duce to a variant of the set cover problem (Karp 1972) which
is NP-Complete.

The Greedy algorithm (Jungnickel 1999) is a classical
way to approximate the solution in a polynomial time. At
each stage of the Greedy algorithm, HierAMLSI chooses

Proceedings of the 5th Workshop on Hierarchical Planning

4

start 0 1 2

3 4 5 6

7 8
move(ra rb)

move2balls(b1 b2 ra)

move2balls(b1 b2 ra)

goto(rb)

goto(rb)

pick(b1 r rb)

pick(b2 l rb)

move(rb ra)

goto(ra)

goto(ra)

drop(b1 r ra) drop(b2 l ra)

move(rb ra)

goto(ra)

drop(b1 r ra)

move1ball(b1 ra)

move1ball(b1 ra)

Figure 2: DFA learning steps The Primitive Task DFA is the DFA containing only Primitive Task, i.e. black transition, and the
Task DFA contains Compound Tasks, i.e. red transitions, in addition

move1ball move2balls

goto pick drop

move

Figure 3: Tasks dependencies for the IPC Gripper domain

the method that allows to decompose the largest number of
tasks.

The main drawback of this approach is that it does not
take into account the fact that there are dependencies be-
tween tasks. For instance, the optimal way to decompose
the compound task move1ball(?b ?r) is ϕ4 = (goto(?r1),
pick(?b ?g ?r1), goto(?r), drop(?b ?g ?r)) (see Figure 3).
So the compound task move1ball(?b ?r) depends of the
compound task goto(?r). So, as long as all methods for the
compound task goto(?r) have been generated, the Greedy
algorithm will always prioritize ϕ1 and ϕ2 to ϕ4. Indeed,
the decomposition ϕ4 can be added to the current solution
of the Greedy algorithm if and only if all methods for the
compound task goto(?r) have been added.

Heuristic Approach We propose a sound, complete and
polynomial Heuristic approach (see Algorithm 1) taking into
account dependencies between tasks. Figure 4 gives an ex-
ample for the Gripper domain.

HierAMLSI starts by initializing the set of HTN methods
using the decomposition ϕ observed during the observation
generation step (see Section 4.1). For each Compound Task

we have therefore a set of HTN Methods containing only
Primitive Tasks and no Compound Task dependencies. For
instance, for the Compound Task move1ball(?b ?r) we have
the two following decomposition:

ϕ1 = (pick(?b ?g ?r1),move(?r1 ?r), drop(?b ?g ?r))
ϕ2 = (move(?r? ?r1)), pick(?b ?g ?r1),move(?r1 ?r), drop(?b ?g ?r))

Then, at each iteration AMLSI use the greedy algorithm to
compute a new set of HTN Methods with an additional Com-
pound Task dependency. Finally, if the new HTN Methods
set is smaller than the one learned in the previous iteration,
then it is retained. For instance, for the Gripper domain, sup-
pose we have the two following decomposition for the Com-
pound Task goto(?r):

ϕ1 = ()
ϕ2 = (move(?r1 ?r)))

Then, the Greedy algorithm return only one decomposi-
tion for the Compound Task move1ball(?b?r): (goto(?r1)),
pick(?b ?g ?r1), goto(?r), drop(?b ?g ?r)).

Lemma 1. The Heuristic approach is sound and complete.
The heuristic approach generates a set of HTN Methods
M able to decompose all observed compound tasks in the
dataset Ω.

Proof. During the observation generation step (see Section
4.1), for each generated Compound Task t, we have its final
decomposition ϕ. So at the initialization step of the Heuris-
tic approach, there at least one method able to decompose
each observed Task. The initialization is therefore sound and
complete. Moreover the following steps of the Heuristic ap-
proach generates methods decomposing as many tasks as
the previous steps, then the Heuristic approach is sound and
complete.

Lemma 2. The Heuristic approach is polynomial.

Proceedings of the 5th Workshop on Hierarchical Planning

5

goto(?r) : ϕ1 = (), ϕ2 = move(?r1 ?r)
move2balls(?b1 ?b2 ?r) : ϕ1 = (pick(?b1 ?g1 ?r1), pick(?b1 ?g1 ?r1),move(?r1 ?r), drop(?b1 ?g1 ?r), drop(?b1 ?g1 ?r))

ϕ2 = (move(?r ?r1), pick(?b1 ?g1 ?r1), pick(?b1 ?g1 ?r1),move(?r1 ?r), drop(?b1 ?g1 ?r), drop(?b1 ?g1 ?r))
move1ball(?b ?r) : ϕ1 = (pick(?b ?g ?r1),move(?r1 ?r), drop(?b ?g ?r))

ϕ2 = (move(?r? ?r1)), pick(?b ?g ?r1),move(?r1 ?r), drop(?b ?g ?r))

(a) Step 0: Initialization with no compound task dependency

goto(?r) : ϕ1 = (), ϕ2 = move(?r1 ?r)
move2balls(?b1 ?b2 ?r) : ϕ1 = (goto(?r1), pick(?b1 ?g1 ?r1), pick(?b1 ?g1 ?r1), goto(?r), drop(?b1 ?g1 ?r), drop(?b1 ?g1 ?r))
move1ball(?b ?r) : ϕ1 = (goto(?r1), pick(?b ?g ?r1), goto(?r), drop(?b ?g ?r))}

(b) Step 1: Induction with 1 compound task dependence

goto(?r) : ϕ1 = (), ϕ2 = move(?r1 ?r)
move2balls(?b1 ?b2 ?r) : ϕ1 = (goto(?r1), pick(?b1 ?g1 ?r1), pick(?b1 ?g1 ?r1), goto(?r), drop(?b1 ?g1 ?r), drop(?b1 ?g1 ?r))
move1ball(?b ?r) : ϕ1 = (goto(?r1), pick(?b ?g ?r1), goto(?r), drop(?b ?g ?r))}

(c) Step n: Induction with n compound task dependence

Figure 4: HTN Methods learning example

Domain # Primitive Task # Compound Task # Methods # Predicates
Blocksworld 4 4 8 5

Gripper 3 3 4 4
Zenotravel 4 2 5 7
Transport 3 4 6 5

Childsnack 6 1 2 12

Table 1: Benchmark domain characteristics. From left to
right, the number of Primitive Tasks, the number of Com-
pound Tasks, the number of Methods and the number of
Predicates for each IPC domain.

Proof. First of all, we have O(|I+|)2 nodes in the DFA.
Then, in the worst case, we have a possible HTN Method
for each node pair, then we have O(|I+|2) possible HTN
Methods in the DFA. Then, the complexity of the Greedy
algorithm is O(|I+|3) in term of tested decomposition. Fi-
nally, according to the algorithm 1, the Greedy algorithm is
repeated |C|2 times. Finally, the complexity of the Heuristic
approach is O(|C|2.|I+|3).

5 Exprimentation
The purpose of this evaluation is to evaluate the performance
of HierAMLSI though two variants: (1) we evaluate the
performance of HierAMLSI when only HTN Methods are
learned, i.e. the action model is known and (2) we evaluate
the performance of HierAMLSI when both HTN Methods
are learned and the action model is unknown. We use 4 ex-
perimental scenarios3:
1. Complete intermediate observations (100%) and no noise

(0%).
2. Complete intermediate observations (100%) and high

level of noise (20%).
2|I+| denote the number of primitive tasks in the positive sam-

ple
3Note that these are the experimental scenarios used to test

AMLSI on which HierAMLSI is built

3. Partial intermediate observations (25%) and no noise
(0%).

4. Partial intermediate observations (25%) and high level of
noise (20%).

5.1 Experimental Setup
Our experiments are based on 5 HDDL (Höller et al.
2020; Höller et al. 2019) domains (see Table 1) from the
IPC 2020 competition: Blocksworld, Childsnack, Transport,
Zenotravel and Gripper.

HierAMLSI learns HTN domains from one instance. To
avoid performances being biased by the initial state, Hier-
AMLSI is evaluated with different instances. Also, for each
instance, to avoid performances being biased by the gener-
ated observations, experiments are repeated five times. All
tests were performed on an Ubuntu 14.04 server with a
multi-core Intel Xeon CPU E5-2630 clocked at 2.30 GHz
with 16GB of memory. PDDL4J library (Pellier and Fiorino
2018) was used to generate the benchmark data.

5.2 Evaluation Metrics
HierAMLSI is evaluated using the accuracy (Zhuo, Nguyen,
and Kambhampati 2013) that measures the learned domain
performance to solve new problems.

Formally, the accuracy Acc = N
N∗ is the ratio between N ,

the number of correctly solved problems with the learned
domain, and N∗, the total number of problems to solve. In
the rest of this section the accuracy is computed over 20
problems. The problems are solved with the TFD planner
(Pellier and Fiorino 2020) provided by the PDDL4J library.
Plan validation is done with VAL, the IPC competition vali-
dation tool (Howey and Long 2003).

5.3 Discussion
Table 5 shows the accuracy of HierAMLSI obtained on the 5
domains of our benchmarks when varying the training data

Proceedings of the 5th Workshop on Hierarchical Planning

6

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

Blocksworld

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

Gripper

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

Zenotravel

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

Transport

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

Childsnack

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

0 100 200 300 400 500 600
0

20

40

60

80

100

Size

A
cc
u
ra
cy

(%
)

Complete observation and no noise

Partial observation and no noise

Complete observation and high level of noise

Partial observation and high level of noise

Only HTN Methods Action Model + HTN Methods

Figure 5: Performance of HierAMLSI when the training data set size increases in number of tasks in terms of Accuracy.

set size. The size of the training set is indicated in number
of tasks.

First of all, we observe that when HierAMLSI learns only
the set of HTN Methods, learned domains are generally
optimal (Accuracy = 100%) with 600 tasks whatever the
experimental scenario. Also, 100 tasks are generally suffi-
cient to learn accurate domains (Accuracy > 50%). Then,
when HierAMLSI learns both action model and HTN Meth-
ods performances are similar when observations are noise-
less. However, when observations are noisy, performances
are downgraded for some domains: Blocksworld and Child-
snack when observations are complete and Blocksworld,
Transport and Childsnack when observations are partial.
This is due to the fact that there are learning error in the ac-
tion model learned. However, learned domains remain accu-
rate when there are at least 300 tasks in the training dataset.

To conclude, we have shown experimentally that Hier-
AMLSI learns accurate domains. More precisely, when the
action model is known, HierAMLSI generally learns opti-
mal domains. Also the performances are downgraded when
HierAMLSI has to learn the action model in addition to the

set of HTN methods, but the learned domains remain accu-
rate. Performance degradation are due to the learning errors
in the action model.

6 Related Works
Many approaches have been proposed to learn HDDL do-
mains. These approaches can be classified according to the
input data of the learning process. The input data can be
plan ”traces” obtained by resolving a set of planning prob-
lems, annoted plans (see Figure 6a), decomposition tree (see
Figure 6b) or random walks. The input data can contain in
addition to the tasks also states which can be fully observ-
able (FO) or partially observable (PO), or noisy. Also, these
approaches can be classified according to the output. The
output can be the action model, the set of HTN Methods
and HTN Methods preconditions. Table 2 summarises these
classifications.

A first group of approaches only learns the set of HTN
Methods. First of all, (Xiaoa et al. 2019) takes as input a
set of plan traces and HTN Methods and proposes an algo-
rithm to update incomplete HTN Methods by task insertions.

Proceedings of the 5th Workshop on Hierarchical Planning

7

Algorithm Input Output
Input Environment Noise Level Action Model HTN Methods HTN Methods Preconditions

(Xiaoa et al. 2019) Plans FO 0% •
HTN-Maker Plans FO 0% •

(Hogg, Kuter, and Munoz-Avila 2010) Plans FO 0% •
HTN-MakerND Plans FO 0% •
(Li et al. 2014) Plans FO 0% •

(Garland and Lesh 2003) Annoted Plans PO 0% •
LHTNDT Annoted Plans FO 0% •
CAMEL Plans FO 0% • •

HDL Plans FO 0% • •
HTN-Learner Decomposition Trees PO 0% • • •
HierAMLSI Random Walks PO 20% • • •

Table 2: State-of-the-art action model learning algorithms. From left to right: the kind of input data, the kind of environment:
Fully Observable or Partially Observable, the maximum level of noise in observations, the kind of output

move(rb ra)

goto(ra)

pick(b1 l ra) pick(b2 r ra) move(ra rb)

goto(rb)

drop(b1 l rb)drop(b2 r rb)

move2balls(b1 b2 rb)

(a) An annoted plan

move(rb ra)

goto(ra) pick(b1 l ra) pick(b2 r ra)

move(ra rb)

goto(rb) drop(b1 l rb)drop(b2 r rb)

move2balls(b1 b2 rb)

(b) A decomposition tree

Figure 6: Input examples

Then HTN-Maker (Hogg, Munoz-Avila, and Kuter 2008)
and HTN-MakerND (Hogg, Kuter, and Munoz-Avila 2009)
takes as input plan trace generated from STRIPS planner
and annoted task provided by a domain expert. Then, (Hogg,
Kuter, and Munoz-Avila 2010) proposed an algorithm based
on reinforcement learning. Then, (Li et al. 2014) proposed
an algorithm taking as input only plan traces. This algorithm
builds, from plan traces, a context free grammar (CFG) al-
lowing to regenerate all plans. Then, methods are gener-
ated using CFG: one method for each production rule in the
CFG. Then (Garland and Lesh 2003) and (Nargesian and
Ghassem-Sani 2008) proposed to learn HTN Methods from
annoted plan. Annoted plan are plan segmented with the dif-
ferent tasks solved. Figure 6a gives an example of annoted
plan. However, obtaining these annotated examples is diffi-
cult and needs a lot of human effort.

A second group of approach learns HTN Methods pre-
conditions. First of all, the CAMEL algorithm (Ilghami
et al. 2002) learns HTN Methods and their the precondi-
tions of HTN Methods from observations of plan traces,
using the version space algorithm. An annoted task is an
triplet (n, Pre,Eff) where n is a task, Pre is a set of
proposition known as the preconditions and Eff is a set of
atoms known as the effects. These approach use annoted task
to build incrementally HTN Methods with preconditions.
Then, the HDL algorithm (Ilghami, Nau, and Muñoz-Avila

2006) takes as input plan traces. For each decomposition in
plan traces, HDL checks if there exist a method responsible
of this decomposition. If not, HDL creates a new method and
initializes a new version space to capture its preconditions.
Preconditions are learned in the same way as in the CAMEL
algorithm.

Only HTN-Learner proposes to learn Action Model and
HTN Methods from decomposition trees. A decomposi-
tion tree is a tree corresponding to the decomposition of a
method. Figure 6b gives an example of decomposition tree.

7 Conclusion
In this paper we have presented HierAMLSI, a novel algo-
rithm to learn HDDL domains. HierAMLSI is built on the
AMLSI approach. HierAMLSI is composed of four steps.
The first step consists, as AMLSI, in building two train-
ing sets of feasible and infeasible action sequences. In the
second step, HierAMLSI induces a DFA. The third step is
the generation of the HTN Methods, and the last step learns
HTN Methods preconditions and the action model. Our ex-
perimental results show that HierAMLSI is able to learn ac-
curately both action models and HTN Methods from partial
and noisy datasets.

Future works will focus on extending HierAMLSI in or-
der to learn more expressive action model.

Acknowledgments
This research is supported by the French National Re-
search Agency under the ”Investissements d’avenir” pro-
gram (ANR-15-IDEX-02) on behalf of the Cross Disci-
plinary Program CIRCULAR.

References
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104–137.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2013. Ac-
quiring planning domain models using LOCM. Knowledge
Engineering Review, 28(2): 195–213.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN Plan-
ning: Complexity and Expressivity. In Proc. of AAAI, 1123–
1128.

Proceedings of the 5th Workshop on Hierarchical Planning

8

Esposito, F.; Semeraro, G.; Fanizzi, N.; and Ferilli, S. 2000.
Multistrategy Theory Revision: Induction and Abduction in
INTHELEX. Machine Learning, 38(1-2): 133–156.
Garland, A.; and Lesh, N. 2003. Learning hierarchical task
models by demonstration. MERL.
Grand, M.; Fiorino, H.; and Pellier, D. 2020a. AMLSI: A
Novel and Accurate Action Model Learning Algorithm. In
Proc of KEPS workshop.
Grand, M.; Fiorino, H.; and Pellier, D. 2020b. Retro-
engineering state machines into PDDL domains. In Proc
of ICTAI, 1186–1193.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2009. Learning
hierarchical task networks for nondeterministic planning do-
mains. In Proc of IJCAI.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2010. Learning
methods to generate good plans: Integrating htn learning and
reinforcement learning. In Proc of AAAI, volume 24.
Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowl-
edge Engineering Required. In Proc of AAAI, 950–956.
Höller, D. 2021. Translating totally ordered HTN planning
problems to classical planning problems using regular ap-
proximation of context-free languages. In Proc of ICAPS,
volume 31, 159–167.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Prof of ECAI, 447–452.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the Expressivity of Planning Formalisms through
the Comparison to Formal Languages. In Proc of ICAPS,
158–165.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2019. Hierarchical Planning in
the IPC. CoRR, abs/1909.04405.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proc of AAAI, 9883–9891. AAAI Press.
Howey, R.; and Long, D. 2003. VAL’s progress: The auto-
matic validation tool for PDDL2. 1 used in the international
planning competition. In Proc of the International Workshop
on the International Planning Competition, 28–37.
Ilghami, O.; Nau, D. S.; and Muñoz-Avila, H. 2006. Learn-
ing to Do HTN Planning. In Proc of ICAPS, 390–393.
Ilghami, O.; Nau, D. S.; Muñoz-Avila, H.; and Aha, D. W.
2002. CaMeL: Learning Method Preconditions for HTN
Planning. In Proc of ICAPS, 131–142.
Jungnickel, D. 1999. The Greedy Algorithm. In Graphs,
Networks and Algorithms, 129–153. Springer.
Karp, R. M. 1972. Reducibility Among Combinatorial Prob-
lems. In Proc. of a symposium on the Complexity of Com-
puter Computations, 85–103.
Li, N.; Cushing, W.; Kambhampati, S.; and Yoon, S. 2014.
Learning probabilistic hierarchical task networks as proba-
bilistic context-free grammars to capture user preferences.

ACM Transactions on Intelligent Systems and Technology,
5(2): 1–32.
Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In Proc of UAI, 614–623.
Nargesian, F.; and Ghassem-Sani, G. 2008. LHTNDT: Learn
HTN Method Preconditions using Decision Tree. In Proc of
ICINCO-ICSO, 60–65.
Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Muñoz-Avila, H.;
Murdock, J. W.; Wu, D.; and Yaman, F. 2005. Applications
of SHOP and SHOP2. IEEE Intelligent Systems, 20(2): 34–
41.
Oncina, J.; and Garcı́a, P. 1992. Inferring regular languages
in polynomial update time. In Pattern Recognition and Im-
age Analysis: Selected Papers from the IVth Spanish Sympo-
sium, volume 1, 49–61. World Scientific.
Pellier, D.; and Fiorino, H. 2018. PDDL4J: a planning do-
main description library for java. Journal of Experimental
& Theoretical Artificial Intelligence, 30(1): 143–176.
Pellier, D.; and Fiorino, H. 2020. Totally and Partially Or-
dered Hierarchical Planners in PDDL4J Library. CoRR,
abs/2011.13297.
Xiaoa, Z.; Wan, H.; Zhuoa, H. H.; Herzigb, A.; Perrusselc,
L.; and Chena, P. 2019. Learning HTN Methods with Pref-
erence from HTN Planning Instances. Proc of HPlan work-
shop, 31.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence, 171(2-3): 107–143.
Zhuo, H. H.; Hu, D. H.; Hogg, C.; Yang, Q.; and Muñoz-
Avila, H. 2009. Learning HTN Method Preconditions and
Action Models from Partial Observations. In Proc of IJCAI,
1804–1810.
Zhuo, H. H.; Nguyen, T. A.; and Kambhampati, S. 2013. Re-
fining Incomplete Planning Domain Models Through Plan
Traces. In Proc of IJCAI, 2451–2458.

Proceedings of the 5th Workshop on Hierarchical Planning

9

An Efficient HTN to STRIPS Encoding for Concurrent Plans

Nicolas Cavrel, Damien Pellier, Humbert Fiorino
Univ. Grenoble Alpes - LIG

Grenoble, France
{nicolas.cavrel, damien.pellier, humber.fiorino}@univ-grenoble-alpes.fr

Abstract

The Hierarchical Task Network (HTN) formalism is
used to express a wide variety of planning problems in
terms of decompositions of tasks into subtaks. Many
techniques have been proposed to solve such hierar-
chical planning problems. A particular technique is
to encode hierarchical planning problems as classical
STRIPS planning problems. One advantage of this tech-
nique is to benefit directly from the constant improve-
ments made by STRIPS planners. However, there are
still few effective and expressive encodings. In this pa-
per, we present a new HTN to STRIPS encoding al-
lowing to generate concurrent plans. We show exper-
imentally that this encoding outperforms previous ap-
proaches on hierarchical IPC benchmarks.

Introduction
The Hierarchical Task Network (HTN) formalism (Erol,
Hendler, and Nau 2003) is used to express a wide variety
of planning problems in terms of decompositions of tasks
into subtaks. HTN planning is used in many applications
as, for instance, in task allocation for robot fleets (Milot
et al. 2021), video games (Menif, Jacopin, and Cazenave
2014) or industrial contexts such as software deployment
(Georgievski 2020). One possible explanation is that HTN
formalism usually fits better for real-world applications and
domain experts’ mindset: a HTN planning problem is ex-
pressed as a set of tasks to achieve rather than an objec-
tive state to reach, and the ”processes” achieving these tasks
as methods, that is to say task decompositions into ”sim-
plier” subtasks. Despite the success of hierarchical planning
and the recent revival of this planning technique (Bercher,
Alford, and Höller 2019), there is comparatively less work
on hierarchical planning than in classical STRIPS planning
(Fikes and Nilsson 1971). The work of the planning com-
munity has been more focused on the development of tech-
niques and heuristics for STRIPS planning, e.g., (Hoffmann
2000; Bryce and Kambhampati 2007; Hoffmann and Nebel
2011).

Many techniques are used to solve hierarchical plan-
ning problems. Some ad-hoc HTN solvers have been imple-
mented (Bercher, Keen, and Biundo 2014; Erol 1996; Nau
et al. 2003). Another approach consists in encoding HTN
problems into SAT problems (Schreiber et al. 2019) or into

constraint programming problems (Vidal and Geffner 2006).
One particular technique of encoding is to translate hier-

archical planning problems as STRIPS problems. Encoding
techniques benefit directly from the constant improvements
of STRIPS planners. To our best knowledge, two HTN to
STRIPS encodings have been published so far (Alford et al.
2016; Alford, Kuter, and Nau 2009) (very recent work have
been published concurrently to this paper, which will not
be studied here (Behnke et al. 2022)). However, they have
some limitations on the type of problems they can address
and only produce sequential plans. For instance, one of the
best current encodings is (Alford et al. 2016). It translates
any HTN problem into STRIPS, making it solvable by any
STRIPS planner. However, this encoding has three down-
sides:

1. It depends on a progression bound, which is an inte-
ger parameter bounding the size of the task network,
meaning that the maximum size of the task network has
to be estimated before encoding the HTN problem into
STRIPS.

2. The resulting solution plans are sequential, a single ac-
tion being performed at each time. However, many real-
world applications are intrinsically distributed, and need
concurrent actions at each time.

3. The encoding generates an high number of actions in
the translated STRIPS problem. This makes the actual
grounding of the problem difficult. This is particularly
true when the makespan increases, as the number of
translated actions greatly expands with it.

The contribution of the paper is twofold: (1) we introduce
a search procedure called CPFD (Concurrent Partial For-
ward Decomposition) to generate concurrent plans, and (2)
propose an encoding of this search procedure into STRIPS
actions.

The rest of this paper is as follows. Section 1 defines the
problem statement. Section 2 presents the Concurrent Par-
tial Forward Decomposition procedure (CPFD). Section 3
introduces the concrete STRIPS encoding of CPFD, called
Concurrent Task Holders Decomposition encoding (CTHD).
In the last section, we compare CTHD with HTN2STRIPS
(Alford et al. 2016), which is the current state-of-the-art en-
coding from HTN to STRIPS.

Proceedings of the 5th Workshop on Hierarchical Planning

10

Problem statement
STRIPS Planning Problems
A STRIPS planning problem is a tuple P = (L,A, I,G)
where L is a finite set of logical propositions, A is a finite
set of actions, I ⊆ L is the initial state, and G ⊆ L is the
goal.

An action a is a triplet a = (pre(a), add(a), del(a))
where pre(a) is the action’s preconditions, add(a) is its
positive effects and del(a) its negative ones, each a set of
propositions. Two actions (a, b) are independent iff del(a)∩
(pre(b)∪ add(b)) = ∅ and del(b)∩ (pre(a)∪ add(a)) = ∅.
Note that action independence only depends on action defi-
nitions. In the following, for all a ∈ A, nInd(a) will denote
the set of actions b ∈ A dependent with a.

A state s is a set of logical propositions. The result of
applying an action a to state s is a state s′ defined by the
transition function s′ = γ(s, a) = (s − del(a)) ∪ add(a)
if pre(a) ⊆ s, and undefined otherwise. Let an action layer
π be a set of pairwise independent actions, and pre(π) =⋃

a∈π pre(a). add(π) and del(π) are defined in the same
way. By extension s′ = γ(s, π) = (s − del(π)) ∪ add(π)
if pre(π) ⊆ s, and undefined otherwise. Note that the ac-
tions of π can be executed concurrently or in any sequential
permutation and still yield exactly the same state s′.

A layered plan Π is a sequence of action layers
⟨π1, . . . , πn⟩. Let γ(s,Π) = γ(γ(s, π1), ⟨π2, . . . , πn⟩). πi

precedes πj if i < j. Likewise ai ≺ aj if ai ∈ πi,
aj ∈ πj , and πi precedes πj . A layered plan Π is a solu-
tion to a STRIPS planning problem P = (L,A, I,G) iff
G ⊆ γ(s,Π) (see Fig. 1).

In the following, a conditional action will be used, we
used the semantic defined by the ADL formalism (Pednault
1994). As a regular action, a conditional one is defined by a
set of preconditions. Its effects however depend on a set of
conditions. For each condition verified, the corresponding
effect is applied. This action is used for simplicity reasons
but can easily be converted into a set of non condition ac-
tions.

HTN Planning Problems
We build on STRIPS planning problem definition to define
a HTN planning problem as a tuple P = (L, T , A,M, I, tn)
where L is a finite set of logical propositions, T is a fi-
nite set of tasks, A is a finite set of actions, M is a fi-
nite set of methods, I ⊆ L is the initial state and tn the
initial task network. There are two kind of tasks: primi-
tive tasks that can be resolved by a STRIPS action a =
(task(a), pre(a), add(a), del(a)) ∈ A , and compound
tasks, which can be recursively decomposed into either
primitive or compound tasks by a method m ∈M .

A task network is a tuple tn = (T,≺, α) such that T is a
finite set of tasks symbols, α : T 7→ T maps indexes to tasks
in T , and≺ is a partial order over T representing precedence
constraints: t precedes t′ if t ≺ t′, or equivalently (t, t′) ∈≺.
≺ is transitive. A task α(t), t ∈ T is trailing if ∀t′ ∈ T ,
(t′, t) /∈≺ (t has no predecessor in T). trail(tn) will denote
the set of trailing tasks in T . Symmetrically, a task α(t), t ∈

Figure 1: A layered plan with the successive states resulting
from the action layer application. Circles represent states,
and rectangles action layers.

T is a last task if ∀t′ ∈ T, (t, t′) /∈≺ (t has no successor in
T).

A method is a tuple m = (task(m), pre(m), tn(m))
where task(m) is the compound task decomposed by the
method m, pre(m) is the method’s preconditions and tn(m)
is a task network. A method m is a resolver of a compound
task τ if task(m) = τ . Note that a given compound task can
have various methods to resolve it: task(m) = task(m′) =
· · · = τ .

An action a = (task(a), pre(a), add(a), del(a)) can be
applied to resolve a primitive task α(t) of the initial task
network tn if t is trailing, task(a) = α(t) and pre(a) ⊆ I .
The result is a new problem P ′ = (L, T ,M, I ′, tn′) where
I ′ = γ(I, a) and tn′ = (T \ {t}, {(t′, t′′) ∈ ≺ | t′\ =
t}, α\{(t, α(t))}). In a symmetrical manner, a method m =
(task(m), pre(m), tn(m)) can be applied to resolve a com-
pound task α(t) of the task network tn if t is trailing,
task(m) = α(t) and pre(m) ⊆ I . The result of apply-
ing the method m with tn(m) = (Tm,≺m, αm) is a new
problem P ′ = (L, T ,M, I, tn′) where tn′ = (T ′,≺′, α′)
and:

T ′ = (T \ {t}) ∪ Tm

≺′ = {(t′, t′′) ∈ ≺ | t′′ ̸= t} ∪ ≺m ∪
{(t′′, t′) ∈ Tm × T | (t, t′) ∈≺}

α′ = {(t′, α(t′)), t′ ∈ T\{t}} ∪ αm

In other words, in ≺′ we keep all the precedence constraints
of ≺ that does not involve t, add all the precedence con-
straints in ≺m, and propagate precedence transitivity be-
tween ≺ and ≺m through t.

Applying either an action a or a method m to resolve a
task in a planning problem P is called a progression. If tp ∈
T is a primitive task of P , resolving tp by a is a progression
denoted P 7→a

tp P ′. Similarly, if tc is a compound task of P ,
decomposing tp using m is a progression denoted P 7→m

tc
P ′.

To conclude, a layered plan Π = ⟨π1, . . . , πn⟩ is a solu-
tion for a HTN planning problem P = (L, T , A,M, I, tn) if
(1) there exists a sequence of progressions that transforms P
into P ′ = (L, T ,M, I ′, (∅,≺′)) (i.e. all the tasks of P have
been resolved), and (2) ai ≺ aj ⇔ task(ai) ≺′ task(aj)
(i.e. action precedence constraints in the layered plan Π are
equivalent to the primitive task precedence constraints in
P ′). In section 2, we show how CPFD builds a layered solu-
tion plan by applying progressions on P .

Proceedings of the 5th Workshop on Hierarchical Planning

11

HTN to STRIPS Encoding Problems
The Hierarchical Task Network (HTN) formalism has been
shown to be more expressive than STRIPS (Erol, Hendler,
and Nau 2003). This means that any STRIPS problem can be
formulated as a HTN problem but not the other way around.
Therefore, the translation of a HTN problem into a STRIPS
problem is not always possible. However, it has been proven
by (Alford et al. 2016) that this translation is possible if the
size of the solution task network can be bounded. Given a
HTN problem and a sequential solution plan, the minimum
(respectively maximum) bound is the smallest (respectively
largest) number of tasks in any task network visited by the
sequence of progressions carried out to find this solution
plan.

In practice, not all problems have a maximum bound, but
all solvable problems have a minimum bound. These bounds
are not directly related to the length of a problem solutions,
though the minimum progression bound is smaller than the
optimal plan length1.

Our encoding also assumes the bound existence. In addi-
tion, we make two other assumptions on the HTN problem
to encode:
1. in the initial HTN problem, T is singleton. Otherwise,

it is always possible to add a root dummy-task and a
dummy-method to decompose it.

2. every method of the HTN problem has a task network
with a single last task. If a method does not have it, a
dummy-task with no successor is added to the task net-
work.

3. methods have no preconditions. Otherwise, a trailing
dummy action is added to the method task network with
no effects and the method’s preconditions.

These assumptions are made without loss of generality
and will simplify the notations in the following. These as-
sumptions were also made by the current state of the art en-
coding HTN2STRIPS (Alford et al. 2016).

Concurrent Partial-order Forward
Decomposition

In this section, we propose a recursive procedure to solve
HTN problems called CPFD (Concurrent Partial-order For-
ward Decomposition) and generate layered plans.

CPFD procedure is detailed in Alg. 1. CPDF is an adapta-
tion of PFD (Partial-order Forward Decomposition) (Ghal-
lab, Nau, and Traverso 2004) procedure to output layered
plans (see Figure 1). A layered plan is solution of a HTN
problem if actions resolve all the tasks of the task network,
and if the ordering constraints of the actions in the layered
plan satisfy the precedence constraints in this task network.
CPFD tries to solve recursively the trailing tasks as in the
PFD procedure. The difference lies on the resolution of the
primitive tasks: while PFD adds actions to a sequential plan,
CPFD adds them to layers of independent actions.

More precisely, CPFD takes as input four parameters: a
HTN problem P = (L, T , A,M, I, (T,≺)), a layered plan,

1For more details about the method to compute the progression
bound of the solution task network see (Alford et al. 2016)

the index i of the current layer πi and τ the set of primitive
tasks resolved by the actions in πi. The initial call of CPFD
is CPFD(P,Π = [[]], i = 0, τ = ∅). At each recursive call,
CPFD checks if the list of tasks T of the task network is
empty, i.e., no more tasks have to be resolved. If this condi-
tion is satisfied, the layered plan Π is a solution to P and Π
is returned. Otherwise, a task t ∈ T is non deterministically
selected among the trailing tasks (tasks without predecessors
with respect to precedence constraints), and a resolver is non
deterministically chosen. As in the PFD procedure, there are
two ways to resolve t depending on whether t is primitive or
compound.

Case 1. (Primitive task) The resolvers of t are actions a
whose preconditions are satisfied in the current state
I and that are independent of all the actions already
planned in the current layer πi. Two cases are possible:
either t has no resolvers and the current layer πi is empty,
meaning no action can solve t in the current state I , and
CPFD returns FAILURE. Or t has a resolver but this re-
solver is not an independent action in the current layer:
then CPFD moves to the next layer by applying to the
current state all the actions already committed in the cur-
rent layer. The idea is that t could be resolved by an ac-
tion in a next state concurrently with other independent
actions. Obviously, if t has an independent resolver a, a
is added to the current layer πi and t is added to the set
of resolved primitive tasks τ .

Case 2. (Compound task) CPFD computes all the meth-
ods resolving the compound task t, i.e., whose precon-
ditions are satisfied in the current state I . If there is no
method, then t cannot be solved, and CPFD returns FAIL-
URE. Otherwise, CPFD non deterministically chooses a
method m decomposing t, update the task set and the or-
dering constraints accordingly.

CPFD(P,Π, i, τ) is then called recursively until the tasks to
solve in P are emptied (T = ∅, line 2) or a failure condition
is met (line 9 and 24).

Theorem 1 Concurrent HTN is sound and complete.

Proof sketch (Soundness) All produced plans come from
a progression of the initial task network, thus there is a se-
quence of task decomposition that produced the primitive
tasks is the solution plan. Furthermore, since a primitive
task can be added to a layer if the corresponding node is
unconstrained, all tasks preceding the one added have been
planned on previous layers. Thus the ordering constraints in
≺ are satisfied in the solution plan. Thus output plans are
sounds.

Proof sketch (Completeness) We will show that CPFD is
complete based on the demonstration that PFD is com-
plete. Let P = (L, T , A,M, I, tn) be a HTN problem and
Π = ⟨π1, . . . , πn⟩ a layered solution plan of P . Let us
show that there is a sequence of recursive calls of CPFD
outputting Π. First, let us note that given a concurrent
layer π = {a1, . . . , ak}, any linearization of that layer
(⟨aγ(1), . . . , aγ(k)⟩ where γ is a permutation function of
{1, . . . , k}) is a sequence of actions which can be applied to

Proceedings of the 5th Workshop on Hierarchical Planning

12

Algorithm 1: CPFD(P,Π, i, τ)
1 {P = (L, T , A,M, I, (T,≺, α)) is the current

problem}
2 if T = ∅ then return Π
3 toSolve← trail(tn) \ τ
4 πi ← get(Π, i)
5 nondeterministically choose t ∈ toSolve
6 if t is primitive then
7 resolvers← {a ∈ A | task(a) = t, pre(a) ⊆

I and (∀b ∈ πi, a independent of b)}
8 if resolvers = ∅ then
9 if πi = ∅ then

10 return Failure
11 else
12 I ← γ(I, πi) // Apply the layer effects

13
14 Π← Π+ [] // Add a new empty layer

15
16 i← i+ 1 // Index of the new empty

layer

17
18 T ← T \ τ // Update the task network

19
20 ≺′= {(t′, t′′) ∈ ≺ | t′′ ̸= t} ∪ ≺m

∪ {(t′′, t′) ∈ Tm × T | (t, t′) ∈≺}
21 τ ← ∅ // Reset the resolved tasks set

22

23 end
24 else
25 nondeterministically choose a ∈ resolvers
26 πi ← πi ∪ {a} // Add a to the current

layer

27
28 τ ← τ ∪ {t} // Add t to the resolved tasks

set

29

30 end
31 else
32 {t is compound}
33 resolvers← {m ∈M | task(m) = t}
34 if resolvers = ∅ then return Failure
35
36 nondeterministically choose m ∈ resolvers
37 {m = (Tm,≺m)}
38 T ← (T \ {t}) ∪ Tm // Decomposing tn with m

39
40 ≺← {(t′, t′′) ∈ ≺ | t′′ ̸= t} ∪ ≺m ∪
41 {(t′′, t′) ∈ Tm × T | (t, t′) ∈≺}
42 end
43 return CPFD(P,Π, i, τ)

the same states as π. This is due to the mutual independence
property of the actions within a concurrent layer. From there,
any sequential plan produced by linearizing every layer of
Π (by taking any permutation function on the layers) is a
sound plan that also solves P . Let us consider the lineariza-

tion Πl defined by the n permutation functions γ1, . . . , γn.
Since PFD is a complete algorithm, there is a sequence of
recursion of PFD which outputs Πl. We will show that there
is an analogous sequence of CPFD recursions outputting Π.
At each recursion, PFD and CPFD either solve an uncon-
strained abstract task, or an unconstrained primitive task.
While they solve abstract tasks the same way, PFD solves a
primitive task by a adding an action resolving it to the head
of the plan, meanwhile CPFD adds the action resolving the
task to the concurrent layer at the head of the plan. If the
task can not be resolved, PFD returns a Failure while CPFD
tries to add a new concurrent layer to the plan. Thus, for each
recursive PFD call resolving an abstract task, the analogous
call of CPFD is to solve the same abstract task. Each recur-
sive call of PFD resolving a primitive task is analogous to a
CPFD call adding the action to the current concurrent layer.
However, CPFD requires extra recursive calls compared to
PFD: it needs to select and try to resolve an unsolvable task
after each layer. In conclusion, the analogous sequence of
recursion of CPFD is the one solving the same abstract and
primitive tasks than PFD but with the insertion of recursive
calls trying to solve an unsovlable task after resolving the
last action of a layer of Π. Thus there is a sequence of CPFD
recursions outputting Π and CPFD is complete.

Example of CPFD application
Let us consider a simple example of application of the CPFD
algorithm. Let us consider two propositions p1 and p2, an
initial state I = {p2} and tn0 = (T0, ∅, ∅) the initial task
network with a single compound task T0.

T0 can be decomposed by a single method m0 into three
unordered primitive tasks t1, t2, and t3. The task t1 can be
resolved by an action a(t1) = (t1, ∅, {p1}, ∅), then a(t2) =
(t2, {p1, p2}, ∅, ∅) and a(t3) = (t3, ∅, ∅, {f2}). The only so-
lution plan is the sequential plan ⟨a(t1), a(t2), a(t3)⟩.

When solving this problem, CPFD would first non deter-
ministically choose a trailing task among the initial task net-
work. There is only one, T0. Then a resolver is chosen, there
is only one m0 which would be applied to result in a new
(unordered) task network tn = ({t1, t2, t3}, ∅, ∅). On the
next iteration, three tasks can be non deterministically cho-
sen. Choosing t2 or t2 would lead to Failure since they have
no valid resolver in the current state and the current layer is
empty. Choosing t1 would offer a single valid resolver a(t1)
which would be added to the current layer. On the next iter-
ation, either t2 or t3 can be chosen, and choosing either one
would lead to no resolver valid in the current state. However
this time the current layer in not empty, so instead of return-
ing a Failure, CPFD would switch to the next layer by ap-
plying the effects of a(t1). On the next iteration, the updated
state offers a valid resolver for t2, which can be added to the
next layer and so on... In the end, we obtain the sequential
plan ⟨a(t1), a(t2), a(t3)⟩

Now let us consider the same example but with a(t3) =
(t3, p2, ∅, ∅). In that case, after decomposing T0, both t1 and
t3 have a valid resolver in the current state. These resolvers
are independent, so CPFD can choose to resolve t1, then t3
(or t3 then t1) in the first layer. Then the only remaining
task would be t2 which have no resolver in the current state.

Proceedings of the 5th Workshop on Hierarchical Planning

13

So CPFD switches to the next layer before adding it to the
second layer. In that case we produced a concurrent plan
⟨{a(t1), a(t3)}, {a(t2)}⟩.

Planning the planning: Translating HTN to
STRIPS

We present in this section the concrete STRIPS encoding of
the compound algorithm previously presented, called Con-
current Task Holders Decomposition encoding (CTHD).

Taskholder Encoding
The CPFD procedure described previously resolves recur-
sively unconstrained primitive tasks and compound tasks by
modifying the initial task network of the problem until the
task network contains only an empty set of tasks. To en-
code this process, we need first to model a task network with
STRIPS. To achieve this, we use the concept of taskholder
introduced first by (Alford et al. 2016). A taskholder is a
STRIPS object that will act as a container for a task. By
way of extension, a task network is modeled as a stack of
taskholders: static ordering relationship between taskhold-
ers defines in which order the taskholders can be allocated to
the tasks during the CPFD procedure and fluent relationship
define the ordering constraints between the tasks of the task
network. The number of taskholders should be fixed before
translating the HTN problem. Similarly to HTN2STRIPS,
CTHD requires at least as many taskholders as there are
tasks in the largest explored task network, thus the number
of taskholders in CTHD can be estimated the same way as
HTN2STRIPS estimates the number of taskholders.

In addition, we order the taskholders into a stack which
defines the order in which the taskholders can be used.

The current layer of the layered plan under construction
is represented by a set of propositions, each proposition de-
noting the fact that an action a ∈ A is planned in the current
layer or not.

To fix ideas, let us consider the planning problem defined
as a task decomposition graph (see Figure 2), a graphical
representation of the initial structures of this problem, i.e.,
taskholders and current layer, is given Figure 6.

Encoding as Actions
The dynamics of the CPFD procedure (Alg . 1) is defined
by three types of STRIPS actions: (1) the first type of ac-
tions resolves an unconstrained compound task and update
the current task network according to a method decomposi-
tion (2) the second type of actions resolves a primitive task
and add an action to the current layer; and (3) the last type
of actions is the one switching layer, making the algorithm
build the next layer of the solution plan. The planning pro-
cess will choose one action among the three types. Applying
one of this action is equivalent to one recursive call of CPFD
procedure. The planning process ends when there is no tasks
left in the task network, i.e., when all taskholders are empty.
These actions are defined as follows:

1. Actions for resolving compound tasks: These actions
reflect the decomposition of a compound task into sub-
tasks according to a method. It corresponds to the lines

Figure 2: The task decomposition graph of T0. In this graph,
each task node (represented with circles) is linked to the
method resolving it (represented with squares). For instance,
T1 can be decomposed into t2 by applying M2 or into t3
by applying M3. The ordering constraints are represented
with the dotted arrows, so when decomposing T0 with M1,
three subtasks are generated, T1, t1 and T2 where t1 must
be planned before T1.

Figure 3: T0 is decomposed into four tasks, two compound
ones T1 and T2, and two primitive ones t1 an no-op. Since
neither T1, T2 or t1 is a last task, a no-op action is inserted
instead of T0. The constraint over the taskholders are repre-
sented on the top right graph: each directed edge represents a
precedence constraint. So for instance, the task in th2 should
planned before the one in th1.

Figure 4: The second taskholder was unconstrained, and
contains a primitive task. It is added to the plan step by re-
moving the task from the taskholder, adding the action a(t1)
resolving t1 to the plan step, and marking the taskholder as
resolved (represented by the black dot).

27 to 30 of CPFD procedure. In order to apply these ac-
tions, the following must be verified:

• The taskholder containing the decomposed task is un-

Proceedings of the 5th Workshop on Hierarchical Planning

14

Figure 5: The plan step is terminated by emptying it, the
constraints implied by the resolved taskholders are removed.

constrained.
• There is enough taskholders remaining in the stack.

It works on our example as represented Figure 3. The
substasks of the method M1 decomposing T0 are added
to the stack of taskholders and the task T0 is replaced by
the last task of the current task network. As M1 as no
last task, the no-op action is used. Finally, the ordering
constraints are set over the taskholders.

2. Actions for resolving primitive tasks: These actions
resolve an unconstrained primitive task of the task net-
work and add the resolver action a ∈ A into the current
layer (lines 21 to 23 of Alg. 1). In CPFD procedure, it
translates to adding the action resolving a primitive task
contained in an unconstrained taskholder to the current
layer, removing the primitive task from the taskholder
and marking the taskholder as resolved. These actions
can be executed when the following conditions are veri-
fied:

• The preconditions of the action are satisfied.
• The taskholder containing the task is unconstrained.
• All actions already planned at the plan step are inde-

pendent with the task.

An example of application is displayed on Figure 4. The
taskholder th2 is unconstrained and contains a primitive
task t1 that can be resolved by the action a(t1). The task
is resolved by adding a(t1) to the current layer, th2 is
emptied and marked as resolved.
As in Alg. 1, the constraints implied by the resolved
taskholder are not removed yet, they will when going to
the next layer.

3. Action for switching of plan layer: This CTHD action
corresponds to switching to the next layer. This action
empty the current layer, setting up the next one in the
solution plan. It also removes the constraint implying
the resolved taskholders. This action can be applied in
any situation and works as displayed on Figure 5. In
this example, only th2 is marked as resolved. After the
application of the action, the constraints implying th2
are removed, so the constraint between th2 and th1 is
deleted, additionally th2 is unmarked as resolved and set
as empty. Then the current layer is emptied by removing
all actions in it.

Figure 6: The problem is initialized by setting the initial task
into the first taskholder.

Concurrent Taskholder Decomposition Encoding
In this section we present the STRIPS formulation of
the translated problem. Similarly to HTN2STRIPS, our
translation depends on an integer parameter denoted b
representing the number of taskholders (i.e. the maximum
number of tasks in the task network). We first define the
predicates used to encode the problem, then we define the
encoding of the three types of actions presented above.
We end by presenting the initial state and goal state of the
translated problem.

Let P = (L, T , A,M, I, tn) be a HTN problem and let
b ∈ N the number of taskholders. CTHD encoding generates
a STRIPS problem CPFD(P, b) = (L∪L′, A′, I ∪ I ′, G′).

The encoding generates the set propositions L′ based on
the following predicates:
• (not constraint ?th1 ?th2 − taskholder) represents

the fluent constraints over the taskholders. The predi-
cate is inverted for convenience, so when the proposition
(not constraint th1 th2) is false, it means that the task
contained in th1 must be planned before the task con-
tained in th2.

• (empty ?th − taskholder) represents the fact that a
taskholder is empty. The proposition (empty th) is true
if the taskholder th does not contain a task.

• (in ?t− task ?th − taskholder) is the predicate rep-
resenting whether or not the task ?t ∈ T is set in the
parameter taskholder. The proposition (in t th) is true if
t is set in th.

• (not planned ?a− action) is true if a is not planned in
the current plan step.

• (prec th ?th1 ?th2 − taskholder) is a predicate
defining the static relationship between the taskhold-
ers and defines the taskholders stack. So the proposi-
tion (prec th th1 th2) is true is th1 is above th2 in
the stack. In the following, this order will be fixed and
∀0 ≤ i, j < b the proposition (prec th thi thj) will be
true if and only if i ≤ j.

• (resolved ?th − taskholder) is a predicate represent-
ing either or not a taskholder have been resolved. So the
proposition (resolved th) is true if the taskholder th
have been resolved.

Proceedings of the 5th Workshop on Hierarchical Planning

15

The encoding generates the set of actions A′ = Ac∪Ap∪
Al where Ac is the set of actions for resolving compound
tasks, Ap the set of actions for resolving primitive tasks and
Al the set of actions for switching of plan layer:

• Actions for resolving compound tasks:
Let m = (task(m), pre(m), tn(m)) and (task1,
task2, . . . , taskk) the subtasks in tn. We assume that
taskk is the last task of tn. For all methods m ∈
M there is an action am ∈ Ac with k parameters
(?th1, ?th2, . . . , ?thk) defined as follows:

– pre(am) = (in task(m) ?th1) ∧∧b−1
i=0 (not constraint thi ?th1) ∧∧k
i=2(prec th ?thi ?thi+1) ∧∧k
i=2(empty ?thi)

– add(am) =
∧k

i=2(in taski ?thi) ∧ (in taskk ?th1)

– del(am) =
∧k

i=2(empty ?thi) ∧∧
taski≺taskj

(not constraint ?thi ?thj) ∧∧k
i=2(not constraint ?thi ?th0)

Note that the k − 1 last taskholder parameters are re-
quired to be ordered according to the static relationship
defined by the prec th predicate. For instance, if three
new taskholders are required to decompose the task in
th6, (th6 th2 th4 th7) is a valid combination of param-
eters, while (th6 th2 th5 th3) is not.

• Actions for resolving primitive tasks:
For all actions a ∈ A there is an action ap ∈ Ap with one
parameter: a taskholder containing p and denoted ?th.
The action is defined as follows:

– pre(ap) = pre(a) ∧ (in task(a) ?th) ∧∧b−1
i=0 (not constraint thi ?th) ∧⋃
t∈nInd(p)(not planned ?a)

– add(ap) = add(a) ∧ (empty ?th) ∧ (resolved ?th)

– del(ap) = del(a) ∧ (not planned ?a)

• Action for switching layer:
Al is composed of one conditional action al with no pa-
rameter. This action has a non conditional part: emptying
the current layer, and a conditional part: unconstraining
and making available for a new use the resolved taskhold-
ers. It is defined as follows:

– pre(al) = ∅
– add(al) =

∧
a∈A(not planned ?a) ∧

∀(?th − taskholder) when (resolved ?th),∧b−1
i=0 (not constraint ?th thi)

– del(al) = ∅
Finally, let us define the encoding for the initial state and

goal of the translated problem. The initial state is defined by
setting the initial task into the first taskholder. The remain-
ing taskholders are set as empty and ordered in a stack. As
there is no constraint over the taskholder yet, all constraints
predicate are initialized accordingly.

I ′ = (in task0 th0) ∧
∧

1≤i<b(empty thi)

∧∧
1≤i<j<b(prec th thi thj) ∧

∧
0≤i,j<b(not constraint thi thj) ∧∧
a∈A(not planned a)
The problem is solved when all taskholders are empty,

meaning that all task are planned. The goal state is defined
accordingly.

G′ =
∧p−1

i=0 (empty thi)

Differences and Similarities with HTN2STRIPS
If both CTHD and HTN2STRIPS encode HTN solving with
taskholders, they aim at finding different kinds of solu-
tion plans. While CTHD aims at finding concurrent plans,
HTN2STRIPS can only produce sequential ones. In the fol-
lowing, we will experimentally compare the two encodings
but one has to keep in mind that CTHD produces plans with
higher expressivity than the one produced by HTN2STRIPS.

In addition, while HTN2STRIPS taskholders are un-
ordered, CTHD orders the taskholders into a static stack and
imposes an order in which the taskholders parameters are
used. The purpose of the stack is to reduce the number of
valid operators in the translated problem: let us consider an
example with four taskholders and a task T1 set in the first
taskholder th1. T1 can be decomposed by a method m into
four subtasks t1, t2, t3 and t4. The HTN2STRIPS transla-
tion, translates this method into 3! (equivalent) actions (one
for each permutation of the three newly used taskholders).
Meanwhile CTHD, by constraining the taskholder a fixed
order, translates this method into a single action which cor-
responds to the HTN2STRIPS action where all taskholders
are ordered. In the general case, if b is the progression bound,
the number of translated actions generated from a method
requiring k new taskholders is equal to the number of per-
mutations of k elements among b for HTN2STRIPS. While
the number of generated actions is equal to the number of
crescent permutations for CTHD, which is much lower.

Experimentation and Results
The results of the experiments are displayed on Figure 7.

In this section we will present the experiments and re-
sults we used to demonstrate CTHD efficiency. We com-
pare CTHD to the current best HTN to STRIPS translation
HTN2STRIPS (Alford et al. 2016). This comparison will be
made over IPC HTN benchmarks domains. These domains
were chosen because they can express either totally ordered
or partially ordered problems. Over each domain, the prob-
lems will be divided into totally ordered and partially or-
dered problems. While the solution plan of a totally ordered
problem are necessarily sequential, the solution of a partially
ordered problem can be concurrent.

Both HTN2STRIPS and CTHD can use the same progres-
sion bound to solve HTN problems. So in order to have a fair
comparison, all problems were solved using the same (min-
imal) progression bound for both encodings. Note however
that if there is no benefit for HTN2STRIPS to use a progres-
sion bound bigger that the minimal one, CTHD can explore
bigger task networks and thus find solution plans with higher
concurrency.

The comparison of HTN2STRIPS and CTHD will be
made over five metrics:

Proceedings of the 5th Workshop on Hierarchical Planning

16

Figure 7: Results for the Satellite, Miconic and Blocksworld domains: TO (Totally ordered) and PO (Partially ordered)

• Solving time: This include the time spent to instantiate
the problem and domain file and the time spent solving
the instantiated problem.

• Search time: This corresponds solely to the time spent
to solve the instantiated problem.

• Solution makespan: This corresponds to the ”length” of
the solution plan, meaning the number of actions within
the plan for a sequential solution plan or the number of
concurrent layers for a concurrent solution plan.

• Number or proposition: This corresponds to the num-
ber of proposition generated by instantiating the domain
and problem file.

• Number of operators: This corresponds to the number
of operators generated by instantiating the domain and
problem file.

These five parameters will be evaluated by the IPC scor-
ing metric, which is defined as follows:

IPC(k) =
1

|problems|
∑

i∈problems

minp∈planners(cost(p))

cost(k)

We ran all experiments on a single core of a Intel Core
i7-9850H CPU, using the Fast Downward library (Helmert
2011) with the Delfi 1 configuration (Katz et al. 2018), With
a limit of 8GB of RAM over 600 seconds.

Over the three domains, CTHD consistently obtains a bet-
ter score on the operator metric. This is due to the difference
in scaling between the number of operators in the translated
HTN2STRIPS problem and the CTHD one.

Proposition wise, both encodings are very similar. The
discrepancies between domains can be explained by the
number of concurrent actions within the domain: the more
concurrency possible between actions, the more proposition
are generated by HTN2STRIPS.

For the Makespan metric, on totally ordered problems
HTN2STRIPS and CTHD obtained the same maximal score.
This is due to the fact that since both encodings use the
same minimal progression bound, they both find the shortest
sequential plan. On the partially ordered problems, CTHD
obtains a better score than HTN2STRIPS on every domain.
Since CTHD can produce concurrent plans, on partially or-
dered problems it is able to fit several actions into a layer,
thus producing plans with smaller makespan.

When it comes to Search time metric, the results are
more mixed. Overall, HTN2STRIPS has a better Search
time for the partially ordered problems but on the totally
ordered ones, HTN2STRIPS outperforms CTHD only on
the Blocksworld domain. These mixed results can be ex-
plained by the fact that a planner requires less steps to solve
a HTN2STRIPS translated problem than a CTHD translated
one: since HTN2STRIPS only produce sequential plans, go-
ing to the next layer is implied by resolving a primitive task.
On the other hand, going to the next layer is a full solving
step in a CTHD translated problem. However, we also saw
that HTN2STRIPS generates more operators than CTHD,
leading to higher branching factor for the planner solving
the translated problem. In the end, there is a trade off be-
tween finding a shorter plan with a higher branching factor
or finding larger plans with a lower branching factor.

Finally, the Solving time metric represents the total time
spent by the planner to go from the parsing of the trans-

Proceedings of the 5th Workshop on Hierarchical Planning

17

lated files to the solution plan. It is the sum of the time spent
instantiating the files and the Search time. On this metric,
CTHD obtains a better score than HTN2STRIPS on all do-
mains except for the partially ordered Satellite one. However
on all domains, CTHD improves its score going from Search
time to Solving time. Once again, since CTHD requires much
less operators, instantiating a CTHD translated domain file
is much faster than a HTN2STRIPS one.

Overall, CTHD outperforms HTN2STRIPS both regard-
ing the time spent to solve the translated problems and re-
garding the makespan of the solution plans.

Conclusion and future work
In this paper, we presented a new HTN procedure, CPFD,
solving HTN problem with layered solution plan. We en-
coded this procedure as a STRIPS problem, thus producing
a new HTN to STRIPS translation, CTHD. The translated
problem, can be solved by any STRIPS planner. Then we
showed experimentally that our translation outperforms the
current best one HTN2STRIPS, both in terms of problem
representation size, solving efficiency and quality of solution
plans. This translation is a new way to solve HTN problems
in a concurrent way, offering a new alternative to plan-space
HTN algorithms. However, similarly to HTN2STRIPS, our
translation still depends on an integer parameter the progres-
sion bound, which bounds the size of the explored task net-
works. In order to improve HTN to STRIPS translation, we
feel that this last point is the one to focus on.

References
Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo, S.;
and Aha, D. W. 2016. Bound to Plan: Exploiting Classi-
cal Heuristics via Automatic Translations of Tail-Recursive
HTN Problems. ICAPS’16, 20–28. ISBN 1577357574.
Alford, R.; Kuter, U.; and Nau, D. 2009. Translating HTNs
to PDDL: A Small Amount of Domain Knowledge Can Go
a Long Way. IJCAI’09, 1629–1634.
Behnke, G.; Pollitt, F.; HÃ¶ller, D.; Bercher, P.; and Al-
ford, R. 2022. Making Translations to Classical Planning
Competitive With Other HTN Planners. In Proceedings of
the 36th AAAI Conference on Artificial Intelligence (AAAI
2022). AAAI Press.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. IJCAI 2019, 6267–6275.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Planning
Heuristics Based on Task Decomposition Graphs. SoCS
2014, 35–43.
Bryce, D.; and Kambhampati, S. 2007. A Tutorial on Plan-
ning Graph Based Reachability Heuristics. AI Magazine, 28:
47–83.
Erol, K. 1996. Hierarchical task network planning: formal-
ization, analysis, and implementation. In Computer Science
Departement, University of Maryland, PhD. Thesis.
Erol, K.; Hendler, J.; and Nau, D. 2003. Complexity Results
for HTN Planning. Annals of Mathematics and Artificial
Intelligence, 18: 69–93.

Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence, 2(3): 189–208.
Georgievski, I. 2020. HTN Planning Domain for Deploy-
ment of Cloud Applications. IPC’10, 34–36.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice.
Helmert, M. 2011. The Fast Downward Planning System.
CoRR, abs/1109.6051.
Hoffmann, J. 2000. A Heuristic for Domain Independent
Planning and Its Use in an Enforced Hill-Climbing Algo-
rithm. In ISMIS 2000, volume 1932, 216–227.
Hoffmann, J.; and Nebel, B. 2011. The FF Planning System:
Fast Plan Generation Through Heuristic Search. 14: 253–
302.
Katz, M.; Sohrabi, S.; Samulowitz, H.; and Sievers, S. 2018.
Delfi: Online planner selection for cost-optimal planning. In
Ninth International Planning Competition (IPC-9), 55–62.
Menif, A.; Jacopin, E.; and Cazenave, T. 2014. SHPE: HTN
Planning for Video Games. In Third Workshop on Computer
Games, CGW 2014, 119–132. Prague, Czech Republic.
Milot, A.; Chauveau, E.; Lacroix, S.; and Lesire, C. 2021.
Solving Hierarchical Auctions with HTN Planning. In
4th ICAPS workshop on Hierarchical Planning (HPlan).
Guangzhou, China.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR, 20: 379–404.
Pednault, E. 1994. ADL and the State-Transition Model of
Action. Journal of Logic and Computation, 4(5): 467–512.
Schreiber, D.; Pellier, D.; Fiorino, H.; and Balyo, T.
2019. Efficient SAT Encodings for Hierarchical Planning.
ICAART 2019, 531–538. Prague, Czech Republic.
Vidal, V.; and Geffner, H. 2006. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. Artificial Intelligence, 170(3): 298–335.

Proceedings of the 5th Workshop on Hierarchical Planning

18

Chronicles for Representing Hierarchical Planning Problems with Time

Roland Godet,1,2 Arthur Bit-Monnot1

1 LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France
2 ENS Paris-Saclay, Université Paris-Saclay, France

rgodet@laas.fr, abitmonnot@laas.fr

Abstract

In temporal planning, chronicles can be used to represent
the predictive model of durative actions. Unlike the classical
state-oriented representation, the usage of chronicles allows a
rich temporal qualification of conditions and effects, beyond
the mere start and end times of an action.
In this paper we propose an extension of the standard chroni-
cle representation to support hierarchical problems. In partic-
ular, we show that the addition of temporally qualified sub-
tasks to chronicles makes them suitable to represent not only
primitive actions but also HTN methods.
We show how the set of solutions to a chronicle-based hier-
archical problem can be quite naturally represented as a Con-
straint Satisfaction Problem (CSP). To associate semantics to
this extended chronicle representation, we propose a set of
rules that must hold for any solution to the hierarchical prob-
lem, specified as constraints on the associated CSP.

Introduction
In Artificial Intelligence, planning with Hierarchical Task
Networks (HTNs) is an approach to automated planning
where actions are hierarchically structured (Erol, Hendler,
and Nau 1994; Höller et al. 2020) with compound tasks,
which can be broken down into subtasks. This hierarchy of
tasks allows the planning problem to be described at sev-
eral levels, starting with more abstract tasks and ending with
directly applicable primitive tasks.

In its simplest expression, an HTN (Erol, Hendler, and
Nau 1994; Höller et al. 2020) planning problem consists of
(i) an initial state, (ii) an initial task network describing the
aim, (iii) a set of actions, (iv) a set of compound tasks, and
(v) a set of methods.

A state defines the values of a set of state variables, each
describing a specific attribute of the environment (e.g. the
position of a truck).

A task network is a set of tasks and constraints. Each task
describes a particular operation to be fulfilled (e.g. bring a
package from A to B). It is composed of its name and a list of
parameters, which may be variables or constants. There are
two kinds of tasks: the actions (or primitive tasks), which
can be directly executed, and the compound tasks, that the
planner must refine into actions. The constraints might, e.g.,
restrict the value of some variables or the order of tasks.

An action consists of (i) a set of conditions over state vari-
ables, they characterize the set of states in which the action
is applicable, and (ii) a set of effects on state variables, that
update the state to reflect the consequences of the action.

A method is a pair m = (tc, tn), where tc is a compound
task and tn is a task network. It represents the fact that one
way to perform tc is to execute the tasks laid out in tn.

Given an initial state s0, an initial task network tn, a set of
actions, and a set of methods, a plan is a sequence of actions
〈a1, ..., an〉. To produce a plan, a planner must systemati-
cally replace any compound task in the initial task network
by the subtasks of a compatible method, repeating the pro-
cess until only primitive tasks remain. Along with ordering,
this approach defines the set of candidate plans as the ones
that can be decomposed from the initial task network. A can-
didate plan is a solution of the planning problem if the cor-
responding action sequence is applicable in the initial state.

Approach Rather than this state-oriented view, another
representation for planning follows a time-oriented view, as
proposed with chronicles (Ghallab, Nau, and Traverso 2004;
Bit-Monnot 2018) or timelines (Smith, Frank, and Jónsson
2000). Several works have considered the introduction of
hierarchies for time-oriented planners, notably FAPE (Bit-
Monnot et al. 2020) and CHIMP (Stock et al. 2015). The
ANML language is also a very relevant proposal, but lacks
clearly defined semantics (Smith, Frank, and Cushing 2007).

In this paper, we introduce hierarchical chronicles, an ex-
tension of the chronicles proposed by Bit-Monnot (2018) for
generative planning. This is done by associating a chronicle
with the task it achieves as well as the subtasks it requires.
We show this to be sufficient for chronicles to represent HTN
methods, in addition to HTN actions.

While conceptually simple, our formalization of the re-
sulting problem as a CSP allows for advanced temporal fea-
tures (e.g. intermediate conditions and effects) and closely
relates to the time-oriented representation of scheduling
problems which we hope will facilitate the application of
scheduling techniques to hierarchical planning.

Hierarchical Chronicles
A type is defined by a set of values. It can be either a set of
domain constants (e.g. the type Truck = { R1, R2 } defines
two truck objects R1 and R2) or a discrete set of numeric

Proceedings of the 5th Workshop on Hierarchical Planning

19

values. A type of particular interest for this formalization is
the set of timepoints that we assume to be a discrete set of
evenly spaced numeric values representing absolute times at
which events can occur.1 A decision variable is related to a
type which defines its initial domain (i.e. possible values).

A state variable describes the progression of a specific
attribute of the environment over time. It is generally pa-
rameterized by one or multiple domain objects. For instance
loc(R1) denotes the evolution of the position of the truckR1

over time. A state variable expression is often parameterized
by variables, in which case the particular state variable it
refers to depends on the value taken by its parameters, e.g.,
loc(r) will correspond to loc(R1) or loc(R2) depending on
the value taken by the variable r of type Truck.

A task denotes a particular operation to be fulfilled in the
environment over time. It is generally parameterized by one
or multiple domain objects. For instance [5, 10]Go(R1, L1)
denotes the operation of moving the truck R1 to the loca-
tion L1 over the temporal interval [5, 10]. A task might be
parameterized by variables, in which case the particular task
it refers to depends on the value taken by its parameters.

A chronicle can be thought of as defining the requirements
of a process in the planning problem, and in particular the
process of executing an action or carrying out a method. A
chronicle is a tuple C = (V, τ,X,C,E, S) where:
• V is a set of variables appearing in the chronicle, parti-

tioned into a set of temporal variables VT whose domains
are timepoints and a set of non-temporal variables VO.

• τ is the task achieved by the chronicle. It is of the form
[s, e]task(x1, . . . , xn) where s and e are temporal vari-
ables in VT , task(x1, . . . , xn) is the parameterized task
(with each xi ∈ VO). s and e respectively denote the start
and end instants at which the chronicle is active, and we
will refer to them as start(C) and end(C) respectively.

• X is a set of constraints over the variables in V .
• C is a set of conditions, Each condition is of the form

[s, e]var(p1, . . . , pn) = v where s and e are variables
in VT , var(p1, . . . , pn) is a parameterized state variable
(with each pi ∈ VO) and v is a variable in VO. A con-
dition states that the state variable var(p1, . . . , pn) must
have the value v over the temporal interval [s, e].

• E is a set of effects. Each effect is in the form of
[s, e]var(p1, . . . , pn) ← v where s and e are variables
in VT , var(p1, . . . , pn) is a parameterized state variable
(with each pi ∈ VO) and v is a variable in VO. An ef-
fect states that the state variable var(p1, . . . , pn) takes
the value v at time e. Over the temporal interval]s, e[,
the state variable is transitioning from its previous value
to v, and has an undetermined value.

• S is a set of subtasks. Each subtask has the form
[ts, te]task(x1, . . . , xn) where ts and te are temporal
1While this definition assumes a discrete time representation, it

could be equally interpreted with a continuous time representation.
Also note that discrete time is no less expressive when instanta-
neous changes are forbidden, as common in temporal planning in
general and PDDL in particular (Cushing 2012). In general how-
ever the computational complexity might differ between a discrete
and a continuous time representation.

variables in VT and task(x1, . . . , xn) is a parameterized
task (with each xj ∈ VO). It denotes a required task that
must be achieved by another chronicle over [ts, te].

A planning problem defines a set of chronicle templates T
where each template can be instantiated into a chronicle in-
stance by substituting all variables in the template with fresh
variables. We typically consider two types of chronicles tem-
plates: action chronicles that have effects but no subtasks,
and method chronicles with subtasks but no effects.

Considering a method template Deliver ∈ T that delivers
a package p from a position ls to a position le with a truck r,
it can be instantiated as the method chronicle C1

Deliver where:
• τ = [ts, te]Deliver(p, le), i.e., this chronicle should re-

sult in delivering the package p to le over the temporal
interval [ts, te].

• C = { [ts, ts]loc(p) = ls, [ts, ts]loc(r) = ls }, i.e., the
package p and the truck r have to be at the starting loca-
tion ls at the beginning of the method.

• E = ∅, this is a method chronicle, with no direct effects.
• S = { [tLs , t

L
e] Load(p, r), [tMs , t

M
e] Move(r, ls, le),

[tUs , t
U
e] Unload(p, r) }, i.e., to achieve this delivery ac-

tion, the following tasks have to be done: loading the
package in the truck, moving the truck from ls to le, and
unloading the package.

• VO = { p, r, ls, le } are the parameters of the method
(package, truck, start and end location) and VT =
{ ts, te, tLs , tLe , tMs , tMe , tUs , tUe } where ts, te are time-
points representing the start and the end of the method
(from τ), and tLs , . . . , t

U
e are the corresponding start/end

of subtasks.
• X = { te ≤ ts + 10, ls 6= le, t

L
e ≤ tMs , . . . }, e.g.,

impose that the method should take no more than 10 units
of time, the two locations must be different and the Move
subtask has to be executed after the Load subtask.

Considering the action template Move ∈ T that moves
a truck r from ls to le, it can be instantiated as a chronicle
CMove with the following effects:E = { [ts, te]loc(r)← le },
i.e., the truck r will be at the ending location le at the end
of the action, but its position is unknown during the action
execution. This chronicle CMove achieves the eponymous task
[ts, te]Move(r, ls, le).

We distinguish an initial chronicle C0 encoding the initial
state as effects and the objectives of the planning problem as
conditions and subtasks. It might also specify the anticipated
evolution of the environment outside the planner’s control,
e.g., that a bus will pass at 6pm. This chronicle is the only
one not associated to a meaningful task τ . For instance, the
problem where the package P1 is initially in location L0 and
must be brought to location L1 or L2 before time 50, can be
described by the following initial chronicle C0:
• VO = { l }, VT = { ts, te }
• X = { t < 50, l = L1 ∨ l = L2 }, constraints restricting

the solution set.
• C = { [te, te]loc(R1) = l }, specifying the goals.
• E = { [0, 0]loc(P1)← L0, [0, 0]loc(R1)← L0 }, effects

specifying the initial state.

Proceedings of the 5th Workshop on Hierarchical Planning

20

C0
t1 t2

m1
2m1

1 m2
1 m2

2

Figure 1: Decomposition graph resulting from the expansion
of two tasks t1 : t(x) and t2 : t(y)

• S = { [ts, te]Deliver(P1, l) }, subtasks specifying spe-
cific tasks to be achieved by a solution plan.

A planning problem is the association (C0, T) of an initial
chronicle, defining the initial state and objectives, with a set
of chronicle templates which can be instantiated, defining
usable actions and methods.

Planning Problem as a CSP
Problem Instantiation
At this point we have defined the initial chronicle (repre-
senting the problem) and a set of chronicle templates (rep-
resenting possible actions and methods). We now introduce
the procedure to build a set of chronicle instances Π that can
be used to represent a solution.

We initially set Π = { C0 }, i.e., limited to the initial
chronicle. Suppose the initial chronicle C0 contains two sub-
tasks t1 : t(x) and t2 : t(y) and that the task t(·) can be
achieved by one of two methods m1 and m2 (i.e. the task
of m1/m2 are of the form [·, ·]t(·)). As the first task t1
might be achieved by either m1 or m2, we add two fresh
instantiations m1

1 and m1
2 to Π. We record the motivation

for the introduction of both chronicles in a lookup-table
decomposes(m1

1) ← t1 and decomposes(m1
2) ← t1. Sim-

ilarly, we introduce two distinct chronicle instances m2
1 and

m2
2 to represent the possible refinements of t2. This process

can be seen as creating a decomposition graph such as the
one in Figure 1.

We refer to this process as chronicle expansion. More for-
mally, for each subtask t of a chronicle instance C ∈ Π, and
each chronicle template Ti ∈ T whose task is unifiable with
t, we instantiate a new chronicle instance T k

i and add it to
Π. Each instantiated chronicle is uniquely associated to the
task it was introduced to decompose with the decomposes
lookup table, effectively defining a decomposition tree. Any
chronicle instance added to Π as a result of expansion will
need to be expanded itself, making this a recursive process.
In the case of cyclic HTN problems, the depth of resulting
decomposition tree might not be bounded. For practical pur-
pose – e.g. to encode the problem in a CSP solver – one
might decide to bound the depth of the tree to obtain a finite
number of chronicles.

Of course, it is not the case that each chronicle instance
will be part of the solution plan. In Figure 1, the m1

1 and
m2

1 chronicle instances are mutually exclusive as only one
method can be used to decompose the t1 task. To capture

this fact, we associate each a chronicle instance C ∈ Π to a
boolean variable present (C) that is true (>) if C is present
in the solution plan and false (⊥) otherwise. Note that the
initial chronicle must always be present, so present (C0) is
always true.

With this process, we have created a set of chronicle in-
stances Π, representing all possible methods and actions
that might appear in the plan. Each such chronicle instance
C ∈ Π is associated with a boolean variable present (C)
that represents whether it is part of a solution, and a task
decomposes(C) that it might decompose. We now ought to
define what are the constraints that must hold for this set of
optional chronicle instances to form a solution to the original
planning problem. Before doing so, we introduce a synthetic
representation for conditions, effects and tasks that will al-
low us to specify their behavior independently of the context
in which they appear.

Core structures
Considering a planning problem Π, the core structures to
express the constraints it must fulfill are described here.

Condition Token Given a chronicle instance C ∈ Π, each
condition in C is associated to a condition token:

present (C) : [s, e]var(p1, . . . , pn) = v

This token states that, if C is present in the solution plan
(present (C) = >), then the state variable var(p1, . . . , pn)
must have the value v over the temporal interval [s, e]. The
set of condition tokens in Π is denoted CΠ.

Effect Token Given a chronicle instance C ∈ Π, each ef-
fect in C is associated to an effect token:

present (C) : [s, e, t]var(p1, . . . , pn)← v

Note the new temporal variable t ∈ VT . This token states
that, if C is present in the solution plan (present (C) = >),
then the state variable var(p1, . . . , pn) is undefined over the
temporal interval]s, e[and has the value v over the temporal
interval [e, t]. The expansion with the new timepoint t allows
us to encode a minimal persistence of the effect until a later
time t. The set of effect tokens in Π is denoted EΠ.

Task Token Given a chronicle instance C ∈ Π, each sub-
task in C is associated to a task token:

present (C) : [s, e]task(x1, . . . , xn)

This token states that, if C is present in the solution plan
(present (C) = >), then the task task(x1, . . . , xn) must be
achieved over the temporal interval [s, e]. The set of task
tokens in Π is denoted ΓΠ.

Token Characteristics Effect tokens here address the
evolution of state variables over time. Each (present) ef-
fect token forces another value to its state variable, which
is compelled to be maintained within a given temporal in-
terval, thus encoding the state evolution. Condition tokens
put requirements on the state evolution by imposing a state
variable to have a given value over a temporal interval.

Each token (condition, effect, and task) is present in the
solution plan if and only if its associated chronicle instance

Proceedings of the 5th Workshop on Hierarchical Planning

21

is present in the solution plan. Given a token (condition, ef-
fect, or task) ω from a chronicle instance C ∈ Π, we have
present (ω) = present (C).

Constraints
Considering a planning problem Π, the constraints used to
encode the consistency of a plan are described here.2

Coherence Constraint A state variable cannot take sev-
eral values at the same time. This implies that for two dis-
tinct effect tokens ε and ε′ in EΠ to be coherent, they may
not concurrently impose a value or transition to the same
state variable.

Given
{
ε = 〈p : [s, e, t]var(p1, . . . , pn)← v〉 ∈ EΠ

ε′ = 〈p′ : [s′, e′, t′]var(p′1, . . . , p
′
n)← v′〉 ∈ EΠ

the constraint coherent (ε, ε′) is defined as:
p ∧ p′ =⇒ t ≤ s′ ∨ t′ ≤ s ∨ p1 6= p′1 ∨ · · · ∨ pn 6= p′n

By forcing two effect tokens to be non overlapping (over the
presence p, time [s, t] and the state variable var(p1, . . . , pn)
dimensions), this constraint ensures that a state variable will
be given at most one value at any timepoint.

Support Constraint A condition token β ∈ CΠ is said
supported by an effect token ε′ ∈ EΠ if this effect estab-
lishes the value required by β and this value persists for the
span of β.

Given
{
β = 〈p : [s, e]var(p1, . . . , pn) = v〉 ∈ CΠ

ε′ = 〈p′ : [s′, e′, t′]var(p′1, . . . , p
′
n)← v′〉 ∈ EΠ

the constraint supported-by (β, ε′) is defined by:
p′ ∧ e′ ≤ s ∧ e ≤ t′ ∧ p1 = p′1 ∧ · · · ∧ pn = p′n ∧ v = v′

A condition token β ∈ CΠ is said supported if it is sup-
ported by at least one effect token in EΠ. More formally, the
constraint supported (β) is defined by:

present (β) =⇒
∨

ε∈EΠ

supported-by (β, ε)

Refinement Constraint A task token γ ∈ ΓΠ is said re-
fined by a chronicle instance C ∈ Π if (i) C was introduced
as a potential decomposition of γ, (ii) it is part of the solu-
tion and (iii) the task it achieves is identical to the one of γ.
Given

γ = 〈p : [s, e]task(x1, . . . , xn)〉 ∈ ΓΠ

and C ∈ Π whose achieved task is of the form,
task(C) = 〈[s′, e′]task(x′1, . . . , x

′
n)〉

the constraint refined-by (γ, C) is defined by:
p ∧ decomposes(C) = id(γ) ∧ s = s′ ∧ e = e′

∧ x1 = x′1 ∧ · · · ∧ xn = x′n
where id(γ) uniquely identifies the task associated to γ.

A task token γ ∈ ΓΠ is said refined if it is refined by
a chronicle instance in Π. More formally, the constraint
refined (γ) is defined by:

present (γ) =⇒
∨

C∈ΓΠ

refined-by (γ, C)

2Note that the coherence and support constraints are identical to
the ones of Bit-Monnot (2018) and repeated here for completeness.

Motivation constraint For an HTN problem it is normally
the case that a method or action is only allowed to be part
of the solution if it derives from the initial task network. In
a sense, it means that the presence of a chronicle must be
motivated by the achievement of a task higher up in the hi-
erarchy.

Consider a chronicle instance C ∈ Π that was introduced
to decompose a task γ (i.e. decomposes(C) = id(γ)). Then
the motivated (C) constraint is expressed as:

present (C) =⇒ present (γ) ∧ refined-by (γ, C)
∧

C′∈siblings(C)

¬present (C′)

where siblings(C) is the set of all other chronicle instances
C′ that were introduced as a potential decomposition of the
same task γ. This constraint effectively enforces that, if
present, a chronicle instance uniquely achieves a task higher-
up in the hierarchy.

Internal Chronicle Consistency Considering a chronicle
C ∈ Π, all its constraintsX must be verified if C is part of the
solution. It is represented by the constraint consistent (C):

present (C) =⇒
∧

x∈X

x

Any requirement regarding a chronicle structure should
be explicitly or implicitly encoded in the set X of chronicle
constraints. In particular, a common requirement for hierar-
chical problems is that a method spans exactly the same time
interval as its subtasks, i.e., that for any method chronicle C
with a non-empty set of subtasks subtasks(C):

start(C) = min
st∈subtasks(C)

start(st)

end(C) = max
st∈subtasks(C)

end(st)

Likewise, a method chronicle with no subtasks should be
instantaneous (i.e. start(C) = end(C)).

Formulation as a CSP Finally, a planning problem Π can
be encoded as a CSP with variables VΠ and constraints XΠ

where:
VΠ = { V | (V, τ,X,C,E, S) ∈ Π }

∪ { present (C) | C ∈ Π }
XΠ = { coherent (ε, ε′) | (ε, ε′) ∈ E2

Π, ε 6= ε′ }
∪ { supported (β) | β ∈ CΠ }
∪ { refined (γ) | γ ∈ ΓΠ }
∪ { motivated (C) | C ∈ (Π \ { C0 }) }
∪ { consistent (C) | C ∈ Π }

Solution and Plan Extraction A solution to a hierarchi-
cal planning problem Π is an assignment to all variables in
VΠ that satisfies all constraints in XΠ. The decision process
involved in building the assignment will effectively impose
the presence of methods and actions (through presence vari-
ables) as well as their instantiation (through parameter vari-
ables) and orderings (through temporal variables). We say
that a chronicle C ∈ Π is present in the solution if its pres-
ence variable present (C) evaluates to true given the assign-
ment.

Proceedings of the 5th Workshop on Hierarchical Planning

22

From a solution assignment, it is straightforward to ex-
tract a solution plan: any action chronicle C ∈ Π present in
the solution corresponds to an action in the plan. The value
of its parameters as well as start and end times are given by
the value of the corresponding variables in the assignment.

Likewise, the assignment encodes a full decomposition
from the initial task network into the solution plan as the re-
finement and motivation constraints ensure that, for any sub-
task of a chronicle present in the solution, there is exactly
one refining chronicle (action or method) present in the so-
lution.

It should be noted that setting the presence variable of
a chronicle to false has the same effect as not including
it in the set Π of chronicles considered in the CSP. This
suggests that bounding the depth of a decomposition tree
should be interpreted as a decision restricting the set of solu-
tion. To maintain the completeness of a decision procedure,
this bound should be reconsidered (i.e. increased) when it is
shown that no solution exists within a given depth.

Discussion and Related Work
To the best of our knowledge all existing temporal HTN
planners, including FAPE (Bit-Monnot et al. 2020), CHIMP
(Stock et al. 2015) and SIADEX (Castillo et al. 2006), inter-
pret HTN planning as a constructive process: they start from
an initial task network that is iteratively expanded into a so-
lution, each expansion bringing its own new subtasks, ac-
tions and additional constraints. This proposal adopts a dif-
ferent interpretation of hierarchical planning as a constraint
satisfaction problem. While the two interpretations remain
compatible, a key feature of the CSP interpretation is its
proximity with the representation of scheduling problems. In
particular, the notion of optional time intervals in scheduling
solvers such as CPOptimizer (Laborie et al. 2018) brought
many modeling capabilities that have a clear mapping with
the structure of HTN problem (e.g. the alternative and span
constraints of Laborie and Rogerie, 2008).

The closest formalism is the one used by FAPE (Bit-
Monnot et al. 2020) that supports both hierarchical and gen-
erative planning. In FAPE this is allowed by annotating some
actions as task-dependent, meaning that they can only be in-
troduced as a refinement of an existing task. Unlike FAPE,
this proposal focuses on pure hierarchical (HTN-like) plan-
ning allowing to remove this distinction. The addition of ex-
plicit temporal variables representing the end of the persis-
tence of an effect is a subtle change that avoids an explicit
handling of causal-links and threats (threats being particu-
larly problematic for scalability as they might involve any
combination of two effects and one condition, leading to a
cubic number of constraints).

The notion of tokens (including the effect persistence) is
inspired by the homonymous tokens of timeline-based plan-
ners such as Europa (Barreiro et al. 2012) or CHIMP (Stock
et al. 2015). Unlike timeline-based planners however, we do
maintain a distinction between conditions and effects and
use an action-centric formalism.

Several hierarchical planners such as SIADEX (Castillo
et al. 2006) or SHOP2 extensions (Goldman 2006) have
enabled temporal features in a state-progression setting by

timestamping states. Relationships with these state-oriented
representations are less obvious as this paper adopts a time-
oriented view where the evolution of each state variable is
handled independently of the others.

Conclusion
In this paper, we introduced a constraint-based representa-
tion for hierarchical planning under temporal constraints.
This encoding assumes a time-oriented view and a fully
lifted representation. Its foundation on previous chronicle
approaches allows leveraging their temporal expressiveness
with a very limited increase in complexity.

While the paper is restricted to the discussion of the
planning formalism, our current work is focused on the
exploitation of this formalism and associated encoding in
a constraint-based planner that leverages scheduling tech-
niques.

References
Barreiro, J.; Boyce, M. E.; Do, M. B.; Frank, J. D.; Iatauro,
M.; Kichkaylo, T.; Morris, P. H.; Ong, J. C.; Remolina, E.;
Smith, T. B.; and Smith, D. E. 2012. EUROPA: A Platform
for AI Planning, Scheduling, Constraint Programming, and
Optimization.
Bit-Monnot, A. 2018. A Constraint-Based Encoding for
Domain-Independent Temporal Planning. CP.
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: a Constraint-based Planner for Generative and
Hierarchical Temporal Planning. ArXiv, abs/2010.13121.
Castillo, L.; Fdez-Olivares, J.; Garcı́a-Pérez, Ó.; and Palao,
F. 2006. Temporal Enhancements of an HTN Planner. In
Marı́n, R.; Onaindı́a, E.; Bugarı́n, A.; and Santos, J., eds.,
Current Topics in Artificial Intelligence, 429–438.
Cushing, W. A. 2012. When is Temporal Planning Really
Temporal? Ph.D. thesis, Arizona State University.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
Complexity and Expressivity. AAAI, 2.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Goldman, R. P. 2006. Durative Planning in HTNs. In ICAPS.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension
to PDDL for Expressing Hierarchical Planning Problems.
AAAI.
Laborie, P.; and Rogerie, J. 2008. Reasoning with Condi-
tional Time-Intervals. In FLAIRS Conference.
Laborie, P.; Rogerie, J.; Shaw, P.; and Vilı́m, P. 2018. IBM
ILOG CP Optimizer for Scheduling. Constraints.
Smith, D. E.; Frank, J.; and Cushing, W. 2007. The ANML
Language.
Smith, D. E.; Frank, J. D.; and Jónsson, A. K. 2000. Bridg-
ing the gap between planning and scheduling. The Knowl-
edge Engineering Review, 15: 47 – 83.
Stock, S.; Mansouri, M.; Pecora, F.; and Hertzberg, J. 2015.
Hierarchical Hybrid Planning in a Mobile Service Robot. In
KI.

Proceedings of the 5th Workshop on Hierarchical Planning

23

Exploiting Solution Order Graphs and Path Decomposition Trees for More
Efficient HTN Plan Verification via SAT Solving

Songtuan Lin1, Gregor Behnke2, Pascal Bercher1

1 School of Computing, The Australian National University, Canberra, Australia
2 ILLC, University of Amsterdam, Amsterdam, The Netherlands
{songtuan.lin, pascal.bercher}@anu.edu.au, g.behnke@uva.nl

Abstract

The task of plan verification is to decide whether a given plan
is a solution to a planning problem. In this paper, we study the
plan verification problem in the context of Hierarchical Task
Network (HTN) planning. Concretely, we will develop a new
SAT-based approach via exploiting the data structures solu-
tion order graphs and path decomposition trees employed by
the state-of-the-art SAT-based HTN planner which transforms
an HTN plan verification problem into a SAT formula. Addi-
tionally, for the purpose of completeness, we will also reim-
plement the old SAT-based plan verifier within an outdated
planning system called PANDA3 and integrate it into the new
version called PANDAπ .

Introduction
Plan verification is the task of deciding whether a given plan
is a solution to a planning problem. Research over the plan
verification problem has drawn increasing attention in the
last few years for its potential usages in numerous appli-
cations, e.g., in mixed initiative planning (see the work by
Behnke, Höller, and Biundo (2017) for more details) and in
International Planning Competition where a plan verifier is
used to validate plans produced by participated planners.

We consider the plan verification problem in the context
of HTN planning, which is a hierarchical approach to plan
in which so-called abstract tasks are kept being refined un-
til primitive ones (i.e., actions) are obtained. The HTN plan
verification problem has been proved to be NP-complete
(Behnke, Höller, and Biundo 2015; Bercher et al. 2016), and
there exist three HTN plan verification approaches, namely,
the SAT-based approach (Behnke, Höller, and Biundo 2017),
the parsing-based approach (Barták, Maillard, and Cardoso
2018; Barták et al. 2020, 2021), and the planning-based ap-
proach (Höller et al. 2022) which transform a plan verifica-
tion problem into a SAT problem, a language parsing prob-
lem, and an HTN planning problem, respectively. In this pa-
per, we will develop a new SAT-based plan verification ap-
proach exploiting two data structures employed in the state-
of-the-art SAT-based HTN planner (Behnke, Höller, and Bi-
undo 2018, 2019a).

Specifically, we will adapt solution order graphs (SOGs)
and path decomposition trees (PDTs) which are two data
structures for formatting and storing refinement processes
in an HTN planning problem. The core aspect of HTN plan

verification, which is similar to solving an HTN planning
problem, is to find a refinement process except that in plan
verification, we demand that the refinement process must re-
sult in the given plan. These two data structures have been
shown to be efficient in solving an HTN planning problem,
but they are not exploited by the old SAT-based approach.
Hence, we will adapt these data structures in our new SAT-
based approach to see whether the performance can be im-
proved. In order to distinguish our new SAT-based approach
from the existing one, we call it the SOG-based approach
and the existing one the DT-based approach where the term
‘DT’ refers to decomposition trees which we will introduce
later on, and it is the core of the existing SAT approach. We
emphasize ‘SOG’ because the majority of this paper aims to
explain how to exploit SOGs in plan verification.

Apart from developing the new SOG-based plan verifica-
tion approach, we will also reimplement the (old) SAT-based
verifier. The old verifier is a part of an outdated HTN plan-
ning system called PANDA3, which is written in JAVA and is
now deprecated. Recently, a new version of PANDA called
PANDAπ has been developed which is written in C++. Thus,
we would also like to rewrite the old verifier in C++ and in-
tegrate it into PANDAπ for the purpose of completeness.

HTN Formalism
Before explaining the SOG-based approach, we first intro-
duce the HTN formalism employed in the paper, which is an
adoption of the one by Bercher, Alford, and Höller (2019).
We start with the concept of task networks.

Definition 1. A task network tn is a tuple (T,≺, α) where
T is a set of task identifiers, ≺ ⊆ T × T specifies the partial
order defined over T , and α is a function that maps a task
identifier to a task name.

Two task networks tn = (T,≺, α) and tn′ = (T ′,≺′, α′)
are said to be isomorphic, written tn ∼= tn′, iff there exists
a one-to-one mapping φ : T → T ′ such that for all t ∈ T ,
α(t) = α′(φ(t)), and for all t1, t2 ∈ T , if (t1, t2) ∈ ≺,
(φ(t1), φ(t2)) ∈ ≺′.

Given a task network tn, the notations T (tn), ≺(tn), and
α(tn) refer to the task identifier set, the partial order, and
the identifier-name mapping function of tn, respectively. For
convenience, we also define a restriction operation.

Proceedings of the 5th Workshop on Hierarchical Planning

24

Definition 2. Let D and V be two arbitrary sets, R ⊆ D ×
D be a relation, f : D → V be a function and tn be a
task network. The restrictions of R and f to some set X are
defined by
• R|X = R ∩ (X ×X)
• f |X = f ∩ (X × V)
• tn|X = (T (tn) ∩X,≺(tn)|X , α(tn)|X)

Task names are further categorized as being primitive and
compound. A primitive task name p, also called an action, is
mapped to its precondition, add, and delete list by a function
δ written δ(p) = (prec, add, del), where add and del are
called the effects of p. On the other hand, a compound task
name c can be refined (decomposed) into a task network tn
by some method m = (c, tn).
Definition 3. Let tn = (T,≺, α) be a task network, t ∈
T be a task identifier, c be a compound task name with
(t, c) ∈ α, and m = (c, tnm) be a method. We say m de-
composes tn into another task network tn′ = (T ′,≺′, α′),
written tn→m tn′, if and only if there exists a task network
tn′

m = (Tm,≺m, αm) with tn′
m
∼= tnm such that

• T ′ = (T\{t}) ∪ Tm.
• ≺′ = (≺∪≺m ∪≺X)|T ′ with ≺X = {(t1, t2) | (t1, t) ∈
≺, t2 ∈ Tm} ∪ {(t2, t1) | (t, t1) ∈ ≺, t2 ∈ Tm}.

• α′ = (α\{(t, c)}) ∪ αm.
An HTN planning problem is then defined as follows.

Definition 4. An HTN planning problem P is defined as a
tuple (D, cI , sI) where D is called the domain of P . The
domain D is a tuple (F,Np, Nc, δ,M) in which F is a finite
set of facts (i.e., propositions), Np is a finite set of primitive
task names, Nc is a finite set of compound task names with
Nc ∩ Np = ∅, δ : Np → 2F × 2F × 2F maps primitive
task names to their preconditions and effects, and M is a
set of (decomposition) methods. cI ∈ Nc is the initial task,
which can be viewed as a task network consisting of solely
one compound task, and sI ∈ 2F is the initial state.

As mentioned in the introduction, the core aspect of solv-
ing an HTN planning problem (and solving a plan verifica-
tion problem) is to find the decompositions which lead to
a solution. Hence, before presenting the precise definition
of a solution to an HTN planning problem, we would like
to introduce the concept of decomposition trees (Geier and
Bercher 2011) which capture such decomposition processes
in an HTN planning problem.
Definition 5. Given a planning problem P , a decomposition
tree g = (V,E,≺g, αg, βg) with respect to P is a set of
labeled directed trees where V and E are the sets of vertices
and edges respectively, ≺g is a partial order defined over V ,
αg : V → Np ∪Nc labels a vertex with a task name, and βg

maps a vertex v ∈ V to a method (c, tn) ∈M .
A decomposition tree is valid iff for each t ∈ T (tnI),

there exists a root vertex r ∈ V labeled with α(tnI)(t), and
for each v ∈ V with βg(v) = m, m = (c, tn), and c ∈ Nc,
the following holds.
1) αg(v) = c.
2) tn is isomorphic to the task network induced by the chil-

dren of v denoted as ch(v), i.e.,
tn ∼= (ch(v),≺g|ch(v), αg|ch(v))

3) For any child vc of v and any v′ ∈ V , if (v′, v) ∈ ≺g ,
(v′, vc) ∈ ≺g , and if (v, v′) ∈ ≺g , (vc, v′) ∈ ≺g .

4) There are no other ordering constraints in ≺g except
those demanded by 2) and 3).

The yield of a decomposition tree g, written yield(g),
is the task network (T,≺, α) such that T is the set of all
leafs of g, i.e., the set of all vertices which have no chil-
dren, (t1, t2) ∈ ≺ iff (t1, t2) ∈ ≺g for any t1, t2 ∈ T , and
α(t) = αg(t) for all t ∈ T .

Lastly, the solution criteria for HTN planning problems
are defined as follows.

Definition 6. Let P be an HTN planning problem. A solu-
tion to P is a task network tn such that all tasks in it are
primitive, there exists a valid decomposition tree g with re-
spect to P such that yield(g) = tn, and it possesses a lin-
earization of the tasks that is executable in the initial state.

Note that a solution to an HTN planning problem is a par-
tially ordered task network, which is not a plan we refer to
in practice, i.e., a plan is normally referred to as a sequence
of actions (primitive tasks). Hence, we formally define the
plan verification problem for HTN planning as follows.

Definition 7. Given a plan π = ⟨p1 · · · pn⟩ (n ∈ N) which
is a sequence of primitive tasks and an HTN planning prob-
lem P , the plan verification problem for HTN planning is to
decide whether there is a task network tn = (T,≺, α) such
that it is a solution to P , |T | = n, and it possesses a lin-
earization tn = ⟨t1 · · · tn⟩ such that it is executable in the
initial state of P , and for each 1 ≤ i ≤ n, α(ti) = pi.

Implementation of the SOG-based Approach
Having presented the HTN formalism, we now move on to
introduce our SOG-based plan verification approach. We be-
gin with introducing the data structures path decomposition
trees (PDTs) and solution order graphs (SOGs) by Behnke,
Höller, and Biundo (2019a).

Informally speaking, a PDT with depth K (K ∈ N) stores
all possible decomposition trees with depth at most K in an
HTN planning problem.

Definition 8. A path decomposition tree TK of a certain
depth K (K ∈ N) with respect to an HTN planning problem
P is a labelled directed tree (V,E, γ) of depth K in which V
is the set of vertices, E is the set of edges, γ : V → 2Nc∪Np

mapping each vertex to a set of task names, γ(r) = {cI}
with r ∈ V being the root of the tree (i.e., the vertex with-
out ancestors), and for every inner vertex v ∈ V which is
neither the root nor a leaf (i.e., a vertex without children),
it holds that for each c ∈ γ(v) ∩ Nc and every m ∈ M
with m = (c, tn) and tn = (T,≺, α), there exists a sub-
set S = {v′1, · · · v′|T |} of v’s children such that there exists
a bijective mapping βm from S to T which is also called
a child arrangement function of v′, and for every v′ ∈ S,
α(βm(v′)) ∈ γ(v′).

We use L(TK) to refer to the set of all leafs of TK . From
the definition, one might recognize that L(TK) stores the
yields of all decomposition trees of depth smaller or equal to
K. Hence, the idea of solving a plan verification problem in

Proceedings of the 5th Workshop on Hierarchical Planning

25

terms of PDTs is straightforward, that is, after constructing
a PDT with a certain depth K, we check whether we can
select a decomposition tree from it whose yield possesses
a linearization which is identical to the plan. Particularly,
Behnke, Höller, and Biundo (2017) have shown that for any
instance of the plan verification problem, we can calculate
the upper bound K such that the given plan is a solution iff it
can be obtained from a decomposition tree of depth smaller
or equal to K.

The decision procedure can be captured by a SAT for-
mula. Particularly, the SAT clauses for constructing a PDT
with a certain depth and selecting a decomposition tree from
the PDT have already been given by Behnke, Höller, and Bi-
undo (2019a), which are still exploited in the context of plan
verification. Consequently, in this paper, we focus on con-
structing the clauses expressing the constraint that the yield
of the selected decomposition tree must possess a lineariza-
tion that is identical to the plan to be verified.

To this end, we shall also introduce the data structure
solution order graphs (SOGs) by Behnke, Höller, and Bi-
undo (2019a), which can significantly reduce the number of
clauses and state variables required in constructing SAT for-
mulae.
Definition 9. The solution order graph S(TK) = (V̂ , Ê) of
a PDT TK of a certain depth K is a directed graph in which
V̂ = L(TK) is the set of vertices, and an edge (v1, v2) ∈ Ê
iff for the least common ancestor v of v1 and v2, every
method m = (c, tn) with c ∈ γ(v)∩Nc and tn = (T,≺, α),
and the child arrangement function βm, there exist two chil-
dren v̂1, v̂2 of v such that (βm(v̂1), βm(v̂2)) ∈ ≺.

Intuitively, the SOG of a PDT TK contains the yields of
all possible decomposition trees of depth smaller or equal to
K, and for each such yield (T,≺, α), (t1, t2) ∈ ≺ for some
t1, t2 ∈ T iff there is an edge from v1 to v2 where v1, v2 are
two vertices corresponding to t1 and t2, respectively.

Having presented the definitions of SOGs and PDTs, we
now introduce the SAT clauses encoding that the yield of a
decomposition tree selected from a SOG must possess a lin-
earization that is identical to a given plan. For this, we can
assume that we already have the SOG S(TK) of a PDT TK
in hand, because the remaining parts, i.e., constructing the
PDT, extracting the SOG, selecting the yield of a decompo-
sition tree from the SOG, and the SAT clauses for encod-
ing these processes, have all been described in the work by
Behnke, Höller, and Biundo (2019a).

Further, since the selection of decomposition trees has al-
ready been encoded, we can simplify our goal as construct-
ing SAT clauses to encode that for a SOG, there must be a
subset of the vertex set such that there is a total order of this
subset respecting the edges (i.e., we can view each edge as
an ordering constraint), and this chain forms the given plan
via selecting a task name for each vertex from its label set,
i.e., the set of all possible task names assigned to the vertex.

Given a plan π = ⟨p1 · · · pn⟩ and a SOG S(TK) = (V̂ , Ê)
of a PDT TK = (V,E, γ), we start by introducing the SAT
variables used to construct the clauses. For each v ∈ V̂ and
every task name t ∈ γ(v), we construct a state variable vt
indicating whether t in v is selected. For every 1 ≤ i ≤

n and v ∈ V̂ with pi ∈ γ(v), the variable mi
v indicates

whether pi is mapped to the vertex v, and the variable f i
v

indicates whether mapping pj to v is forbidden for every 1 ≤
j ≤ i. In other words, if f i

v is set to true, then any pj with
1 ≤ j ≤ i cannot be mapped to v. For convenience, for each
pi, 1 ≤ i ≤ n, we use V(pi) to refer to the set of all vertices
v such that pi ∈ γ(v). Conversely, for every v ∈ V̂ , V−1(v)
refers to the set of all integers i with pi ∈ γ(v). For every
v ∈ V̂ , av indicates whether the vertex v is activated. The
activation of a vertex here is associated with the selection of
a decomposition tree, i.e., if a vertex is activated, then it must
be a leaf of the selected decomposition tree, see the work by
Behnke, Höller, and Biundo (2019a) for more details.

We first construct the clauses F1 to enforce the constraint
that for every task pi (1 ≤ i ≤ n), if it is mapped to a vertex
v with v ∈ V(pi), then pi in γ(v) must be selected.

F1 =
∧

1≤i≤n

∧

v∈V(pi)

mi
v → vpi

Next, we construct the clauses to enforce that if a task pi
(1 ≤ i ≤ n) is forbidden to be mapped to a vertex v ∈ V̂ ,
then the mapping cannot happen.

F2 =
∧

1≤i≤n

∧

v∈V(pi)

f i
v → ¬mi

v

Further, we shall encode the transition of forbiddenness.

F3 =
∧

2≤i≤n

∧

v∈V(pi)

f i
v → f i−1

v

Another important constraint we have to deal with is that
the mapping between the plan and the SOG must respect the
edges (i.e., ordering constraints). For every v ∈ V̂ , we use
V+(v) to refer to the set of all predecessors of v, i.e., the set
of all vertices that are reachable from v. This constraint is
then expressed as follows.

F4 =
∧

2≤i≤n

∧

v∈V(pi)

∧

v′∈V+(v)

mi
v → f i−1

v′

Informally, the formula F3 enforce that for any primitive
task pi with 2 ≤ i ≤ n, if it is mapped to a vertex v in the
SOG, then any predecessor of v is not allowed to be mapped
to pi−1 for the purpose of respecting ordering constraints.

The next formula encodes the constraint that every action
in the plan must be mapped to at least one vertex in the SOG.

F5 =
∧

1≤i≤n

(∨

v∈V(pi)

mi
v

)

Simultaneously, every action in the plan is allowed to be
mapped to at most one vertex in the SOG. To encode this
constraint, we adopt the encoding by Sinz (2005) which en-
forces that, given a set X of SAT variables, at most one of
them can be set to true. To ease the notation, we use M(X)
to refer to the encoding. Hence, the constraint in our context
is expressed as follows.

Proceedings of the 5th Workshop on Hierarchical Planning

26

Transport Woodworking UM-Translog Satellite Monroe-Partially-Observable PCP Monroe-Fully-Observable
Total Instances 188 137 52 246 103 26 129
SOG-based 188 (100.00%) 137 (100.00%) 52 (100.00%) 246 (100.00%) 102 (99.03%) 26 (100.00%) 128 (99.22%)
DT-based 138 (73.40%) 95 (69.34%) 52 (100.00%) 246 (100.00%) 0 (0.00%) 25 (96.15%) 0 (0.00%)

Table 1: The number of solved instances in each domain. The header shows the name of each domain. The first row indicates
the total number of instances in each domain. The last two rows indicate the number of solved instances by the two approaches.

F6 =
∧

1≤i≤n

M({mi
v | v ∈ V(pi)})

Lastly, for every vertex in the SOG, if it is activated, then
exactly one action in the plan is mapped to it.

F7 =
∧

v∈V̂

av →
((∨

i∈V−1(v)

mi
v

)
∧M({mi

v | i ∈ V−1(v)})
)

The formula encoding that there exists a yield of a decom-
position tree in the SOG whose linearization is identical to
the given plan is thus the conjunction of the previous clauses.

Apart from implementing this SOG-based approach, we
also reimplement the DT-based approach (Behnke, Höller,
and Biundo 2017). Since the reimplementation is simply a
translation from the original JAVA code to the C++ code,
we omit the discussion of the technique details here. For
more information, we refer to the original work by Behnke,
Höller, and Biundo (2017).

Empirical Evaluation
We now compare the performance of our SOG-based ap-
proach with the reimplemented DT-based one. We used the
benchmark set from the IPC 2020 on HTN Planning1. The
benchmark set contains 1067 instances from 9 domains.
However, two domains in the benchmark set, i.e., ‘Rover’
and ‘Barman-BDI’, feature so-called method preconditions,
which are not yet supported by both SOG-based and DT-
based (re)implemented in the paper. Consequently, our ex-
periments are run on the remaining 7 domains which include
881 plan instances in total. For each instance, we gave it 10
minutes timeout and 8GB memory limit. All input planning
problems were first grounded by the PANDAπ grounder
(Behnke et al. 2020).

The SOG-based approach successfully solved 879 in-
stances and only failed in two (i.e., the two instances ran out
of the timeout). The two failed instances are from the do-
mains ‘Monroe-Fully-Observable’ and ‘Monroe-Partially-
Observable’, respectively. In contrast, the reimplementation
of the DT-based approach only solved 556 instances. Partic-
ularly, it failed in all instances from the domains ‘Monroe-
Fully-Observable’ and ‘Monroe-Partially-Observable’, be-
cause the planning problems from these two domains con-
tain too many methods and tasks which results in exceed-
ing the memory limit. Tab. 1 shows the number of instances
solved by these two approaches in each domain.

1https://github.com/panda-planner-dev/ipc-2020-
plans/tree/master/po-plans

Figure 1: The runtimes against the percentages of solved in-
stances by the SOG-based and the DT-based approach.

Further, Fig. 1 depicts the runtimes against the percent-
ages of solved instances by the two approaches. From the
figure, we can see that the new approach is significantly bet-
ter than the old one. More concretely, over 70% of instances
can be solved in one second by the new approach, whereas
the number is only about 20% for the old approach.

Future Work and Discussion
In future work, we are going to implement an optimization
in both approaches which discards the primitive tasks in a
given planning problem which are not in a plan to be veri-
fied together with all compound tasks that can only be de-
composed into them. The optimization is employed in the
old SAT approach implemented in JAVA but not yet deliv-
ered by our reimplementation. One might recognize that the
performance of our reimplementation is slightly worse than
the old one in JAVA (the evaluation results are shown in the
work by Höller et al. (2022)), and we assume that the under-
performance is caused by the lack of the optimization.

Additionally, the optimization is also implemented in the
planning-based approach (Höller et al. 2022) which trans-
forms a plan verification problem into a planning problem.
The planning-based approach happens to produce a SAT for-
mula that is similar to the one produced by our SOG-based
approach while the SAT planner is exploited. This is how-
ever not surprising because both our SOG-based plan veri-
fication approach and the SAT-based planner rely on PDTs
and SOGs. Thus far, the performance of the planning-based
approach with the SAT planner is also slightly better than
our SOG-based approach which can solve all instances in
the 7 domains on which we ran the empirical evaluation, and
we believe that the reason for this is also the optimization.

More importantly, there are two functionalities that are

Proceedings of the 5th Workshop on Hierarchical Planning

27

yet delivered in both approaches implemented in the paper.
The first is to support method preconditions. Although many
HTN planning formalisms presented in literature do not fea-
ture method preconditions, they occur quite often in prac-
tice, e.g., in almost all totally ordered (TO) HTN planning
domain from the IPC 2020 on HTN planning. Hence, for the
purpose of providing an independent plan verifier for IPC,
supporting method preconditions is mandatory.

The second functionality we want to implement is calcu-
lating a tight bound for the maximal depth of a decompo-
sition tree. As mentioned earlier, a plan is a solution to a
planning problem if and only if there exists a decomposition
tree of depth smaller or equal to a certain bound. Thus far,
the two approaches implemented in the paper calculate such
a bound in a loose way, i.e., the obtained bound is signif-
icantly larger than the optimal one. As a consequence, our
implementations will be less efficient when verifying a plan
that is not a solution, because in such a case, both approaches
need to construct a PDT (DT) of depth up to the bound.
Hence, in the future work, we will adapt the approach by
Behnke, Höller, and Biundo (2019b) for calculating an opti-
mal bound for a decomposition tree.

As a preliminary work, this paper only did the compari-
son between the two (re)implemented approaches. In future
work, we would like to give a complete comparison between
our approaches and other existing ones, e.g., the parsing-
based one (Barták, Maillard, and Cardoso 2018; Barták et al.
2020, 2021) and the planning-based one (Höller et al. 2022).
On top of that, we would also investigate some theoretical
properties of our approaches, e.g., the size of a SAT formula
obtained.

Conclusion
In this paper, we developed a new SAT-based HTN plan ver-
ification approach which we call SOG-based approach and
reimplemented an existing one (which we call DT-based ap-
proach). The empirical results show that the SOG-based one
is significantly better than the reimplemented one. How-
ever, due to the lack of certain optimization techniques,
the reimplementation of the DT-based approach slightly un-
derperforms the original one in JAVA, and the SOG-based
approach is also defeated by the state-of-the-art planning-
based plan verification approach. Hence, we will further im-
prove the (re)implementations in our future work.

References
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Vali-
dation of Hierarchical Plans via Parsing of Attribute Gram-
mars. In Proceedings of the 28th International Conference
on Automated Planning and Scheduling, ICAPS 2018, 11–
19. AAAI.
Barták, R.; Ondrcková, S.; Behnke, G.; and Bercher, P.
2021. On the Verification of Totally-Ordered HTN Plans.
In Proceedings of the 33rd IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2021, 263–267.
IEEE.
Barták, R.; Ondrcková, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A Novel Parsing-based Approach for Ver-

ification of Hierarchical Plans. In Proceedings of the 32nd
IEEE International Conference on Tools with Artificial In-
telligence, ICTAI 2020, 118–125. IEEE.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the Com-
plexity of HTN Plan Verification and Its Implications for
Plan Recognition. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling, ICAPS
2015, 25–33. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This Is a Solu-
tion! (... But Is It Though?) - Verifying Solutions of Hierar-
chical Planning Problems. In Proceedings of the 27th Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2017, 20–28. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT -
Totally-Ordered Hierarchical Planning Through SAT. In
Proceedings of the 32nd AAAI Conference on Artificial In-
telligence, AAAI 2018, 6110–6118. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2019a. Bringing
Order to Chaos - A Compact Representation of Partial Or-
der in SAT-Based HTN Planning. In Proceedings of the
33rd AAAI Conference on Artificial Intelligence, AAAI 2019,
7520–7529. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2019b. Finding Op-
timal Solutions in HTN Planning - A SAT-based Approach.
In Proceedings of the 28th International Joint Conference
on Artificial Intelligence, IJCAI 2019, 5500–5508. IJCAI.
Behnke, G.; Höller, D.; Schmid, A.; Bercher, P.; and Biundo,
S. 2020. On Succinct Groundings of HTN Planning Prob-
lems. In Proceedings of the 34th AAAI Conference on Arti-
ficial Intelligence, AAAI 2020, 9775–9784. AAAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI 2019, 6267–
6275. IJCAI.
Bercher, P.; Höller, D.; Behnke, G.; and Biundo, S. 2016.
More than a Name? On Implications of Preconditions and
Effects of Compound HTN Planning Tasks. In Proceedings
of the 22nd European Conference on Artificial Intelligence,
ECAI 2016, volume 285, 225–233. IOS.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, IJ-
CAI 2011, 1955–1961. AAAI.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In Proceedings of the 32nd International
Conference on Automated Planning and Scheduling, ICAPS
2022. AAAI.
Sinz, C. 2005. Towards an Optimal CNF Encoding of
Boolean Cardinality Constraints. In Proceedings of the
11th Principles and Practice of Constraint Programming,
CP 2005, 827–831. Springer.

Proceedings of the 5th Workshop on Hierarchical Planning

28

Learning Decomposition Methods with Numeric Landmarks and Numeric
Preconditions

Morgan Fine-Morris1, Michael W. Floyd2, Bryan Auslander2, Greg Pennisi2, Kalyan Gupta2,
Mark Roberts3, Jeff Heflin1, Héctor Muñoz-Avila1

1Department of Computer Science, Lehigh University 113 Research Dr., Bethlehem, PA 18015, USA
2Knexus Research Corporation, 174 Waterfront Street, Suite 310, National Harbor, MD 20745 USA

3Navy Center for Applied Research in AI, Naval Research Laboratory, Washington, DC, USA
1mof217@lehigh.edu, {heflin, munoz}@cse.lehigh.edu, 2{first.last}@knexusresearch.com, 3mark.roberts@nrl.navy.mil

Abstract

We describe an HTN method-learning system, which we call
T2N, that learns hierarchical structure from plan traces in
domains with numeric effects, where some subgoals are nu-
meric. We investigate how different methods of preprocess-
ing training data can impact the effectiveness of the learned
methods. We test the learned methods by solving a set of 30
test problems in a simple numeric crafting domain based on
the videogame Minecraft. Our results indicate that we can
learn functional methods for domains with these characteris-
tics and suggest that different preprocessing techniques lead
to method sets with different strengths and weaknesses, with
no preprocessing technique superior across all domain tasks.

1 Introduction
Hierarchical Task Network (HTN) planning is a plan-
ning paradigm where the planner takes advantage of user-
provided domain information (called decomposition meth-
ods) to guide the search process. It decomposes complex
tasks into progressively simpler ones, until it reaches the
granularity of primitive tasks, accomplishable directly by
the domain actions. It can provide significant speed up over
classical planning techniques, at the cost of extra up-front
knowledge engineering required to define the decomposi-
tion methods (Ghallab, Nau, and Traverso 2004; Nau et al.
2001) A major problem in applying HTN planning to new
domains is the expense and difficulty of authoring correct
and useful domain information. A previous system (Fine-
Morris et al. 2020) for learning decomposition methods for
domains with numeric preconditions was unable to deal with
domains where all effects (and therefore goals) were nu-
meric. In this work, we describe a system (called T2N, for
Trace2NumericHTN) that, while based on similar design
principles, can learn HTNs where changes in numeric vari-
ables dictate the structure of the network.

To create structure for our learned HTNs, we identify con-
ditions, called bridge atoms (Gopalakrishnan, Munoz-Avila,
and Kuter 2018; Fine-Morris et al. 2020), that mark switches
in context within the traces and which we describe as “do-
main” landmarks. We use these conditions as subtasks into
which our learned decomposition methods decompose the
high-level tasks of a a domain. Hereafter we use bridge atom
and landmark atom interchangeably.

We learn several sets of decomposition methods, each
with a different set of domain landmarks as subtasks, then
evaluate their performance by solving 30 planning prob-
lems. Our results indicate that the set of domain landmarks
can impact planning efficiency and goal coverage, and that
variations in the way we preprocess the traces before do-
main landmark learning can impact domain landmark selec-
tion, resulting in downstream effects on the learned meth-
ods. While more data is necessary to draw a final conclusion
about the best way to select domain landmarks, this work
shows that comparing method performance on a set of test
problems can help us analyze the utility of different sets of
domain landmarks.

2 Background
We will provide background information on HTN planning,
planning and domain landmarks, extracting domain land-
marks, and learning numeric preconditions using goal re-
gression over numeric actions.

2.1 HTN Planning
An HTN planning problem, P , is a triple (D, s0, T), where
D is a domain description, s0 is an initial state, and T is a
list of tasks to accomplish. The domain description D is a
tuple (O,M), where O is the set of domain operators and
M are the decomposition methods. An operator o ∈ O is a
tuple (h, p, e), where h is the head (i.e., the task name and
arguments), p are the preconditions, and e are the effects.
A method m ∈ M is a tuple (h, p, sub), where h and p
are the same as for an operator, and sub is an ordered se-
quence of subtasks. Primitive tasks are those that are ac-
complishable using operators in O (ground versions of the
head of an operator), while complex tasks must be further
decomposed by the methods in M until they are reduced to
a sequence of primitive tasks that can be performed to ac-
complish the complex task. What constitutes ‘accomplish-
ing’ a task is not formally defined. In this work, we learn
tasks that are concerned with achieving a goal and use them
with an HTN planner. Therefore, we straddle two different
hierarchical planning paradigms, HTN planning and Hierar-
chical Goal Network (HGN) planning, which is very similar
to HTN planning, except that instead of decomposing tasks
into subtasks, goals are decomposed into subgoals (Shiv-
ashankar et al. 2012).

Proceedings of the 5th Workshop on Hierarchical Planning

29

2.2 Planning and Domain Landmarks
Planning landmarks are conditions which always occur in
the solution of a given problem and have been addressed in
many works (Hoffmann, Porteous, and Sebastia 2004; Por-
teous, Sebastia, and Hoffmann 2014). We are interested in
finding a type of landmark that we call domain landmarks,
common conditions for two or more problems in a domain as
opposed to planning landmarks, which are conditions com-
mon to one problem in a domain. Hereafter any reference
to “landmarks” instead of “planning landmarks” refer to do-
main landmarks.

Given the set of all problems in a domain, Φ, we define
a ϕ-domain landmark as a common planning landmark for
every problem P ∈ ϕ where ϕ ⊆ Φ. Confirming a plan-
ning landmark for a problem is PSPACE-complete problem
(Hoffmann, Porteous, and Sebastia 2004) and confirming a
domain landmark will increase the running time by the fac-
tor |ϕ|. Therefore, we offer a ‘pragmatic’ definition of ϕ-
domain landmarks: any condition that occurs in at least one
solution to every problem in ϕ. In our work, ϕ consists of
problems that have a similar initial state s0 and/or list of
tasks T , such that the problems will have common condi-
tions for at least one solution for each problem in ϕ.

As in (Fine-Morris et al. 2020), we use these domain land-
marks as subtasks for the tasks demonstrated in the training
traces. We also use these domain landmarks to partition the
traces into subtraces from which we learn methods for ac-
complishing each domain landmark. Unlike (Fine-Morris
et al. 2020), in this work we learn a two level hierarchy of
methods. The landmark methods decompose single top level
tasks of the domain into subtasks based on the domain land-
marks. These landmark tasks are decomposed by subplan
methods into sequences of primitive tasks that achieve the
landmark. For a generic example hierarchy learned from a
trace containing three landmarks, see Figure 1. A trace may
not contain all selected domain landmarks, but as in (Fine-
Morris et al. 2020) we partition traces at most once per land-
mark, therefore the maximum number of partitions per trace
is |LM |+ 1 for the set of selected domain landmarks, LM .

Note that landmark methods derive their name from the
use of landmarks to decompose the problem, not because
they show the planner how to accomplish/achieve any in-
dividual landmark (except inasmuch as the achievement of
later landmarks may be dependent on the achievement of
earlier landmarks). They select which landmarks need to be
achieved as subgoals of the final task. The role of determin-
ing how to achieve a landmark falls to the non-landmark
methods which, unlike landmark methods, can have prim-
itive subtasks.

2.3 Domain Landmark Extraction
We approximate the domain landmarks using a technique
similar to the ones used in (Gopalakrishnan, Munoz-Avila,
and Kuter 2018; Fine-Morris et al. 2020). This involves us-
ing the natural language processing algorithm Word2Vec
(Mikolov et al. 2013) to learn a word embedding for each
word (a condition atom or action) in the corpus (a set of
traces). Word embeddings are vectors, each associated with

a word, whose direction describes the context in which the
word appears in the corpus. Therefore, two words with sim-
ilar direction vectors can be assumed to co-occur frequently
in the corpus. We use these vectors to determine how to split
the words in the corpus into separate context regions. We
use Hierarchical Agglomerative Clustering to form clusters
of words, using cosine distance (a measure of the difference
of the angle between two vectors) as the metric so that words
which share contexts are clustered together. This creates sep-
arate context regions in the domain, so that we can probe the
boundaries between the regions for condition atoms that sig-
nal a shift between the contexts. These condition atoms are
our domain landmarks.

2.4 Learning Numeric Preconditions with
Function Composition

In addition to learning the subtasks of methods we also must
learn preconditions, which may contain numeric functions.
We use a modified form of goal regression presented in Fine-
Morris et al. (2020). Traditional goal regression involves in-
verting the effects of an action, so that the effects of the ac-
tion are removed from a state, and the action preconditions
are added to it. Previous work (Fine-Morris et al. 2020) de-
scribes how to augment traditional goal regression to regress
actions with numeric fluents via function composition. For
example, when learning a method that decomposes into a se-
quence of actions a1, a2 where the preconditions and effects
of a1 and a2 are:

pa1 = [f(varX, . . .) > 1, . . .]

ea1 = [varX ← f(varX, . . .), . . .]

pa2 = [g(varX, . . .) > 2, . . .]

ea2 = [varX ← g(varX, . . .), . . .]

the methods preconditions would include,

f(varX, . . .) > 1, g(f(varX, . . .), . . .) > 2.

The inequalities from both actions occur in the new set of
preconditions, but in addition both g(. . .) and f(. . .) are
applied to varX before the inequalities from a2 is checked,
to ensure that whatever value varX is, it will be > 2 after
being updated according to both f(. . .) and g(. . .).

3 Example Domain
The domain used in this paper is a custom domain based on
the crafting system of the game Minecraft. Base resources
(wood, stone, coal, iron) can be gathered from the world,
and used during crafting to make new items. The amount of
a resource is described by terms in the form value(item,
amount), where item is a label for a counter of a partic-
ular type of item, and amount is a numeric value. When a
gather action is used to collect a resource from the world,
the world’s resource counter is decreased by the specified
amount, while the resource counter of the agent who per-
formed the gather action increases by that amount.

Many crafting recipes require an item called a crafting
table. Some resources – such as wood – can be gathered
by hand or using a tool. Others – such as stone, coal, and

Proceedings of the 5th Workshop on Hierarchical Planning

30

iron – can only be gathered using a specific type of tool,
e.g., a pickaxe. The grade of the pickaxe dictates what re-
sources it can collect and depends on the material it is made
from. Pickaxes made from stronger materials can be used to
mine harder resources. From weakest to strongest, the ma-
terials are: wood, (cobble)stone, iron. Mineable resources
from softest to hardest are: stone, coal, iron. Wooden pick-
axes can mine stone and coal. Stone and iron pickaxes can
mine iron and anything softer. In typical Minecraft, pick-
axes and axes have durability, and can only be used a certain
number of times before they break. We elided this aspect of
tool-use.

When an agent crafts an item, the value of the counters
of the consumable ingredients are decreased according to
the amounts called for by the crafting recipe. The agent’s
counter for the crafted item increases by the batch amount,
which is usually 1 but can be more as in the case of the rail
item, which can only be made in batches of 16.

Some items, called stations, are not consumable but are
monopolized while they are required to craft a recipe. We in-
cluded the crafting table, where argents craft complex items,
and the furnace, which agents fuel with coal to smelt iron
into iron ingots.

Some items are more expensive to craft from scratch than
others, because they require more steps if the agent starts
with an empty inventory. For example, to craft a wooden
axe the agent only needs to gather wood and make a crafting
table, sticks, and planks, while crafting a stone axe requires
all the steps to craft a wooden pickaxe, which the agent must
use to gather stone to form the blade of the stone pickaxe. To
craft an item that has iron ingots as an ingredient (as in the
case of our cart, rail, iron pickaxe, and iron axe goal items),
the agent must have a furnace to smelt iron, which can only
be gathered using a stone pickaxe. In terms of relative ex-
pense, wood items < stone items < iron items.

4 Approach
T2N has two phases: learning domain landmarks and learn-
ing methods. We next detail these phases and their steps.

4.1 Phase 1: Learn Domain Landmarks
Phase one has three steps. For a set of traces T (see Section
5.1 for trace generation): Step (1.1) formats T into three
variations and discretizes numeric fluents, Step (1.2) learns
word embeddings for T using Word2Vec, and Step (1.3) se-
lects bridge atoms that partition t ∈ T into subtraces. Pre-
viously, Fine-Morris et al. (2020) used a similar technique
with some differences in Steps 1.1 and 1.3. To summarize,
this work better formalizes how to discretize numeric flu-
ents, investigates the impact of formatting T , and examines
selecting domain landmarks for numeric subgoals.

Step 1.1: Preprocess Traces. To prepare traces for land-
mark learning, we first must format them in one of three
styles, full (FL), precondition-effect (PE), and randomly-
augmented (RA). Traces formatted in the FL style have
full states (i.e., they contain static conditions carried over
from the initial state). The states of traces formatted in
the PE style include only the effects of the previous ac-
tion and the preconditions of the next. Randomly-augmented

FL PE RA
value(a w, 0) value(a w, 0) value(a w, 0)

value(w, 4000) value(w, 4000) value(w, 4000)
value(a c, 0) value(c, 350)
value(c, 350)

.
gather(w, 5) gather(w, 5) gather(w, 5)
value(a w, 5) value(a w, 5) value(a w, 5)

value(w, 3995) value(w, 3995) value(w, 3995)
value(a c, 0) value(a s, 0)
value(c, 350)

.
craft(plank) craft(plank) craft(plank)

Table 1: Trace formatting variations used for learning word
embeddings (with the original numerics, i.e., ‘unskolem-
ized’). Actions are in bold. To save space, variable names
have been shortened: ‘a’ replaces agent, ‘w’ replaces wood,
‘c’ replaces (cobble)stone, ‘s’ replaces stick; therefore, vari-
able a c is a shortening of agent stone. These shortening are
not used in the real traces.

traces are partway between the two, with states the con-
tain all the atoms of the PE traces, plus a small set of ran-
domly selected atoms that would be present in the FL ver-
sion of the state but not the PE version. See Table 1 for
examples of all three, illustrating these differences. In the
FL example, the atom value(agent stone, 0) is in-
cluded in states before and after the action gather(wood,
5) despite its extraneousness. In the PE example, atoms
which are neither preconditions nor effects of the sur-
rounding actions are excluded, value(agent stone,
0) is excluded from the state because it is neither a pre-
condition nor effect of the actions gather(wood, 5)
and craft(plank) which surround the state. In the
randomly-augmented (RA) trace, atom value(stone,
350) which describes the amount of free (i.e., not held by
an agent) stone in the world is included in the first state ran-
domly, and value(agent stick, 0) is included ran-
domly in the second state, although they are not pertinent to
either of the actions adjacent to them.

In FL styles, the vocab size is larger and states are
much larger because all true conditions are included. This
has repercussions when learning word embeddings, as the
longer traces make Word2Vec more expensive and creates
more connections between words, as static conditions occur
with much greater frequency, and any conditions achieved
early in the text are particularly effected. PE style traces
limit relationships between words to try to ensure strong re-
lationships form only between actions and conditions that
are related by function. RA traces try to take advantage of
the strengths of both.

In a process similar to skolemization (Bundy and Wallen
1984), we replace the numeric values with names for the
value ranges. This ensures that landmarks from variables
that take on many values correspond to any value within
a range, instead of to a single value. To do this we col-
lect the values for all variables across all traces and then

Proceedings of the 5th Workshop on Hierarchical Planning

31

make a histogram for each variable. Then, for each in-
stance of that variable in an trace, we replace the nu-
meric value with a string BINX where X is the bin num-
ber in which the value is found. For example, if we have
a variable for agent coal and the values of this vari-
able in the various traces are 15, 21, 23, 26, or 28, we
might create the following histogram (bin label, range)
pairs: (BIN1, [0-9]), (BIN2, [10-19]), (BIN3, [20-29]),
and (BIN4, [30-∞]), such that value(agent coal,
21) and value(agent coal, 23) both become
value(agent coal, BIN3). If we did not skolemize
the numeric values, Word2Vec would interpret atoms that
correspond to the same variable as completely different
words when they have even slightly different numeric val-
ues. This would increase the vocabulary size of the corpus
and make it more difficult to learn relationships concern-
ing numeric atoms. By skolemizing, we ensure that values
of the same state variable are recognized as the same word
when they are within a certain range (i.e., the bin ranges).
Previous similar work (Fine-Morris et al. 2020) skolemized
all numerics to a single bin, but this erases all variation in
numeric values, which is undesirable when trying to learn
numeric landmarks.

Step 1.2: Learn Word Embeddings. We use Word2Vec
with the skip-gram model to learn a set of word embed-
dings for the words in our corpus of traces. The properties
of Word2Vec ensure that words that occur in the same con-
text are clustered by cosine distance. A small cosine distance
for two word embeddings indicates that the corresponding
words frequently co-occur.

To learn word embeddings, we linearize traces such
that each condition or action is treated as a word. For
a trace s0, a1, s1, ..., sN , the linearized trace would be
c01, ..., c0N , a1, c11,, c1N , ..., cN1, ..., cNN , where all the
conditions true in s0 are represented by the set of conditions
in the sub-sequence c01, ..., c0N and each c is a condition
true in state s0. From a planning perspective, the ordering of
the conditions within a state does not matter, and the condi-
tions in a state can be reordered to create more input traces
for Word2Vec.

Step 1.3: Select Landmark Atoms. The landmark learn-
ing process is as follows: we (1) learn word embeddings
from the traces with Word2Vec, (2) form n=2 clusters of
the word embeddings using a clustering algorithm and the
cosine distance metric (we use Hierarchical Agglomerative
Clustering), (3) score each atom according to the average
cosine distance of the atom to those of the opposite cluster,
(4) filter out non-effects atoms (i.e., any atom that isn’t an
effect of an action), (5) select atoms with scores less than
((max − min) × .2) + min where max and min are the
maximum and minimum scores of the effects atoms (i.e.,
any atom that is an effect of an action in at least one trace)
and (6) replace all bin names with the associated numeric
value range. The purpose of steps (2-3) are to split the atoms
into a least two context groups and then find the atoms that
are most in-between those two groups, i.e., the atoms in the
corpus that has been assigned to one group but is as close as
possible to another, possibly marking the boundary between
the context groups. We choose two clusters semi-arbitrarily,

as the best number of clusters will be domain-dependent
and difficult to determine (we leave exploring this for future
work).

4.2 Phase 2: Learn Methods
Phase two uses the landmark atoms to learn methods and
consists of three steps. Step (2.1) partitions T using the land-
mark atoms, Step (2.2) learns subplan methods for each sub-
trace, and Step (2.3) learns landmark methods using the sub-
plan methods.

In previous work (Fine-Morris et al. 2020), the final tasks
of each trace were determined by finding which of a large set
of user-provided possible final goals were present in the ef-
fects of the final action. In this work, each trace is annotated
with a final task, which is not explicitly defined by a final
goal condition, because this allowed tasks to be named more
flexibly. Additionally, Fine-Morris et al. (2020) did not
ground any of the numeric variables in the preconditions of
the methods, while we selectively ground numeric variables
to specific values when they are not already constrained by
the calculations (otherwise values are constrained only by
criteria inherited from actions).

During this phase, each trace is processed independently.
Figure 1 shows how a hierarchy can be learned from one
trace. The root contains the landmark method which has sub-
trees for each of its 4 subtasks: 1 for each of the three land-
marks plus the final subtask method for final goal. The next
level decomposes each landmark into a sequences of primi-
tive tasks that accomplishes the landmark. All leaves in the
tree are actions.

Step 2.1: Partition Traces. T2N accepts as input a set of
traces, each annotated with the head of their final goal and a
set of possible landmarks. We discard any traces which con-
tain none of the landmarks because it is impossible to learn
landmark methods from them. T2N partitions each trace,
splitting at the states that contain the first instances of a land-
mark in the action effects. This results in a trace partitioned
so that the last action of each subtrace achieves a landmark.

Step 2.2: Learn Subplan Methods. For each partition
of the trace, T2N learns a method for accomplish the land-
mark that was accomplished by the subplan. The head of
the subplan method comes from the landmark atom that oc-
curs in the final state of the subtrace, modified so that any
non-variable arguments are moved into the name. For exam-
ple, a landmark such as value(item, 1) would become
the method head value 1(item) because item denotes
a variable but 1 does not.

We learn preconditions for a subplan method by perform-
ing goal regression using our modified regression technique
over the subplan. We check to make sure that any variable
that is updated in the subtrace and not already ground to a
specific value in the preconditions have some calculation-
based constraint applied to them in the precondition calcu-
lations. If not, we ground that variable according to its value
in the initial state of the subtrace. We do this to ensure that
variables which are unconstrained by the actions of the trace
are still constrained by the context of the trace. We repeat
this process for each remaining subtrace.

Proceedings of the 5th Workshop on Hierarchical Planning

32

landmark 1 landmark 2 landmark 3 goal

3-Landmark Trace:

… …

act(…)

landmark_2(…) landmark_3(…) goal(…)

goal(…)

act(…) act(…)

…

act(…)

Learned Hierarchy:

goal task

(landmark method head)

landmark_1(…)

landmark tasks

(subplan method heads)

Figure 1: Example hierarchy showing the hierarchical structure learned from a trace with three landmarks. The structure learned
from a trace is determined by the number of landmarks in the trace and the number of actions in each subtrace.

Each time we learn a method, we check to see if it can be
merged with an existing method. Methods can be merged if
they were learned from equivalent plans and if they are iden-
tical excepting their ground numeric variables. The merging
process will ensure that any variables with numeric values
will be transformed into a value range that includes both
original values.

Step 2.3: Learn Landmark Method. Once we have
methods for each (subtrace, subtask) pair, we can learn a
landmark method. The head is the final trace goal, the sub-
tasks are the landmarks plus the final trace goal. The pre-
conditions are learned by via goal regression over the entire
trace. As before, we ground any unconstrained numeric vari-
ables according to the first state of the trace.
An Example Hierarchy For a task such as
make stone pickaxe(agent), the 3 land-
marks of the example hierarchy of Figure 1
could be value(agent crafting table,
1), value(agent wooden pickaxe,
1), value(agent stone, 3), with make
stone pickaxe(agent) as the final goal. The
head of the landmark method would be make
stone pickaxe(agent), with 4 subtasks/sub-
goals: value 1(agent crafting table),
value 1(agent wooden pickaxe),
value 3(agent stone), make
stone pickaxe(agent). The method for decom-
posing landmark 1 could contain a sequence of three
primitive subtasks to gather wood, make planks, and make
a crafting table.

5 Methods
All work for this paper was done on a 2020 MacBook Pro
with a 2 GHz Quad-Core Intel Core i5 processor, 32 GB
3733 MHz LPDDR4X memory, running Big Sur (v. 11.6).

5.1 Training Problems and Solutions
To generate training traces, we first create randomized train-
ing problems, then use a planner to create solution plans
(i.e., simulate plan demonstrations from a human). We use a
customized version of the Pyhop planner with hand-crafted

HTN methods, but as the plans are comprised of only state
and action information and are not annotated with decompo-
sition information, we believe that any planner will suffice.
The training problems consist of initial states with counters
for each gatherable item (wood, stone, iron, coal) indicat-
ing how many units of this resource are available for col-
lection. The initial amounts of these counters were set ran-
domly between 2000-5000 in steps of 100. Each agent (so
far all traces have been single-agent) has a counter for each
existing item type, all initialized to zero.

All tasks were to “make X” where X is some product/-
goal item that requires a crafting table to produce. The goal
items were: [wooden, stone, iron] axe, [wooden, stone, iron]
pickaxe, furnace, rail, or cart.

The hand-crafted methods were designed to produce plans
with variability, not to produce the most efficient plans, or to
find plans more quickly. We prioritized plan variability be-
cause we believe that this is more advantageous for the land-
mark learner, but we have yet to do a formal comparison. For
each goal item we generate 10 plans. From a single set of
plans we generate traces in the three different formats (i.e.,
FL, PE, and RA). We generate 20 traces from each plan by
reordering the conditions in each state randomly. Each train-
ing trace is annotated with the head of the corresponding
task to be learned.

5.2 Word2Vec Hyperparameters
We learn word embeddings using the following hyperparam-
eters (we leave probing the impact of hyperparameters on
landmark selection for future work). For all trace formats we
used alpha=0.001, min alpha=0.0001, and 1000 epochs, with
vector dimensions calculated according to to V/20, where
V is the size of the corpus vocab, and window size is 3C,
where C is the average number of conditions per state. For
PE traces, the vector size was therefore 9, and for RA and
FL it was 11. The window sizes were 462, 78, and 48 for
FL, RA, and PE, respectively.

5.3 Test Problems
We select test problems to examine the effectiveness of land-
mark methods. Landmark methods that were applicable to
achieving specific goals were not learned for all goals in all

Proceedings of the 5th Workshop on Hierarchical Planning

33

method sets. Our test problems were selected to compare the
performance of landmark methods, and by proxy the land-
marks selected for each method set. If a particular landmark
set results in learning a method set that doesn’t cover certain
goals, the failings of that set w.r.t. the other sets are obvious
and don’t require extensive testing.

Our selection procedure was designed with this in mind
and is as follows: For each goal task, we generate a pool
of 15 solvable test problems using the same technique for
generating the training problems, but changing the starting
ranges of the availiable gatherable items to a random number
between 200-5000 in steps of 10. We confirmed that each
problem was solvable by generating a solution plan using
an HTN planner and the same hand-crafted methods used to
generate the training traces. If the planner failed to generate
a solution to test problem, we discarded and replaced the
problem. Once we had a pool of solvable test problems for
each goal task, we selected test problems via the following
procedure for each method set: we (1) pool together all test
problems for each goal task for which the method set has
landmark methods and (2) select a set of 10 problems from
the previously created multi-goal pools and add it to the set
of selected methods. If a problem was selected for a previous
method set, we selected a different problem (i.e. the final set
of test problems should contain no duplicates).

5.4 Metrics
We used two metrics for comparing the four method sets:
coverage and efficiency. Coverage measures how much of
the domain is solvable by a particular method set, with sub-
components goal coverage and problem coverage. Goal
coverage describes how many of the domain goals are ad-
dress by at least one landmark method, regardless of how
successful the problems with that goal are solved. If a
method set has no landmark methods for a particular goal, it
does not cover that goal. If a method set has landmark meth-
ods for a goal, but cannot solve any of the test problems with
that goal in the time-limit, it still covers that goal. Problem
coverage measures how successfully a method set solves test
problems. Efficiency, the second metric, is concerned with
how quickly a planner using a method set solves a particular
test problem, or a set of test problems.

6 Results
Our results show that different ways of formatting the traces
can produce very different sets of learned landmarks. We
also find that landmark selection impacts which final goals
are covered by a method set, and the efficiency with which
plans for different goals are generated.

6.1 Landmarks
We learned three sets of landmarks (FL, PE, RA), one for
each style of trace, and hand-selected a set of player-intuitive
custom landmarks (CL) for a baseline (see Table 2). Of the
landmarks learned by our algorithm, two were concerned
with possessing a tool or station (wooden pickaxe in FL
and furnace in RA), while most focused on gatherable re-
sources (coal, iron ore, or cobblestone). The CL landmarks

were more concerned with the possession of various types
of pickaxes and two types of crafting stations (crafting table
and furnace).

FL value(agent wooden pickaxe, 1)

PE value(cobblestone, [3896-4782])
value(agent cobblestone, 47)

RA
value(agent coal, [10-18])
value(agent furnace, 1)
value(agent iron ore, [10-18])

CL

value(agent crafting table, 1)
value(agent wooden pickaxe, 1)
value(agent stone pickaxe, 1)
value(agent furnace, 1)
value(agent iron pickaxe, 1)

Table 2: All landmarks for each method set. Landmarks
with a bin containing only a single value are specified
with that discrete value, instead of the bin range (i.e.,
value(agent crafting table, 1)).

Goal- and Problem- Coverage. Both CL and FL method
sets covered every goal in the set of test problems and
demonstrated full problem coverage. Both RA and PE
demonstrated full problem coverage for every covered goal,
although neither covered the wooden pickaxe goal and the
former also did not cover the stone pickaxe goal. In Table 3
we can see that only CL covers every final goal task. FL,
PE, and RA are all missing landmark methods for “make
wooden axe”. This is because none of them have landmarks
pertinent to the task, so no landmark methods could be
learned.

Goal Tasks CL FL PE RA
make cart 10 10 1 10
make furnace 7 7 3 7
make iron axe 10 10 2 10
make iron pickaxe 10 10 1 10
make rail 9 9 3 10
make stone axe 8 8 3 2
make stone pickaxe 6 6 3 0
make wooden axe 5 0 0 0
make wooden pickaxe 4 4 0 0

Table 3: Number of landmark methods in each method set
for each task. Goals with a 0 are not covered by the method
set of that column.

From these results, we can see that the formatting of the
trace provided to Word2Vec to generate embeddings impacts
the atoms selected as landmarks. This can impact the land-
mark methods the system can learn, because traces which
contain none of the selected landmarks have to be discarded.
If all traces demonstrating how to achieve a particular end
goal are discarded, we cannot learn that goal.

6.2 Planning Duration
Figure 2 shows the amount of time the planner took to solve
each test problem. Problems occur in the same order for all 4

Proceedings of the 5th Workshop on Hierarchical Planning

34

‘make rail’ datapoints
(not shown) are at y=20

Figure 2: Number of seconds to find a correct plan using the four sets of learned methods.

graphs, and are grouped by goal (see legend). No method set
showed obviously superior performance across all goal cate-
gories, however, the landmarks used during method learning
can clearly have an impact on planning efficiency, as some of
the method sets solve problems of a certain category faster
than others.

In general, when problems are solved with the same set of
methods, there is not much difference in the solving time of
problems with the same goal. All attempted problems were
solved in less than 30 seconds, but problems were only at-
tempted if the goal of the problem was covered by a land-
mark method in the method set.

A primary purpose of these experiments was to determine
how changes to the formatting of traces impacted the learn-
ing of landmark atoms, and therefore the learning of meth-
ods. We also sought to determine if learning methods and us-
ing them to solve problems would provide us with informa-
tion on the utility of the learned landmarks, as it is otherwise
difficult to judge the effectiveness of the landmark learn-
ing technique, including the Word2Vec hyperparameters, the
best formatting for the traces input to Word2Vec, and the
technique for selecting landmarks using word-embeddings.

It is difficult to declare any one set of method better. Each
had their strengths and weaknesses. Problems solved with
the CL method set were mostly completed in less than a half
second. Goal categories that were outliers included those
with iron pickaxe and iron axe goal products, which rose
to about a second and about four seconds respectively. No-
tably, it was much more efficient on the rail problems than
any other method sets.

For the PE method set, the solvable lower-cost goals
(stone pickaxe, furnace, stone axe) were accomplished
slightly more quickly than for any other method set, most-
likely because the landmarks were all concerning cobble-
stone, an ingredient of stone axes/pickaxes and the furnace.
The uptick in planning time for iron products is probably re-
lated to the slightly greater difficulty of deciding how much
coal and iron to gather, and how much iron to smelt. Rails
require the most iron, so they had the greatest time cost.

For FL, duration for the low-cost items are roughly the
same as for CL and PE, but for the cart goal the dura-
tion jumps up by more than a second to nearly 1.5 sec-
onds, and then decreases gradually for the remaining goals
(iron pickaxe, iron axe, rail) stopping at slightly less than a
second. This almost inverts the trend seen in the PE graph
for the iron goal products, where rail is more expensive than

cart. (Note that, because there is only one landmark atom
selected for FL, the landmark methods can have only two
subtasks: one for making the wooden pickaxe and one for
making the final product.)

In some goal categories, RA performed worse than all
other method sets (furnace and stone axe) and demon-
strated middle-of-the-road performance for other categories
(cart, iron pickaxe, iron axe) and failed to cover both
stone pickaxe and wooden pickaxe. Additionally, its perfor-
mance on the rail goal was an extreme outlier at about 20
seconds while solutions for all other problems and method
sets were achieved in less than 5 seconds. This is unexpected
as the RA landmarks, which involve the furnace, iron ore,
and coal, should be useful for learning efficient solutions.

The comparatively poor performance on furnace and
stone axe is probably due to unnecessary resource gather-
ing; the RA landmarks target resources that are not needed
for either goal product, and therefore methods are only
learned from traces for those goals when they do some-
thing inefficient (for example, like crafting a stone and
iron pickaxe in order to gather stone to make a stone axe).

7 Related Work
Fine-Morris et al. (2020) uses a similar technique to learn
methods with numeric preconditions, leveraging Word2Vec
and clustering techniques. It then uses these landmarks to
partition the traces and learn a similar hierarchy of meth-
ods with numeric preconditions of arbitrary complexity. The
crucial difference is that T2N allows for goals to be numeric
fluents. This enables the agent to solve problems where, for
example, there is a minimum number of resources needed.

Word2HTN (Gopalakrishnan, Munoz-Avila, and Kuter
2018) uses a technique involving Word2Vec and clustering
similar to the one described in this work, with similar in-
puts and outputs. A significant difference between our sys-
tem and Word2HTN is that Word2HTN learns an exclu-
sively binary hierarchy (every method has two subtasks) as
opposed to our system, where the top-level methods decom-
pose the task into arbitrarily-many subtasks, capturing com-
plex underlying task structures beyond right-recursive task
decompositions. Additionally, while Word2HTN can learn
numeric preconditions and effects involving arithmetic oper-
ations only (e.g., addition, subtraction), our system can learn
more complex (i.e., compound) functions via function com-
position. This has trade-offs, as Word2HTN can simplify its
numeric expressions in ways our system cannot (for exam-

Proceedings of the 5th Workshop on Hierarchical Planning

35

ple, it can combine two updates to varX , +3 and −2 into
one +1 update. Because of this, the preconditions learned
by our system can be very large.

Both HTN-Maker (Hogg, Muñoz-Avila, and Kuter 2016)
and HTNLearn (Zhuo, Muñoz-Avila, and Yang 2014) learn
task decomposition methods from traces and user-provided
annotated task definitions comprised of (precondition, ef-
fects) pairs. HTNLearn uses constraint satisfaction to learn
method preconditions, while HTN-Maker uses goal regres-
sion and can learn right-recursive subtasks. Crucially, in our
work we are not giving the subtasks as input; while we anno-
tate our traces with the goal-task, we identify the bounds of a
task using the occurrence of learned landmarks in the effects
of an action and did not require extensive user-provided sub-
task specifications. Also, neither handles numeric fluents.

Segura-Muros et al. (2015) learns HTN planning domains
from plan traces using a combination of process mining
and inductive learning. Process mining builds a behavioral
model from a set of event logs. By treating plan traces as
event logs the authors use process mining to learn the hi-
erarchical structure of the plan traces. Once the structure is
learned, they extract pre-state and post-state pairs from the
plan traces for each action and method and utilize inductive
learning to generate preconditions and effects. They show
that their algorithm can learn a simple and straightforward
domain capable of consistently solving test problems. How-
ever, they do not handle numerics.

ICARUS (Langley, Choi, and Rogers 2007) uses back-
ground knowledge and means-ends analysis to learn Teleo-
reactive logic programs from provided solution plans. The
background knowledge includes concept definitions, which
are composed together to form more complex concepts. The
hierarchy of concepts this creates helps define the hierar-
chical structure of the programs. Since tasks are linked to
the achievement of concepts which are built upon achieving
goals, Teleoreactive logic programs basically encode HGNs.
Our system requires less user-provided domain information
to dictate hierarchical structure, instead inferring structure
from the learned landmarks.

X-learn (Reddy and Tadepalli 1997) learns goal-subgoal
relations. X-learn uses inductive learning to learn d-rules
with preconditions and a sequence of fully-ground subgoals
(similar to HGN decomposition methods or macro-actions)
from increasingly-difficult exercises. X-learn is purely sym-
bolic, unlike our system which can learn numeric goals.

8 Final Remarks
We have discussed our results from learning several sets of
HTN methods using an automated learner, T2N, for a do-
main with numeric goals. We tested them on 30 test prob-
lems and discussed how the set of landmarks used to struc-
ture the learned methods can have an impact on which goals
that method set covers. No consistent pattern exists in the ef-
ficiency of methods for all goals across method sets, but the
set of landmarks impacts the efficiency with which different
method sets solve problems for the same goal. Our results
indicate that the selected landmarks can have an impact on
the final goals that are covered by a method set, and that it

is possible that different trace formats can impact landmark
selection.

While it is difficult to draw firmer conclusions about the
impact of trace formatting without more data, results thus far
suggest that some method sets are complementary in terms
of the problems and goals they solve. Although method sets
may fall short of complete domain coverage, it is possible
that the weakness of each could be remedied by using par-
allel planners, one for each method set. By taking the plan
of the first planner to finish, we could cover the complete
set of goal tasks. While this would be more computation-
ally expensive, it would take advantage of the strengths of
both learned method sets. We suggest this as an alternative
to merging method sets, which might prove challenging to
do without degrading performance.

The work presented here is preliminary, with possible fu-
ture research including: (1) comparing the performance of
landmarks learned using multiple bins with those learned
from a single bin, (2) using clustering of numerics for as-
signing bin labels instead of discretely-sized bins, (3) per-
forming the same experiments with different Word2Vec hy-
perparameters, (4) experimenting with more than 2 clusters
during bridge atom selection, (5) trying to replicate the re-
sults in other domains, and (6) finding ways to prevent goals
from going uncovered by landmark methods during learn-
ing due to landmark-less traces being skipped, for example,
by introducing the ability to select fallback landmarks for
landmark-less traces.

Acknowledgments. We thank NRL and ONR for funding
this research and NSF’s Independent Research and Develop-
ment (IR/D) Plan. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References
Bundy, A.; and Wallen, L. 1984. Skolemization. In Bundy,
A.; and Wallen, L., eds., Catalogue of Artificial Intelligence
Tools, 123–123. Berlin, Heidelberg: Springer. ISBN 978-3-
642-96868-6.
Fine-Morris, M.; Auslander, B.; Floyd, M. W.; Pennisi, G.;
Muñoz-Avila, H.; and Gupta, K. M. 2020. Learning Hier-
archical Task Networks with Landmarks and Numeric Flu-
ents by Combining Symbolic and Numeric Regression. In
Proceedings of the 8th Annual Conference on Advances in
Cognitive Systems, 16.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Elsevier. ISBN 978-0-08-
049051-9. Google-Books-ID: uYnpze57MSgC.
Gopalakrishnan, S.; Munoz-Avila, H.; and Kuter, U. 2018.
Learning Task Hierarchies Using Statistical Semantics and
Goal Reasoning. AI Communications, 31(2): 167–180.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. Journal of Artificial Intelligence
Research, 22: 215–278.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2016.
Learning Hierarchical Task Models from Input Traces.

Proceedings of the 5th Workshop on Hierarchical Planning

36

Computational Intelligence, 32(1): 3–48. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12044.
Langley, P.; Choi, D.; and Rogers, S. 2007. Interleaving
Learning, Problem Solving, and Execution in the Icarus Ar-
chitecture. 27.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed Representations of Words and
Phrases and their Compositionality. In Advances in Neural
Information Processing Systems, volume 26. Curran Asso-
ciates, Inc.
Nau, D.; Muñoz-Avila, H.; Cao, Y.; Lotem, A.; and Mitchell,
S. 2001. Total-Order Planning with Partially Ordered Sub-
tasks. In Proceedings of the 17th international joint confer-
ence on Artificial intelligence - Volume 1, IJCAI’01, 425–
430. San Francisco, CA, USA: Morgan Kaufmann Publish-
ers Inc. ISBN 978-1-55860-812-2.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2014. On the
Extraction, Ordering, and Usage of Landmarks in Planning.
In Sixth European Conference on Planning.
Reddy, C.; and Tadepalli, P. 1997. Learning Goal-
Decomposition Rules using Exercises. In Proceedings of
the fourteenth national conference on artificial intelligence
and ninth conference on Innovative applications of artificial
intelligence., 843–843.
Segura-Muros, J. A. 2015. Learning HTN Domains using
Process Mining and Data Mining techniques. Workshop on
Generalized Planning (ICAPS-17), 8.
Shivashankar, V.; Kuter, U.; Nau, D.; and Alford, R. 2012.
A Hierarchical Goal-Based Formalism and Algorithm for
Single-Agent Planning. In Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent
Systems, 9. Valencia, Spain.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Artificial Intelligence, 212: 134–157.

Proceedings of the 5th Workshop on Hierarchical Planning

37

Learning Operational Models from Demonstrations:
Parameterization and Model Quality Evaluation

Philippe Hérail, Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France

philippe.herail@laas.fr, abitmonnot@laas.fr

Abstract

When acting in non-deterministic environments, autonomous
agents must balance between long-term, complex goals with
unpredictable events and reactive behavior. In this context, hi-
erarchical operational models are attractive in that they allow
the execution of complex behavior either in a purely reactive
fashion or guided by a planning process. Just like for HTN
models with which they share most characteristics, one key
bottleneck in the exploitation of operational models is their
acquisition.
In this paper, we introduce an algorithm for learning hier-
archical operational models from a set of demonstrations.
Given an initial vocabulary of tasks and some demonstrations
of how they could be achieved, we present how each task can
be associated to a set of methods capturing the operational
knowledge of how it can be achieved. We present the struc-
ture of the learned models, the algorithm used to learn them
as well as a preliminary evaluation of this algorithm.

Introduction
To allow an autonomous agent to operate in its environment,
we can differentiate two family of approaches, split by the
way they select their next action: reactive or deliberative.
While a reactive approach may cover several distinct acting
techniques, these often present the common characteristic
of being fast to act but short-sighted. Meanwhile, delibera-
tive approaches typically rely on planning to consider long-
term impacts of a decision, at the cost of increased delibera-
tion time. In order to find a compromise between both these
approaches hierarchical operational models (Ghallab, Nau,
and Traverso 2014) have been developed along with acting
engines such as in (Patra et al. 2021). This combination al-
lows to have models that distinguish between different ways
to achieve a given task through methods. These hierarchical
models allow the agent to act either reactively, selecting one
method without any reasoning about the future, or to make
more elaborate choices. Furthermore, the hierarchical aspect
allows to reduce the possibilities that need to be considered
at any given time, similarly as in hierarchical planning.

Even though these hierarchical models are a formalism
that allows to act more efficiently while remaining inter-
pretable by human engineers, it is cumbersome to design
such models from scratch. This difficulty stems from the
quickly exploding number of possible contexts that need to

be considered when carrying out even basic tasks in a sim-
ple environment. To address this issue, we intend to allow
the agent to learn such operational models from previously
observed execution traces, and in particular the ones result-
ing from a tutor’s demonstration.

The goal of such a learning system would be to be able
to solve any previously demonstrated tasks through a solu-
tion of at least equivalent quality to the demonstrated one.
It should also be able to generalize the demonstrations to
solve new unseen tasks, or previously demonstrated tasks
in a new environment. This is done by learning, for any
given task in the considered domain, a set of methods that
achieve the high-level objectives associated to the task. This
set of methods should cover all possible ways of achieving
this task with the exception of clearly suboptimal ways. Any
method should be associated with a validity scope that define
whether it is applicable in a given state. When applicable, it
should achieve the task.

Intuitively, if a learned operational model has these de-
sirable properties, an acting engine facing a task to achieve
could pick any applicable method and have the guarantee
that it will fulfill the objectives associated to the task. While
this might lead to suboptimal behavior, it should be possible
for an automated planner to guide the choice of the method
to obtain the optimal behavior.

The objective of this paper is to present a method for
building hierarchical operational models based on past ex-
periences. The experience takes the form of execution traces
that can be the result of the agent’s own activity or of demon-
strations by a tutor. The agent is assumed to have a fixed
set of primitive capabilities and to act in a Fully Observable
Non-Deterministic (FOND) environment.

Related Work
Over the years, several approaches have been developed to
learn hierarchical models.

HTN-MAKER (Hogg, Muñoz-Avila, and Kuter 2008)
learns Hierarchical Task Networks (HTNs), for use in fully-
observable deterministic domains from execution traces.
This approach uses tasks annotated with preconditions and
postconditions so as to extract sequences that allow to
achieve the postconditions starting from a state where the
preconditions hold. The method was later extended by Hogg,
Kuter, and Muñoz-Avila (2009) to handle non-deterministic

Proceedings of the 5th Workshop on Hierarchical Planning

38

domains, through the use of a right recursive structure in-
stead of sequences. However, the models learned are re-
stricted to a limited task and method structure, resulting in
rather flat hierarchies, which limits the guidance offered to
an agent using them for planning.

HTNLearn (Zhuo, Muñoz-Avila, and Yang 2014) also
learns HTNs with similarly annotated tasks, through con-
verting the learning problem into one of constraint satis-
faction, building the constraints from, e.g., the ordering of
tasks within the examples and the state preceding the ap-
plication of a method. The problem is then solved using a
MAXSAT approach and the solution converted back into an
HTN model. While this approach does not handle nonde-
terminism, it supports partially observable states. A similar
approach is even able to use partial, disordered input traces
(Zhuo, Peng, and Kambhampati 2019).

Recently, the learning of Hierarchical Goal Networks
(HGNs) structure instead of HTNs, for nondeterministic do-
mains, has been proposed as a preliminary work by Fine-
Morris and Muñoz-Avila (2019), leveraging a vector repre-
sentation of the states and unsupervised learning procedures
to learn such networks while limiting the burden of annotat-
ing demonstration data.

Due to their similarities with HTNs, some work aiming
at learning grammars is relevant and in particular the work
on learning Combinatory Categorial Grammars (CCGs) for
plan and goal recognition (Geib and Goldman 2011; Kan-
tharaju, Ontañón, and Geib 2019). While the learned CCGs
are not always practically usable, the authors propose sev-
eral ideas for extracting interesting patterns from a set of
execution traces.

The algorithm for learning probabilistic primitive action
models (i.e. not hierarchical) presented by Pasula, Zettle-
moyer, and Kaelbling (2007) develop interesting solutions
for handling the specificities of FOND environments.

Work has been done on the automated learning of Behav-
ior Trees (BTs), a common framework for implementing hi-
erarchical, reactive operational models. Colledanchise, Para-
suraman, and Ögren (2018) and Zhang et al. (2018) develop
techniques to efficiently apply genetic programming to these
structures.

Learning Problem
Operational Model
For an agent acting in its environment, an operational model,
as defined by Ghallab, Nau, and Traverso (2014), represents
an agent’s knowledge about how to carry out a given activ-
ity in its environment. In this work, we are specifically inter-
ested in nondeterministic, fully observable environments.

We define an operational model O as an HTN-like struc-
ture which can be written as a tuple O = (T,A,M) where T
is a set of abstract tasks, A a set of primitive actions and M
a set of possible methods decomposing the tasks t ∈ T into
subtasks {td | td ∈ {T ∪ A}}. We consider the tasks to be
possibly annotated with postconditions, similarly as Hogg,
Muñoz-Avila, and Kuter (2008).

A primitive action a ∈ A models the basic acting capa-
bilities of the agent, and represent directly executable prim-

itives. They are represented using an identifier and a set of
parameters, such as a = action name(arg1, . . . , argn). We
do not assume any knowledge on the preconditions and ef-
fects of a primitive action. Furthermore, as we consider a
non-deterministic environment, there is no guarantee that
applying an action twice in the same state will produce an
identical result.

An abstract (or non-primitive) task t ∈ T is defined as
a tuple t = (Postt,Mt), where Postt are the postcondi-
tions of the task, that is the predicates that must hold after
executing t for it to be considered a success. These are espe-
cially important in nondeterministic domains. A task with-
out postconditions is considered successful whenever one of
its method has been executed without failure. Mt is the set
of methods decomposing t.

A method m ∈ Mt is a tuple m = (Prem, Nm), where
Prem are the preconditions of the method, and Nm is a task
network defining a way to decompose t into subtasks. This
task network represents a way to advance the task t towards
its intended effects, in the case of a task with postconditions,
or a way to achieve t if Postt = ∅. A method is applicable
in a given state s iff its preconditions hold in this state. For
the sake of simplicity, we will assume that the set Nm of
subtasks is totally ordered.

We define an acting problem as an initial task network
Np, representing the activity we wish to carry out, as well as
an associated environment and a starting state si described
by a set of boolean state variables. When trying to solve an
acting problem p, we associate it to an operational model O
that will be used to select the actions to execute. We consider
that at any instant, the current state s is fully observable and
that it only evolves when a primitive action is executed (i.e.
there are no exogenous events). This evolution may however
be nondeterministic.

Acting with an Operational Model
To act with an operational model, abstract tasks are refined
down to a sequence of executable primitive actions. This re-
finement is achieved through the methods associated with
the tasks: each time the agent must choose an action to ex-
ecute, the current best applicable method decomposing the
task at hand is chosen. The process is iteratively repeated un-
til a sequence of tasks starting with a primitive action is ob-
tained. This sequence is then executed until a non-primitive
task is encountered, at which point the same process is ap-
plied again. The choice of the best method may be done ei-
ther reactively or deliberatively. In the first case, the best
method is chosen greedily according to some metric, while
in the second one an acting engine, such as the one described
by Patra et al. (2021), may use planning techniques to select
a method considering the long term implications of the ac-
tions.

During the refinement of a task t using the method m
starting in a state s, several failure types may occur:

1. A primitive action fails to be executed, causing the whole
parent method to be considered a failure.

2. A non-primitive descendant t′ from m has no applicable
method. Then, the parent method of t′ is considered to

Proceedings of the 5th Workshop on Hierarchical Planning

39

have failed.
3. t can be completely refined, but the postconditions of t

do not hold in the final state. This case is obviously valid
only for a task t such that Postt 6= ∅.

In the first two cases, when a method m decomposing a
task t is detected as having failed, then some retrial strategy
must be used to continue acting. A simple strategy could be
to try another applicable method m′ applicable in the current
state s. If no such method is available in the hierarchy, then
the failure is to be propagated upwards to the parent task t,
until we reach either a task with an applicable method or
the root task, the latter case leading to a failure to solve the
acting problem.

Learning of an Operational Model
Inputs to the Learning Problem For the learning prob-
lem itself, we consider as input a fixed set A of primitive
actions as well as a vocabulary of non-primitive tasks TI .

Recall that each primitive action has the form
action name(param1, . . . , paramn) and corresponds to
a primitive directly executable by the agent. For a non-
primitive task tI ∈ TI , we assume its postconditions PosttI
to be non-empty, as they are required to assess the success
of the task execution in the agent’s nondeterministic envi-
ronment. Note that these postconditions might be learned
independently of the methods, which is out of the scope of
this paper.

Then, for each task tI ∈ TI , the agent is given a set DtI
of demonstration traces from the tutor. Each trace d ∈ DtI
is an alternating sequence of states and tasks (either primi-
tive or non-primitive), starting from a given initial state and
ending in a final state in which the task tI has been suc-
cessfully achieved. d is considered optimal and maximally
abstract with regard to the initial task vocabulary: for every
demonstrated task, no other more abstract task from the ini-
tial vocabulary TI may be used to abstract a subsequence of
d, and each demonstration is optimal according to a chosen
metric. For a case where actions are uniform in cost, one
may naturally consider the total number of primitive actions
required to achieve tI as the optimality metric.

Learner Objectives Given a learned operational model
and an acting problem, we say that the operational model
solves the problem if, when used by the acting engine, it
allows to refine a given task network into an executable se-
quence of primitives. Considering a successful solution to
the problem, we define the soundness metric as the number
of failed method execution (i.e. number of times we had to
resort to recovery behavior) within the execution, to allow
the evaluation of the quality of the learned preconditions of
the methods. We also define the efficiency metric as the ra-
tio between the cost of the executed behavior and the cost of
executing an optimal model.

These metrics have been defined for a single acting prob-
lem. To assess the generalization capabilities of the model,
we should consider a set of acting problems not encountered
during learning. We define three metrics over this test set,
namely the ratio of solved problems (coverage), the average

mdo

t

mcheck

dot t

m1 m2 m3

(a) Task with postconditions.

t′

m′
1 m′

2 m′
3

(b) Task without postconditions.

Figure 1: Structure of a task, with or without postconditions.
The arguments of tasks and methods are omitted for clarity.

number of method failures (average soundness), and the av-
erage efficiency.

Finally, to evaluate the algorithm as a whole, we should
consider a set of demonstration and a set of acting problems.
The performance of the algorithm is defined as the average
performance of the model produced from the demonstrations
on the acting problems, as defined in the previous paragraph.

Approach to Model Learning
In our approach, we develop operational models designed to
handle nondeterministic environments. To this end we dis-
tinguish tasks with and without postconditions, as shown in
figure 1, presenting the structural differences a task t with
postconditions and a task t′ without.

In the case of t, (Post t 6= ∅, figure 1a), we observe that
t has two methods, mcheck and mdo , and a right recursive
structure. The former has no subtask, and its preconditions
correspond to the postconditions of t, while the latter has no
preconditions and two subtasks, dot and t, recursively. The
methods mi of dot encode different possible ways to act for
the agent, with the intent to try and achieve t.

When decomposing t, mcheck has priority over mdo , and
is used to assess whether the goal associated with t has been
achieved. We can note that t will thus be decomposed recur-
sively until its associated goal is achieved, even in the case
of unexpected events, provided there is a valid mi to han-
dle it, as in HTN-MAKER (Hogg, Kuter, and Muñoz-Avila
2009). Therefore, when decomposing t, in the case where its
postconditions do not hold, we will choose one of the avail-
able method of dot, refine and execute it, and then try to re-
fine the original instance of t again, hoping to have achieved
the intended effects. It should be noted that a method of a
task may either represent a way to completely achieve it, or
merely to advance it (or recover from mistakes), leveraging
the recursive call to finally achieve the original endeavor.

In the case of t′, a task without postconditions
(Post t′ = ∅, figure 1b), we have a task with a more stan-
dard structure, as a method will then always be considered
successful if it is refined and executed to its completion. In-
deed, it would not be possible to decide if the task should be
recursively retried or not.

Requirements of Model Selection
Let us now give an initial intuition about the shape of mod-
els that could be learned and the implication for the learn-

Proceedings of the 5th Workshop on Hierarchical Planning

40

t → a b c

t → a b d

(a) Available demonstrations, showing that t
was once achieved with the a b c action se-
quence and once with the a b d action se-
quence.

t

mcheck mdo

do t

(b) Common right recursive structure, miss-
ing the refinement of the do task. A handful
of possible models for the do task are shown
in the subsequent figures.

do

m2

b

m3

c

m1

a

m4

d

(c) Generic model where the actor might pick
any of the primitive actions and rely on the
recursive call in mdo to continue if needed.

do

m1

ba c

m2

ba d

(d) Model where each demonstration is fully
encoded into a dedicated method.

do

m1

a b

m2

c

m3

d

(e) Intermediate model the common a b se-
quence is grouped. It relies on the recursive
call to t in mdo to produce a full sequence.

do

m1

ba ts

m2

c

md

d

(f) Model where the a b sequence is shared,
requiring a synthetic task ts

Figure 2: Illustration of the possible structures of the learned model for a simple learning task with two demonstration of how
to perform a task t. Note that for conciseness the parameters or preconditions or the task and methods are omitted.

ing process. Figure 2 presents several possible models (fig-
ures 2c-2f) that could be generated based on two example
sequences (figure 2a). All candidate models share the same
recursive structure that we just saw (figure 2b) and only dif-
fer in the refinement of the do task.

The first one (2c) allows the choice of any of the
four primitive actions {a, b, c, d}, each placed in a specific
method. This model relies on the recursion to repropose the
same choice until the task’s postconditions are achieved.
While this model allows building any sequence of actions
it does not help the agent towards a meaningful sequence
based on demonstrations. The second model (2d) takes the
opposite approach and records each known trace into a
method. This model is obviously strongly tied to the demon-
stration set and would fail to generalize to new problems.
In between these two extreme, we have the models (2e) and
(2f) that take different options to abstract common subse-
quences. The former encodes the repeated a b sequence in
a single method and relies on the recursive call to complete
the sequence. The latter delays the choice between c and d
to after the execution of a and b, using a synthetic task ts.

These four models are just a handful of examples among
the many possible models that could be generated. Denoting
as Θ the set of possible models, the objective of a learning
system is to find, or at least approach, the optimal model
θ∗ ∈ Θ

θ∗ = argmin
θ∈Θ

cost(θ)

where cost(θ) is a function that measures the cost of a par-
ticular model and should typically account for the size of the
model as well as its capacity to solve both demonstrated and
unseen problems. With this in mind we now turn our atten-
tion to the characterization of the set of possible models Θ.
In a later section, we will propose a cost function to evaluate

the models.

Generation of Candidate Operational Models
At a high level, the goal of the learning problem is to gener-
ate a model where some subtasks group together behaviors
that happen repeatedly, with a sensible parameterization of
methods depending on the current task, as well as reason-
able preconditions to limit the search effort of the acting en-
gine. It is easy to imagine an iterative process for this: we
may extract some subsequence as a new task t, with a sin-
gle method m1 consisting of this subsequence. Once this is
done, we may find another subsequence that achieves a sim-
ilar goal, but using different tasks, thus allowing us to add
a new method m2 to t. Next, we may be able to extract a
new task t′ using t as a subtask of this method. This pro-
cess is to be repeated until it produces a model that become
too complex, not improving the score defined in the previous
section.

Devising such an iterative learning process is however
error-prone as it is easy to get stuck in a local minimum due
to bad decision in the early stages of learning. Because the
quality of a model depends not only on its structure, but also
on its parameterization, in order to efficiently develop this
latter part of the learning algorithm, we developed a method
for generating a large number models so as to conduct a pre-
liminary evaluation and relegate a more efficient exploration
of the set of possible models to future work.

Considering a set of primitive actions and a set of demon-
strations, it is easy to imagine a way to generate a number
of operational models that can be used to achieve any of
the given demonstration. For instance, we could start with a
basic flat model, and add any number of possible subtasks
whose methods correspond to arbitrary sequences of primi-
tive actions, with possible duplications. This model can al-

Proceedings of the 5th Workshop on Hierarchical Planning

41

ways fall back to choosing one of the single primitive ac-
tions if no subtask’s method can be used, and therefore will
always remain valid. As an infinite number of possible se-
quences can be used as subtasks, an infinite number of such
models can be elicited, thus foregoing an exhaustive genera-
tion procedure. We therefore chose to restrict ourselves to a
certain structure, described below, so that we could generate
models exhaustively within this limited search space.

Considering an initial set of primitive actions {a, b, c, d},
we try and find all the ways to partition it, i.e. P =
({{a}{b}{c}{d}} , {{a, b}{c}{d}} , {{a, b, c}{d}} , . . .).
For each new set in P , we recursively apply the same
process to each subpartition. The resulting sets will have
a format such as {{{a}{b, c}}{d}} each of which corre-
sponding to a particular model (e.g. see the one presented in
figure 3 for this particular example). To build such a model,
we consider each level, starting from the first one (here,
this first level contains the subpartitions {{a}{b, c}} and
{d}), considering that it shows different ways to decompose
some task t that has been demonstrated. We then consider
the subpartitions. If it is not further subpartitioned (as {d}
here), we create a method refining t down to the primitive
action contained. Otherwise, we create a subtask st and a
method that refines t into st and recursively apply the same
procedure, considering that this subpartition shows ways to
decompose st.

do

m1

t1

m2

d

m3

a

m4

t2

m5

b

m6

c

Figure 3: Model corresponding to the {{{a}{b, c}}{d}}
partitioning.

With this procedure, we will obtain models that are lim-
ited, as they will, e.g., never use the same primitive to de-
compose two different subtasks, nor will they contain meth-
ods that decompose as sequences of tasks. However, this
generation process produces a number of models that scales
exponentially with the number of primitive tasks given as
input, due to the number of possible subpartitions of a set,
therefore quickly making the use of the generated model set
for evaluating our algorithm impractical. Adding more pos-
sible model structures would only worsen this issue, thus
warranting the use of some local search procedure.

While this generation procedure allows us to generate
new model structures, we still need to parameterize their
tasks and methods to evaluate them properly on the existing
demonstration set, and to eventually use the corresponding
models for acting. This parameterization as well the extrac-
tion of methods’ preconditions is detailed in the next section.

Parameters & Preconditions Extraction
For each method in the model, we need to identify the pa-
rameters that should be passed to its subtasks. When consid-
ering the abstract tasks, we need to distinguish two cases:

1. The set TI of tasks given as the starting vocabulary for
which arguments and postconditions are known.

2. The tasks that are inferred during learning, by grouping
common subsequences for example, for which arguments
must be extracted. This second type of tasks are called
synthetic tasks and their set is called TS . For these tasks,
we do not consider the identification of intended effects
in this work.

Process Overview Parameterization is a bottom-up, it-
erative process that selects a task or method whose sub-
components are already parameterized (i.e. their parameters
are given or were previously identified). Those subcompo-
nents are analyzed to identify the parameters of the cur-
rent task/method, which in turn will enable the analysis of
tasks/methods higher-up in the hierarchy.

1. We first consider any method m whose subtasks are all
parameterized. For each such method we:

• Identify its parameters based on the parameters of its
subtasks

• Extract its preconditions by considering each state that
precedes an instance of the method in the demonstra-
tions.

2. For any synthetic task t ∈ TS whose methods are all pa-
rameterized (as a result of the previous step), we identify
the parameters of t based on the ones of its methods.

3. For any initial task t ∈ TI whose methods are all param-
eterized (as a result of the previous step), we associate
the parameters of t to the parameters of its methods.

We repeat this process until all tasks and methods are pa-
rameterized, resulting in a bottom up identification of the
parameters of the tasks and methods.

For this process, we need to know how our model would
have been used if it had to generate the demonstrations,
while not having yet access to its parameterization. To this
end, we use the technique developed for HTN plan verifica-
tion (Höller et al. 2021) to obtain such a trace from an HTN
planner. To use this strategy with a candidate model Oc, we
generate an HTN model by removing every argument and
method precondition. We also replace each instance of a
primitive action a by a new task aobs whose methods each
correspond to a single observation of an instance of a in the
currently considered demonstration d. Each such method has
a single precondition: being currently at the right point in the
sequence. This means the method containing the 6th obser-
vation in the demonstration can only be selected between
adding the 5th and 7th to the final plan.

Identifying the Arguments of a Method from its Sub-
tasks When extracting the arguments of a method, we

Proceedings of the 5th Workshop on Hierarchical Planning

42

leverage the fact that we know the arguments of its sub-
tasks as well as, for each method demonstration instance,
their mapping to the ground arguments.

This allows us to unify the arguments of the sub-
tasks as much as possible, by identifying the subtask ar-
guments that are always bound to the same constant in
each example. For instance, consider for a method m with
st1(X1, X2) and st2(Y1, Y2, Y3) as its subtasks. In this ex-
ample, without any unification, the arguments of m could
be (X1, X2, Y1, Y2, Y3), that is, the union of the arguments
of its subtasks. If X1 and Y1 are bound to the same con-
stant in each instantiation of the method (over all traces),
we can unify them using a new variable Z1. Therefore, the
arguments of m become (Z1, X2, Y2, Y3), and its subtasks
become parameterized as st1(Z1, X2) and st2(Z1, Y2, Y3)

To make the explanation clearer, let us consider an exam-
ple deliver with truck method as presented in figure 4b, con-
sidering we also have two demonstration instances of this
method, as presented in figure 4a. Since T1 and T2 are al-
ways bound to the same variable in each of the examples, we
can introduce a new variable T , to replace each occurrence
of T1 or T2. This leads to the method presented in figure 4c.

E1 :

{
s10 → gototruck(t1, l1, l2)

→֒ s11 → unloadtruck(t1, p1) → s12

E2 :

{
s20 → gototruck(t2, l3, l4)

→֒ s21 → unloadtruck(t2, p1) → s22

(a) Example traces associated to the method.

gototruck

(T1, L1, L2)
unloadtruck

(T2, P)

deliver with truck
(T1, L1, L2, T2, P)

(b) Before unification.

gototruck

(T, L1, L2)
unloadtruck

(T, P)

deliver with truck
(T, L1, L2, P)

(c) After unification.

package in (t1, p1)
truck at(t1, l1)
road(l1, l2)
sunny(l2)
truck at(t2, l2)(
T 7→ t1 P 7→ p1

L1 7→ l1 L2 7→ l2

)

package in(t2, p1)
truck at(t2, l3)
road(l3, l4)
cloudy(l2)
truck at(t3, l2)(
T 7→ t2 P 7→ p1

L1 7→ l3 L2 7→ l4

)

s10 s20

(d) State in the examples, with the mapping from method argu-
ments to constants.

Figure 4: Example method structure before and after argu-
ment identification.

Extracting the Preconditions of a Method Having
identified the arguments of a method m, we can extract its
preconditions. As we know the mapping between method
arguments and constants, we can easily filter the predicates
in the states preceding every instance of m to keep only the

ones fully specified by its arguments. Then, we take the in-
tersection of these sets of predicates.

Consider the method deliver with truck from figure 4,
and the starting states as defined in figure 4d. Then, us-
ing our knowledge of the mappings between the method
parameters and the examples’ constants, we can first ex-
clude the last truck at predicate from both examples, as
at least one constant is not unified with a parameter.
The preconditions of the method are therefore the in-
tersection of the lifted and filtered states, i.e. Pre =
{package in(T, P), truck at(T, L1), road(L1, L2)}.

Associating the Arguments of a Method to the Known
Arguments of the Task it achieves When learning meth-
ods for a task t in our initial vocabulary TI , we have to map
the (known) arguments of t to the arguments of its meth-
ods, which were extracted as described previously. These
arguments are mapped in the same way as when unifying
arguments for methods subtasks. Having some examples of
decompositions of t, we follow the same logic as for the sub-
tasks in a method: all parameters that are always bound the
same value are unified.

Consider a task t(Z1, Z2, Z3) being decomposable with
two methods, m1(X1, X2) and m2(Y1, Y2, Y3, Y4). Based
on the traces of equation 1, we can replace X1 and Y1 with
Z1, X2 with Z2 and Y3 with Z3. We can therefore rewrite the
methods’ arguments as m1(Z1, Z2) and m2(Z1, Y2, Z3, Y4).

E1 = t(a, b, c) : m1(a, b), t(a, b, c) : m2(a, c, c, d)

E2 = t(x, y, x) : m1(x, y)

E3 = t(m,n, o) : m2(m,n, o, q)

⇒

E1 :

(X1 7→ a), (X2 7→ b)

(Y1 7→ a), (Y2 7→ c), (Y3 7→ c), (Y4 7→ d)

(Z1 7→ a), (Z2 7→ b), (Z3 7→ c)

E2 :

{
(X1 7→ x), (X2 7→ y)

(Z1 7→ x), (Z2 7→ y), (Z3 7→ x)

E3 :

{
(Y1 7→ m), (Y2 7→ n), (Y3 7→ o), (Y4 7→ q)

(Z1 7→ m), (Z2 7→ n), (Z3 7→ o)

(1)

To illustrate this with an example, let us consider the task
described in figure 5a that represents the act of delivering a
package P to a location L. It can be achieved either through
a method delivering it via a truck (the same as described in
the previous paragraph) or by a plane. Assuming we have
some supporting examples, we can unify the arguments as
presented in figure 5b.

Extracting the Arguments of a Synthesized Task from
the Arguments of its Methods We now turn our attention
to the identification of the arguments of synthetic tasks. This
is done by leveraging the context of the instances of t to
find method parameters that are always bound to the same
constant in a given context.

Let us consider a new task t ∈ TS , for which we do not
know the arguments, and whose methods’ arguments have
been identified. We assume that t has a parent task tp, possi-
bly several levels higher in the hierarchy, whose arguments

Proceedings of the 5th Workshop on Hierarchical Planning

43

mdo(P,L)

deliver(P,L)

mcheck
dodeliver

(P,L)
deliver
(P,L)

deliver with truck
(T, L1, L2, P̃)

deliver with plane
(Pl , L′

1, L
′
2, P̃

′)

(a) Example task before unifica-
tion.

mdo(P,L)

deliver(P,L)

mcheck
dodeliver

(P,L)
deliver
(P,L)

deliver with truck
(T, L1, L, P)

deliver with plane
(Pl , L′

1, L, P)

(b) Example task after unifica-
tion.

Figure 5: Example task before and after unification.

are known (i.e. tp ∈ TI). We note Ct the context surround-
ing an instantiation of t, defined as the variables bound from
the instantiation of tp and from all the definitive parts of
the methods’ instantiations on the path down to t. Figure 6a
shows an example for such a task t, for which a context
would be an instantiation of X1, X2, Y1, Y2, Z1.

mdo(X1, X2)

mdo,1(?)

mtp,s1
(?)

tp(X1, X2)

mcheck
dotp

(X1, X2)
tp(X1, X2)

tp,s1(?) a(Y1, Y2)

mdo,2(V1, V2, V3)

b(V1, V2, V3)

t(?) c(Z1)

mt,2(W3)mt,1(W1,W2) mt,3(W4,W5,W6)

(a) Example task structure for contexts.

args(t) = {a1, a2}
a1 7→ {W1,W3}
a2 7→ {W4,W5}

(b) Example of a
valid parameteriza-
tion, assuming some
supporting contexts.

Figure 6: Example method structure and parameterization.

After extracting all the contexts from the demonstrations,
we wish to find a valid and relevant parameterization of
t, such as the one of figure 6b. A valid parameterization
is a mapping from args(t) (the set of arguments of t) to
args(Mt) (the set of arguments of its methods) such that
∀ai ∈ args(t), ∃bj ∈ args(Mt) : ai 7→ bj .

A single task parameter ai ∈ args(t) may map to several
method arguments in args(Mt). The core process for iden-
tifying the ai arguments lies in identifying subsets of the
methods’ parameters that can be bound to the same task pa-
rameter. Intuitively, two methods parameters bj and bk can
be bound to the same task parameter ai iff:

• there is a context Ct where both bj and bk map to the
same constant (positive example, noted bj ≡Ct bk), and

• there is no context C′
t where bj and bk map to a different

constant (counter-example, noted bj 6≡Ct
bk).

More formally, a parameterization of a task can be seen
as a set of grouped methods parameters U = {U0, . . . , Un}
where each Ui is the subset of args(Mt) that the ai param-
eter maps to. To be valid, a parameterization U must be such

that:

bj , bk ∈ Ui ⇒
{∃Ct : bj ≡Ct

bk
∄Ct : bj 6≡Ct

bk

}

Ui ∩ Uj = ∅ if i 6= j

Among all the possible valid parameterizations, the one
leading to the smallest number of task arguments and con-
taining the largest total number of method arguments is to
be favored, in order to find relevant unifications. In practice,
we implemented it by enumerating possible sets Ui, which
we then try and combine together.

Evaluation of Operational Models
Now that we are able to generate a set of full operational
models from an initial structure candidate, we ought to com-
pare these in order to find the best one among all candidates.

The metric used to evaluate the operational model should
compromise between models that generalize too much and
models that overfit. Indeed, as described earlier, we wish to
allow our agent to generate solutions to new acting prob-
lems, but we also want these solutions to be sound, i.e., with
limited failures during execution.

To devise such a metric, we turn to the Minimum Descrip-
tion Length (MDL) principle (Grünwald 1996). This princi-
ple, coming from information theory, states that learning can
be viewed as a form of data compression, as both intend to
find some regularity in some source material. Therefore, in
this framework, the best model is the one that can compress
the data the most. Furthermore, as the total size of the com-
pressed data includes the size of the model itself, used to re-
construct the source, this principle naturally guards against
overly specific models.

Example uses of this technique range from learning Con-
text Free Grammars (CFGs) of which HTNs, and thus our
operational models, are close (Sapkota, Bryant, and Sprague
2012), to finding common graph patterns (Bariatti, Cellier,
and Ferré 2020).

Framing our problem in the context of this MDL prin-
ciple, we can say that a desirable model should be able to
“compress” the demonstrations, while not being so specific
that nothing else can be generated, thus limiting the com-
plexity and therefore the size of this model.

Assuming we have generated an operational model can-
didate Oc as part of our search process, we define the de-
scription length of the operational model Lopmod(Oc) and
the description length of the demonstrations in D knowing
Oc, written as Ldem(D|Oc). In order to compute the global
length of the model and the demonstration set, we combine
these two metrics, using a factor α to balance their relative
importance, as defined in equation 2.

L(Oc,D) = αLopmod(Oc) + Ldem(D|Oc) (2)

To compute Lopmod(Oc), we consider a simple (arbitrary)
alphabet to describe our candidate model Oc and compute
the length of an optimal encoding of this description of our
model. Considering a random variable XOc

that takes as
possible values the symbols in our alphabet, information
theory tells us that the entropy H(XOc) of this variable
bounds the expected codeword length of our optimal code

Proceedings of the 5th Workshop on Hierarchical Planning

44

as H(XOc) ≤ E(L) ≤ H(XOc) + 1. Noting x1, . . . , xn

the symbols of our alphabet, and their occurrence probabil-
ity P (x1), . . . , P (xn), the entropy formula is: H(XOc

) =
−∑n

i=1 P (xi) log(P (xi)). As we know the frequency of
each symbol in our model as well as their total number, we
can therefore compute a bound on the optimal model encod-
ing length as in the example below.

As an example, consider the structure of the simple model
learned for performing a task t shown in figure 2c. View-
ing our model as a grammar-like structure, we can describe
it with the following rule: do : a | b | c | d ;. The fre-
quency table of each symbol is given in the table in figure 7a,
giving us the entropy H(XOc). Given that there are 9 sym-
bols occurrence in the rule, this bounds the optimal value
of Lopmod(Oc) as shown in the equation in figure 7b. As
this value will only be used for comparison, we arbitrarily
choose the lower bound as Lopmod.

Symbol do a b c d | ; Total

Frequency 1 1 1 1 1 3 1 9

(a) Frequency table

H(XOc) = −
(
6

(
1

9
log

(
1

9

))
+

3

9
log

(
3

9

))

= 2.64 bits
Lopmod(Oc) ∈ [9× 2.64, 9× 3.64] = [23.76, 32.76] bits

(b) Entropy and model length bounds.

Figure 7: Model length calculation for the one presented in
figure 2c.

To compute Ldem(D | Oc), we need to evaluate the cost
of encoding a trace d ∈ D based on our operational model.
The trace can be mapped to a sequence of refinements from
the original task to the primitive sequence. When planning
or acting, each refinement of a task constitutes a choice point
at which the engine must select one method among the ap-
plicable ones in the current state. Recalling all choices, we
can reconstruct the refinement sequence and the correspond-
ing trace. We define Ldem(D | Oc) as the encoding size of all
choice points, averaged over all examples. This leads us to
equation 3, where C is the set of choices an optimal planner
has to make to reconstruct d from Oc, and Mapp,cp is the set
of applicable methods at a choice point cp.

Ldem(D | Oc) =
1

|D|
∑

d∈D

∑

cp∈C
log (|Mapp,cp|) (3)

As an example, we will study the set of demonstration
presented in figure 2a using again the model of figure 2c,
assuming the methods have no preconditions. For each of
the sequences in the demonstration set, we know that we
have to choose three times among four methods, therefore
Ldem = 1

2 (3 log(4) + 3 log(4)) = 6 bits
To show how this metric can be used, table 1 presents

the different values computed for the examples presented in
figure 2, using α = 0.505. In order to normalize the tree

length and the sequence, based on the value obtained from
the most basic model, i.e. the one presented in figure 2c. Us-
ing 1

2α instead of α reduces the relative importance accorded
to the model size compared to its efficiency at compressing
the demonstrations.

Oc Lopmod(Oc) Ldem(D|Oc)
L(Oc,D)

α 1
2α

Fig. 2c 23.76 12 24 18
Fig. 2d 24.57 2 14.4 8.2
Fig. 2e 22 6.34 13.1 11.89
Fig. 2f 29.21 2 16.75 9.37

Table 1: Description length in bits for the examples pre-
sented in figure 2.

As the previous paragraph should have made clear, we
need to know the choices that are required while acting
with our candidate model Oc, in order to generate a given
demonstration trace d, for which we use again the tech-
nique presented by Höller et al. (2021). We can then recover
the choices made and their associated state by analyzing
the resulting trace. Using an optimal planner, the computed
demonstration length will be the true value of Ldem(D | Oc),
while a non-optimal one may lead to an overestimation.

Preliminary Evaluation
While we are still implementing the ideas presented in this
paper, we have been able to obtain some preliminary results
on the metric to evaluate a candidate model for which pre-
conditions and parameters have been identified as previously
discussed.

A preliminary evaluation using these models on a given
set of demonstration traces show that our metric appears in-
deed to favor structures that allow to efficiently generate the
demonstrations, while still being of limited complexity, i.e.
not favoring the deepest hierarchies, nor ones that are com-
pletely flat.

While we have shown some results earlier in table 1, the
examples were too simple to show the interest of the met-
ric, favoring the “lookup” model. However, working with
more realistic examples, even simple ones, show the inter-
est of our metric. Table 2 shows the results from an example
dataset from a nondeterministic logistics domain with six
primitive actions and three demonstration sequences long of
respectively 11, 18 and 23 tasks. In the same way as before,
we compute α = 1.35 to normalize the model length based
on the flat model. As we can see, reducing the model size
relative importance α allows our metric indeed to favor a
balanced tree. Evaluation on datasets with smaller traces for
which it is possible to analyze all the generated tree struc-
tures by hand shows that the best scoring tree is indeed the
one most efficient to regenerate the demonstrations.

Conclusion and Future Work
Our current work is focused on implementing a basic reac-
tive acting engine to evaluate the currently generated models

Proceedings of the 5th Workshop on Hierarchical Planning

45

Oc Lopmod(Oc) Ldem(D|Oc)
L(Oc,D)

α 1
2α

Flat 24.57 33.15 66.3 49.7
Lookup 141.2 1.58 192.2 96.9
Balanced 37.71 20.98 71.9 46.4

Table 2: Description length in bits for some real examples.

on a test set of acting problems. This will allow us to conduct
a first partial evaluation of the performance of the higher
scoring models on some unseen acting problems. With this
done, we will implement a local search strategy in lieu of the
present crude generation method, to generate more complex
models by removing the current structural restrictions. The
next step will then be to integrate these operational mod-
els in a deliberative acting engine in order to leverage its
lookahead capabilities, to make a better evaluation of the
real world applicability of our models.

While we are still working on the implementation of the
algorithm presented in the previous parts, there are some
limitations that we are aware of and intend on addressing
when the main algorithm will have been implemented. First,
the current approach for extracting method preconditions is
limited in which part of the preceding states is considered,
which could be improved by integrating deictic references
(Pasula, Zettlemoyer, and Kaelbling 2007), and superfluous
predicates may be removed with an adaptation of the ap-
proach of Martı́nez (2017). Second, we wish to extract the
postconditions of synthetic tasks with possibly disjunct in-
tended effects, which may be done similarly to the extraction
of the set of changes of an action of Pasula, Zettlemoyer, and
Kaelbling (2007). Finally, it would be interesting to try and
relax the assumptions made on the demonstration traces for-
mat.

References
Bariatti, F.; Cellier, P.; and Ferré, S. 2020. GraphMDL:
Graph Pattern Selection Based on Minimum Description
Length. In IDA 2020 - Symposium on Intelligent Data Anal-
ysis. Konstanz, Germany.
Colledanchise, M.; Parasuraman, R.; and Ögren, P. 2018.
Learning of Behavior Trees for Autonomous Agents. IEEE
Transactions on Games, 11(2): 183–189.
Fine-Morris, M.; and Muñoz-Avila, H. 2019. Learning Do-
main Structure in HGNs for Nondeterministic Planning. In
Proceedings of the 2nd ICAPS Workshop on Hierarchical
Planning (HPlan 2019), 22–30.
Geib, C. W.; and Goldman, R. P. 2011. Recognizing Plans
with Loops Represented in a Lexicalized Grammar. In Bur-
gard, W.; and Roth, D., eds., Proceedings of the Twenty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2011,
San Francisco, California, USA, August 7-11, 2011. AAAI
Press.
Ghallab, M.; Nau, D.; and Traverso, P. 2014. Automated
Planning and Acting. Cambridge: Cambridge University
Press. ISBN 978-1-139-58392-3.

Grünwald, P. 1996. A Minimum Description Length Ap-
proach to Grammar Inference. In Carbonell, J. G.; Siek-
mann, J.; Goos, G.; Hartmanis, J.; Leeuwen, J.; Wermter,
S.; Riloff, E.; and Scheler, G., eds., Connectionist, Statisti-
cal and Symbolic Approaches to Learning for Natural Lan-
guage Processing, volume 1040, 203–216. Berlin, Heidel-
berg: Springer Berlin Heidelberg. ISBN 978-3-540-60925-4
978-3-540-49738-7.
Hogg, C.; Kuter, U.; and Muñoz-Avila, H. 2009. Learning
Hierarchical Task Networks for Nondeterministic Planning
Domains. In Boutilier, C., ed., IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial Intelli-
gence, Pasadena, California, USA, July 11-17, 2009, 1708–
1714.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowl-
edge Engineering Required. In Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 2,
AAAI’08, 950–956. Chicago, Illinois: AAAI Press. ISBN
978-1-57735-368-3.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2021.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In Proceedings of the 4th ICAPS Workshop
on Hierarchical Planning (HPlan 2021), 8–15.
Kantharaju, P.; Ontañón, S.; and Geib, C. W. 2019. Extract-
ing CCGs for Plan Recognition in RTS Games. In Guz-
dial, M.; Osborn, J. C.; and Snodgrass, S., eds., Proceedings
of the 2nd Workshop on Knowledge Extraction from Games
Co-Located with 33rd AAAI Conference on Artificial Intelli-
gence, KEG@AAAI 2019, Honolulu, Hawaii, January 27th,
2019, volume 2313 of CEUR Workshop Proceedings, 9–16.
CEUR-WS.org.
Martı́nez, D. 2017. Learning Relational Models with Human
Interaction for Planning in Robotics. Ph.D. thesis, Univer-
sitat Politècnica de Catalunya.
Pasula, H. M.; Zettlemoyer, L. S.; and Kaelbling, L. P. 2007.
Learning Symbolic Models of Stochastic Domains. Journal
of Artificial Intelligence Research, 29: 309–352.
Patra, S.; Mason, J.; Ghallab, M.; Nau, D.; and Traverso, P.
2021. Deliberative Acting, Planning and Learning with Hi-
erarchical Operational Models. Artificial Intelligence, 299:
103523.
Sapkota, U.; Bryant, B. R.; and Sprague, A. 2012. Unsuper-
vised Grammar Inference Using the Minimum Description
Length Principle. In Perner, P., ed., Machine Learning and
Data Mining in Pattern Recognition, Lecture Notes in Com-
puter Science, 141–153. Berlin, Heidelberg: Springer. ISBN
978-3-642-31537-4.
Zhang, Q.; Yao, J.; Yin, Q.; and Zha, Y. 2018. Learning
Behavior Trees for Autonomous Agents with Hybrid Con-
straints Evolution. Applied Sciences, 8(7): 1077.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2014. Learn-
ing Hierarchical Task Network Domains from Partially Ob-
served Plan Traces. Artificial Intelligence, 212: 134–157.
Zhuo, H. H.; Peng, J.; and Kambhampati, S. 2019. Learn-
ing Action Models from Disordered and Noisy Plan Traces.
arXiv:1908.09800 [cs].

Proceedings of the 5th Workshop on Hierarchical Planning

46

On the Efficient Inference of Preconditions and Effects of Compound Tasks in
Partially Ordered HTN Planning Domains

Conny Olz1 and Pascal Bercher2

1 Ulm University
2 The Australian National University

conny.olz@uni-ulm.de, pascal.bercher@anu.edu.au

Abstract

Recently, preconditions and effects of compound tasks based
on their possible refinements have been introduced together
with an efficient inference procedure to compute a subset of
them. However, they were restricted to total-order HTN plan-
ning domains. In this paper we generalize the definitions and
algorithm to the scenario of partially ordered domains.

Introduction
In Hierarchical Task Network (HTN) planning we refine an
initial abstract task step-by-step into a more fine-grained
description until an executable sequence of actions results
(Erol, Hendler, and Nau 1996; Ghallab, Nau, and Traverso
2004; Bercher, Alford, and Höller 2019).

Compound tasks together with decomposition methods
govern the refinement process. In many HTN formalizations
one does not model or specify concrete preconditions or ef-
fects for compound tasks like for primitive ones. Instead,
they are only given implicitly via the actions deeper down
in the hierarchy. Recently, Olz, Biundo, and Bercher (2021)
defined preconditions and effects of compound tasks that
can be inferred based on the decomposition structure. Be-
sides analyzing the computational complexity they also in-
troduced a procedure to compute a subset of these in poly-
nomial time but they were restricted to totally ordered (t.o.)
HTN planning domains. We extend their work by generaliz-
ing the definitions and algorithm to also work with partially
ordered (p.o.) domains.

As pointed out by Olz, Biundo, and Bercher (2021) the
potential applications of such inferred preconditions and ef-
fects are manifold. In the context of modeling assistance
they might reveal unintended modeling effects or errors and
a study indicated that they can help to better comprehend a
given domain model (Olz et al. 2021). More prominently, re-
semblances of the preconditions and effects considered by us
were already exploited to speed up several kinds of planning
systems (Tsuneto, Hendler, and Nau 1998; Nau et al. 2003;
Clement, Durfee, and Barrett 2007; Waisbrot, Kuter, and
Könik 2008; Goldman and Kuter 2019; Schreiber, Pellier,
and Fiorino 2019; Magnaguagno, Meneguzzi, and de Silva
2021; Schreiber 2021). By extending the inference to p.o.
domains we make them also available for planning sys-
tems solving p.o. problems like SHOP2 (Nau et al. 2003),

FAPE (Dvor̆ák et al. 2014), PANDA3-POCL (Bercher et al.
2017), PANDAπ-SAT (Behnke, Höller, and Biundo 2019),
PANDAπ-pro (Höller et al. 2020), SIADEX (Fernandez-
Olivares, Vellido, and Castillo 2021), pyHiPOP (Lesire and
Albore 2021), and PDDL4J (Pellier and Fiorino 2021). Their
exploitation in p.o. systems should however be done with
care as discussed later in the paper.

One further utilization especially for the p.o. case that we
would like to bring up is that inferred preconditions and ef-
fects bear useful information for turning a p.o. domain or
problem into t.o. while preserving specific properties. Plan-
ners can then make use of the special case to solve such
problems more efficiently.

For an overview of related work concerning the inference
of preconditions and effects we would like to refer to Olz,
Biundo, and Bercher and add the work by Magnaguagno,
Meneguzzi, and de Silva (2021) that has been published in
the meantime. Their lifted planner HyperTensioN infers pre-
conditions of compound tasks similarly to Olz, Biundo, and
Bercher but is also restricted to t.o. domains.

HTN Planning Formalism
Our formalism is based on the one by (Bercher, Alford, and
Höller 2019). A partially ordered (p.o.) HTN planning do-
main is a tuple D = (F,A,C,M), where F is a finite set of
facts,A are primitive tasks, andC the set of compound tasks.
Primitive tasks a = (prec, add , del) ∈ A – also called ac-
tions – are described by their preconditions prec(a) ⊆ F
and their add and delete effects add(a), del(a) ⊆ F , resp.
As in STRIPS planning, an action a ∈ A is applicable
in a state s ∈ 2F if prec(a) ⊆ s. The application of it
in s (if applicable) produces the successor state δ(s, a) =
(s \ del(a)) ∪ add(a). Accordingly, the application of a se-
quences of actions ā = 〈a0 . . . an〉 with ai ∈ A is possible
in a state s0 if a0 is applicable in s0 and for all 1 ≤ i ≤ n, ai
is applicable in si = δ(si−1, ai−1). The second type of tasks
are compound tasks, which serve as a collection of primitive
and/or compound tasks organized in task networks. A task
network is a triple tn = (T ,≺, α), where T is a (possibly
empty) set of identifiers (ids) that are mapped to tasks by a
function α : T → A ∪ C. Therefore, a single task can be
contained in a task network more than once. A set of order-
ing constraints ≺ : T × T defines a partial order on the
identifiers. Decomposition methods M specify how exactly

Proceedings of the 5th Workshop on Hierarchical Planning

47

compound tasks were decomposed. A method m ∈ M is a
pair (c, tn) of a compound task c ∈ C and a task network. It
decomposes a task network tn1 = (T1,≺1, α1) into a task
network tn2 = (T2,≺2, α2) if t ∈ T1 with α1(t) = c and
there is a task network tn ′ = (T ′,≺′, α′) equal to tn but
using different ids, so T1 ∩T ′ = ∅. The task network tn2 is
defined as

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

So if a compound task c is decomposed, it is removed from
the task network and the tasks of the chosen method’s sub-
network were added together with ordering constraints that
hold for c. When a task network tn can be decomposed into
a task network tn ′ by applying the method m to a task with
the identifier t, we write tn →t,m tn ′; if it is possible using
several methods in sequence, we write tn → tn ′.

An HTN planning problem Π = (D, sI , tnI , g) contains
additionally an initial state sI ∈ 2F , an initial task network
tnI , and a goal description g ⊆ F . A solution to a Π is a
task network tn = (T ,≺, α) if and only if
1. it can be reached via decomposing tnI (i.e. tnI → tn),
2. all task are primitive (∀t ∈ T : α(t) ∈ A), and
3. there exists a sequence 〈t1t2 . . . tn〉 of the task identi-

fiers in T that is in line with ≺, and the application of
〈α(t1)α(t2) . . . α(tn)〉 in s0 results in a goal state s ⊇ g.

To ease notation we additionally define the following: A
task network containing only one task c ∈ A ∪ C, i.e.,
({t}, ∅, α(t) = c), is denoted 〈c〉. A t.o. refinement of some
compound task c ∈ C is a sequence of primitive tasks
ā = 〈a1 . . . an〉 if and only if there exists a task network
tn = (T ,≺, α), 〈c〉 → tn and there exists a sequence
〈t1 . . . tn〉 of the ids in T that is in line with ≺ so that
〈α(t1) = a1 . . . α(tn) = an〉. Lastly, by c ∈ tn for some
task c ∈ A ∪ C and task network tn = (T ,≺, α) we abbre-
viate that there exists a task identifier t ∈ T so that α(t) = c.

Preconditions and Effects of Compound Tasks
The definitions of preconditions and effects of compound
tasks for totally ordered task networks by Olz, Biundo, and
Bercher (2021) were based on sets of states that enable the
execution of such tasks and the states in which an application
of a refinement can result. We adapt these two definitions to
p.o. domains in the following. Therefore, consider a domain
D = (F,A,C,M) and a compound task c ∈ C.

The set of executability-enabling states of c is

E(c) = {s ∈ 2F | ∃ t.o. refinement of c applicable in s}.

The set of resulting states of c w.r.t. some state s ∈ 2F is

Rs(c) = {s′ ∈ 2F | ∃ t.o. refinement appl. in s res. in s′}.
Based on these two updated definitions for p.o. domains,

the definitions of preconditions and effects of compound
tasks can be used without further adaptions. Olz, Biundo,

and Bercher (2021) defined several types, e.g., depending
on whether they are dependent or independent of a state and
they differentiate between effects and postconditions. We re-
peat only those that are relevant for this paper.

State-independent positive and negative effects (cf. their
Def. 4) of a compound task c are facts that are added or
deleted, resp., by the successful execution of a refinement of
c, independent of the state in which the task is executed, i.e.,

eff +
∗ (c) := (

⋂

s∈E(c)

⋂

s′∈Rs(c)

s′) \
⋂

s∈E(c)

s

eff −∗ (c) :=
⋂

s∈E(c)

(F \
⋃

s′∈Rs(c)

s′)

if E(c) 6= ∅, otherwise eff +/−
∗ (c) := undef .

Possible state-independent effects (cf. Def. 5) of a com-
pound task c are not guaranteed to hold (or not hold, resp.,)
after every refinement of c but after at least one:

poss-eff +
∗ (c) :=

⋃

s∈E(c)

(
⋃

s′∈Rs(c)

s′ \ s)

poss-eff −∗ (c) :=
⋃

s∈E(c)

((
⋃

s′∈Rs(c)

(F \ s′)) ∩ s)

if E(c) 6= ∅ and poss-eff +/−
∗ (c) := undef otherwise.

Mandatory preconditions (cf. Def. 6) of c are facts that
hold in every state for which there exists an executable re-
finement. So, they are required in every state in which a re-
finement of c shall be executed: prec(c) :=

⋂
s∈E(c) s if

E(c) 6= ∅ and prec(c) := undef otherwise.
Important: These definitions for p.o. domains are actually

not correct in the sense that in a given p.o. problem we do
not consider c on its own but rather within a task network
that usually contains further tasks unordered w.r.t. c. Those
(or their subtasks) can interlock with the subtasks of c to en-
able the execution of some refinement. So the executability-
enabling or resulting states of c (leaving open how exactly
they are defined in such cases) can look totally different de-
pending on which other tasks are present in a task network.

We introduced these definitions solely to define a weaker
version that can be computed in polynomial time as also
done by Olz, Biundo, and Bercher (2021) in the t.o. case.
They showed that determining the preconditions and effects
in a t.o. domain is computationally as hard as solving the
respective planning problem, basically because one needs to
check whether there is at least one executable refinement1.
For practical exploitation this can often be too costly. There-
fore, a relaxation has been introduced, which allows to find
a subset of the original preconditions and effects efficiently.
It is done by ignoring the primitive tasks preconditions as
then only the tasks’ ordering relation and occurrences need

1Note that not all complexity results can be transferred directly
to p.o. domains because some proofs exploit the fact that only de-
terministic complexity classes C were considered, where it holds
C = coC. This is not the case for all p.o. domains since, e.g., the
plan existence problem for acyclic p.o. problems is NEXPTIME-
complete (Alford, Bercher, and Aha 2015).

Proceedings of the 5th Workshop on Hierarchical Planning

48

to be considered. So, the precondition-relaxation of a do-
main D = (F,A,C,M) is the domain D′ = (F,A′, C,M)
with A′ = {(∅, add , del) | (prec, add , del) ∈ A}.
Then, the precondition-relaxed effects eff ∅+∗ (c), eff ∅−∗ (c),
poss-eff ∅+∗ (c) and poss-eff ∅−∗ (c) (cf. Def. 9) are defined
just like the original ones but based on the precondition-
relaxed variant of D.

Analogue preconditions were defined slightly differently
as removing them completely does not yield the expected
result. A fact f ∈ F is an executability-relaxed precondi-
tion of c if and only if for all t.o. refinements (ignoring ex-
ecutability) 〈a0 . . . an〉 of c there exists an action ai with
f ∈ prec(ai) and there does not exist an action aj with
j < i and f ∈ add(aj), where i, j ∈ {0 . . . n} (cf. Def. 10).

The exploitation of the relaxed preconditions and effects
is possible because they possess subset properties with re-
gard to the actual ones so that they do not contain false
candidates. However, one needs to pay attention to several
small details: The sets post+∗ (c) =

⋂
s∈E(c)

⋂
s′∈Rs(c)

s′ ⊆
eff +
∗ (c) ∪ prec(c), post+∗ (c) = eff −∗ (c) are called state-

independent postconditions (cf. Def. 5 by Olz, Biundo, and
Bercher (2021)), which (in the case of positive ones) addi-
tionally contain facts that hold after the execution of every
refinement but were not added explicitly. For t.o. domains
it was shown that prec∅(c) ⊆ prec(c) and eff ∅+/−∗ (c) ⊆
post

+/−
∗ (c) if E(c) 6= ∅ (Olz, Biundo, and Bercher 2021).

We would like to make two remarks on this. First, the
precondition-relaxed effects can contain facts, which are
also preconditions and therefore can be rather interpreted
as postconditions than effects. As an example, consider a
compound task c with only one method (c, 〈({f}, {f}, ∅)〉).
Here f is contained in eff ∅+∗ (c) but it is also needed to ex-
ecute c. We still decided to call the sets eff ∅+/−∗ (c) effects
instead of postconditions since the definition is based on the
actions’ effects and getting also postconditions is more a
byproduct than intention. Moreover, not all postconditions
are captured by the sets eff ∅+/−∗ (c). So, the definitions im-
ply some counter-intuitive phenomena concerning postcon-
ditions and effects, however, we did not come up with a
perfect solution that fixes every interpretation issue. Thus,
one should consider carefully which properties are needed
for the exploitation at hand and pick the right version ac-
cordingly. Second, if c does not have an executable refine-
ment then eff +/−

∗ (c) = prec∅(c) = undef but the re-
laxed versions may contain facts. This can be seen, e.g.,
if c has only one method containing only the two actions
(∅, ∅, {f1}) and ({f1}, {f2}, ∅), which are ordered as given.
Here, eff ∅+∗ (c) = {f2} but this sequence of tasks is never
executable2. It is a direct consequence of reducing the rea-
soning complexity from EXPTIME (arb. t.o. domain) to P.

In the p.o. case one needs to keep in mind one more point
when it comes to exploitation: As pointed out earlier there
might be other tasks in a task network that can or even must
be interleaved with the subtasks of c, which potentially add

2We thank the anonymous reviewer for providing the two ex-
amples.

Algorithm 1: Calculates the precondition-relaxed effects for
all compound tasks
Input: D = (F,A,C,M), an HTN planning domain.
Output: The sets of precondition-relaxed effects of all com-
pound tasks

1: poss-eff ∅+∗ (c) = poss-eff ∅−∗ (c) = eff ∅+∗ (c) =

eff ∅−∗ (c) = ∅ for all c ∈ C
2: for all f ∈ F do
3: D′ = RESTRICTTOEFFECTS(D, f)
4: Cε = COMPUTEEMPTYREFINEMENTS(D′)
5: D′′ = SHORTENMETHODSFROMRIGHT(D′, Cε)
6: MR = DECOMPOSITIONREACHABILITY(D′′)
7: for all c ∈ C do
8: if ∃ (c′, tn) ∈MR(c) ∧ a ∈ tn : f ∈ add(a) then
9: poss-eff ∅+∗ (c) = poss-eff ∅+∗ (c) ∪ {f}

10: if ∃ (c′, tn) ∈MR(c) ∧ a ∈ tn : f ∈ del(a) then
11: poss-eff ∅−∗ (c) = poss-eff ∅−∗ (c) ∪ {f}
12: if c /∈ Cε then
13: if f ∈ poss-eff ∅+∗ (c)∧ f /∈ poss-eff ∅−∗ (c) then
14: eff ∅+∗ (c) = eff ∅+∗ (c) ∪ {f}
15: if f /∈ poss-eff ∅+∗ (c)∧ f ∈ poss-eff ∅−∗ (c) then
16: eff ∅−∗ (c) = eff ∅−∗ (c) ∪ {f}
17: return poss-eff ∅+∗ (c), poss-eff ∅−∗ (c), eff ∅+∗ (c),

eff ∅−∗ (c) for all c ∈ C

or delete the alleged preconditions or effects of c. So the sets
eff ∅+/−∗ (c) and prec∅(c) can only be considered as precon-
ditions and effects of c if no other tasks are ordered within
the refinement of c.

Inference Algorithms
The proofs of Theorems 6 (on the poly-time decidability of
possible effects) and Corollary 7 (guaranteed effects) as well
as of Theorem 7 (on the poly-time decidability of precondi-
tions) by Olz, Biundo, and Bercher (2021) essentially de-
scribe procedures to infer precondition-relaxed effects and
executability-relaxed preconditions in t.o. domains in poly-
nomial time. We now generalize these procedures so that
they can also handle partially ordered task networks and
present corresponding pseudo code.

Algorithm 1 is the main procedure to compute
precondition-relaxed effects based on the textual descrip-
tion in the proof of Theorem 7 by Olz, Biundo, and
Bercher (2021). The major modifications for p.o. domains
affect solely subroutine SHORTENMETHODSFROMRIGHT.
We consider one fact f ∈ F after another and curtail the do-
main according to several subroutines, listed in Algorithm 2.

• We keep only primitive actions that add or delete f
as all others are irrelevant. Therefore, the function RE-
STRICTTOEFFECTS(D, f) that takes as input a domain
D = (F,A,C,M) and a fact f ∈ F and outputs the do-
main D′ = ({f}, A′, C,M ′), where A′ = {(prec(a) ∩
{f}, add(a)∩ {f}, del(a)∩ {f}) | a ∈ A} \ {(∅, ∅, ∅)}
and M ′ is obtained from M by restricting the task net-

Proceedings of the 5th Workshop on Hierarchical Planning

49

Algorithm 2: Auxiliary Functions

1: . Returns Cε ⊆ C, the set of compound tasks admit-
ting an empty refinement. /

2: function EMPTYREFINEMENTS(D = (F,A,C,M))
3: Cε = ∅; M ′ = M ; setChanged = true
4: for all m = (c, tn = (T ,≺, α)) ∈M do
5: if T = ∅ and c /∈ Cε then
6: Cε = Cε ∪ {c}
7: M ′ = M ′ \ {m}
8: if ∃ t ∈ T : α(t) ∈ A then
9: M ′ = M ′ \ {m}

10: while setChanged do
11: setChanged = false
12: for all m = (c, tn = (T ,≺, α)) ∈M ′ do
13: if c /∈ Cε and ∀t ∈ T : α(t) ∈ Cε then
14: Cε = Cε ∪ {c}
15: M ′ = M ′ \ {m}
16: setChanged = true
17: return Cε

18: . Returns an updated domain, where only the right-
most relevant tasks remain in all methods. /

19: function SHORTENMETHODSFROMRIGHT(D, Cε)
20: we assume that ≺ is minimal
21: let ≺+ be the transitive closure of ≺
22: M ′ = ∅
23: for all m = (c, tn = (T ,≺, α)) ∈M do
24: Trem = Tcheck = {t ∈ T | @ t′ : (t, t′) ∈ ≺}
25: while Tcheck 6= ∅ do
26: select arbitrary t ∈ Tcheck

27: Tcheck = Tcheck \ {t}
28: if α(t) ∈ Cε then
29: T ′ = {t′ ∈ T | (t′, t) ∈ ≺ ∧ @ t̃ ∈ Trem :

α(t̃) /∈ Cε ∧ (t′, t̃) ∈ ≺+}
30: Tcheck = Tcheck ∪ (T ′ \ (Trem ∩ T ′))
31: Trem = Trem ∪ (T ′ \ (Trem ∩ T ′))
32: ≺′ = {(t1, t2) ∈ ≺ | t1 ∈ Trem ∧ t2 ∈ Trem}
33: M ′ = M ′ ∪ {(c, (Trem ,≺′, α|Trem))}
34: return D′ = (F,A,C,M ′)

works to tasks from A′ ∪ C instead of A ∪ C.
• The function EMPTYREFINEMENTS(D′) is called on the

restricted domain that computes the set of compound
tasks admitting an empty refinement, Cε ⊆ C, i.e. they
can be decomposed to an empty task network. If a com-
pound task c can be refined into an empty task network,
we know that f can only be a possible but not a manda-
tory (positive or negative) precondition-relaxed effect.

• Moreover, if the last/right-most task in a task network is
primitive or does not admit an empty refinement then this
task determines whether the fact gets added or deleted.
In a partially ordered task network there are poten-
tially several tasks that can be executed lastly. Therefore,
the function SHORTENMETHODSFROMRIGHT(D′, Cε)
identifies all these tasks for all decomposition methods
and removes tasks that are ordered in front of them. In a
t.o. task network we have a clear order of tasks and can go

from right to left, stopping as soon as we encounter a task
(primitive or compound) that does not admit an empty
refinement. In our p.o. setting we consider initially all
task that do not have a successor. If some of them admit
an empty refinement we also consider their predecessors
except of those that also precede another already selected
task. The same applies for them until we reach a fix point.

• DECOMPOSITIONREACHABILITY(D) computes for all
tasks c ∈ C the set of methods that are still reachable
via decomposition from c in the restricted domain.

Finally, the effects are determined task by task by ana-
lyzing all methods that are still reachable via decomposition
from that task as described from line 7 to 16: If there is a
reachable method containing an action a adding f then f is
a possible positive precondition-relaxed effect because then
there is a refinement of c containing a such that no other ac-
tion adds or deletes f afterwards according to Olz, Biundo,
and Bercher (2021). We can further conclude that f is even
a guaranteed positive precondition-relaxed effect if it is a
possible positive effect but not a possible negative one and
c can not be refined into an empty refinement. The case for
negative effects follows analogously.

To sum up, we can infer precondition-relaxed effects for
compound tasks in p.o. domains like in t.o. domains with the
difference in how to determine the relevant tasks that can be
executed at the end. We found them after performing sub-
routine SHORTENMETHODSFROMRIGHT. Instead of com-
puting and analyzing the set of reachable methods we could
also perform some fix-point algorithm to propagate the ef-
fects up the hierarchy, i.e., we could annotate to each com-
pound tasks whether f is added or deleted in its methods
based on the primitive tasks (still for D′′). Afterwards we
could do this again by taking also the annotated compound
tasks into account. This can be repeated until there are no
further annotations.

Proposition 1. Algorithm 1 is sound and complete, i.e., it
computes all and only precondition-relaxed effects of a com-
pound task c given a domain D = (F,A,C,M) and c ∈ C.

Proof. The proof by Olz, Biundo, and Bercher (2021) is
based on the argument that by curtailing the domain as de-
scribed we find and keep only those tasks in the task net-
works that can be at the last position adding or deleting a
fact f in a linearization of the task network and also in a
primitive refinement of c if they are still reachable through
the hierarchy. We follow this idea but mainly concentrate on
the modified part.

Primitive tasks that neither add nor delete f can be ne-
glected so we remove them to ease notation and reasoning.
The set Cε then contains all compound tasks that can be de-
composed into a refinement in which no action affects f .
Now we want to determine the tasks (primitive and com-
pound) that can be ordered at the last position in a lineariza-
tion of a refinement of a task network as they determine
whether f is a positive or negative effect, which is done in
SHORTENMETHODSFROMRIGHT. If a compound task in a
task network admits an empty refinement, then also its pre-
decessors need to be considered. Consider some method’s

Proceedings of the 5th Workshop on Hierarchical Planning

50

task network (c, tn = (T ,≺, α)) and a task that remained,
i.e. some t ∈ Trem . Either t has no successor tasks then it
can clearly be ordered last or all (transitive) successors ad-
mit an empty refinement since otherwise the latter condition
in line 29 would be violated. So if all those tasks were de-
composed into an empty task network then t is again the last
task. Therefore, for all other tasks t′ ∈ T \Trem it holds that
they have primitive or compound successors that can not be
refined into empty task networks, i.e., there is always a suc-
ceeding relevant primitive task, which makes t′ irrelevant so
that we delete it. Note that if t′ is compound we thereby
also cut off its subtasks. After ensuring this property for all
methods we only need to check, which primitive tasks can
be reached from c via decomposition as all of them can be
inductively ordered last in some t.o. refinement.

The procedure by Olz, Biundo, and Bercher (2021) re-
stricted t.o. domains runs in polynomial time. As we only
adapted SHORTENMETHODSFROMRIGHT(D′, Cε), which
is still polynomial, we can conclude that our modified al-
gorithms still has polynomial runtime.

The algorithm to compute executability-relaxed precon-
ditions follows basically the same idea with small adap-
tions, which is why we do not include its pseudo code as
well. Instead of the function RESTRICTTOEFFECTS(D, f)
we now keep primitive tasks that contain f in their precon-
dition or add effect list. Instead of SHORTENMETHODS-
FROMRIGHT(D′, Cε), we now shorten from left to right.
Then, f is an executability-relaxed precondition of c if there
does not exist a reachable method containing an action that
adds f and c does not admit an empty refinement in the do-
main restricted just to actions that require f as precondition.

Conclusion
We defined preconditions and effects of compound tasks in
p.o. domains and extended an existing inference algorithm
for t.o. task networks operating in polynomial time to p.o.
domains. This opens up the possibility to exploit such in-
formation for planning systems solving p.o. HTN planning
problems as well as for modeling assistance or the lineariza-
tion of partially ordered domains.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In ICAPS, 7–15. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019. Bringing Or-
der to Chaos – A Compact Representation of Partial Order
in SAT-based HTN Planning. In AAAI, 7520–7529. AAAI
Press.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In IJCAI, 6267–6275. IJCAI.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
Admissible HTN Planning Heuristic. In IJCAI, 480–488.
IJCAI.
Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007. Ab-
stract Reasoning for Planning and Coordination. Journal of
Artificial Intelligence Research (JAIR), 28: 453–515.

Dvor̆ák, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In ICTAI, 115–121.
IEEE.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
results for HTN planning. Annals of Mathematics and AI
(AMAI), 18(1): 69–93.
Fernandez-Olivares, J.; Vellido, I.; and Castillo, L. 2021.
Addressing HTN Planning with Blind Depth First Search.
In 10th International Planning Competition: Planner and
Domain Abstracts (IPC 2020), 1–4.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Goldman, R. P.; and Kuter, U. 2019. Hierarchical Task Net-
work Planning in Common Lisp: the case of SHOP3. In
Proc. of the 12th European Lisp Symposium (ELS 2019), 73–
80. ACM.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. JAIR, 67:
835–880.
Lesire, C.; and Albore, A. 2021. pyHiPOP – Hierarchical
Partial-Order Planner. In 10th International Planning Com-
petition: Planner and Domain Abstracts (IPC 2020), 13–16.
Magnaguagno, M. C.; Meneguzzi, F. R.; and de Silva, L.
2021. HyperTensioN: A three-stage compiler for planning.
In 10th International Planning Competition: Planner and
Domain Abstracts (IPC 2020), 5–8.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. JAIR, 20: 379–404.
Olz, C.; Biundo, S.; and Bercher, P. 2021. Revealing Hid-
den Preconditions and Effects of Compound HTN Planning
Tasks – A Complexity Analysis. In AAAI, 11903–11912.
AAAI Press.
Olz, C.; Wierzba, E.; Bercher, P.; and Lindner, F. 2021. To-
wards Improving the Comprehension of HTN Planning Do-
mains by Means of Preconditions and Effects of Compound
Tasks. In Proceedings of the 10th Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS 2021).
Pellier, D.; and Fiorino, H. 2021. Totally and Partially Or-
dered Hierarchical Planners in PDDL4J Library. In 10th
International Planning Competition: Planner and Domain
Abstracts (IPC 2020), 17–18.
Schreiber, D. 2021. Lilotane: A Lifted SAT-Based Approach
to Hierarchical Planning. JAIR, 70: 1117–1181.
Schreiber, D.; Pellier, D.; and Fiorino, H. 2019. Tree-REX:
SAT-Based Tree Explorationfor Efficient and High-Quality
HTN Planning. In ICAPS, 382–390. AAAI Press.
Tsuneto, R.; Hendler, J.; and Nau, D. 1998. Analyzing Ex-
ternal Conditions to Improve the Efficiency of HTN Plan-
ning. In AAAI, 913–920. AAAI Press.
Waisbrot, N.; Kuter, U.; and Könik, T. 2008. Combining
Heuristic Search with Hierarchical Task-Network Planning:
A Preliminary Report. In Proc. of the 21st Int. Florida Ar-
tificial Intelligence Research Society Conference (FLAIRS
2008), 577–578. AAAI Press.

Proceedings of the 5th Workshop on Hierarchical Planning

51

On Total-Order HTN Plan Verification with Method Preconditions
– An Extension of the CYK Parsing Algorithm

Songtuan Lin1, Gregor Behnke2, Simona Ondrčková3, Roman Barták3, Pascal Bercher1

1 School of Computing, The Australian National University, Canberra, Australia
2 ILLC, University of Amsterdam, Amsterdam, The Netherlands

3 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
{songtuan.lin, pascal.bercher}@anu.edu.au, g.behnke@uva.ni, {ondrckova, bartak}@ktiml.mff.cuni.cz

Abstract

In this paper, we consider the plan verification problem for to-
tally ordered (TO) HTN planning. The problem is proved to
be solvable in polynomial time by recognizing its connection
to the membership decision problem for context-free gram-
mars. Currently, most HTN plan verification approaches do
not have special treatments for the TO configuration, and the
only one features such an optimization still relies on an ex-
haustive search. Hence, we will develop a new TOHTN plan
verification approach in this paper by extending the standard
CYK parsing algorithm which acts as the best decision pro-
cedure in general.

Introduction
The problem of plan verification is to decide, given a plan,
whether it is a solution to a planning problem. The study
of this problem has drawn increasing attentions in the last
decade for its potential usages in benefiting the research on
planning. For instance, an independent plan verifier is vital
in International Planning Competition (IPC) for the purpose
of verifying whether a plan produced by a participated plan-
ner is correct or not. Recently, several works have explored
the possibility of employing plan verification technique in
Human-AI interaction. For example, Behnke, Höller, and
Biundo (2017) pointed out the connection between the plan
verification problem and mixed-initial planning (Myers et al.
2003) where a planner shall iteratively adjust its output plan
according to a user’s change requests, and plan verification
might also be seen as an approach for planning domain vali-
dation, i.e., deciding whether a planning domain is correctly
engineered by a domain engineer, where a plan is given as a
test case that is supposed to be a solution to a planning prob-
lem, and a failed verification indicates that there are some
flaws in the domain.

In this paper, we consider the plan verification problem in
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1996; Geier and Bercher 2011; Bercher, Alford,
and Höller 2019). We particularly focus on a special class of
HTN planning problems called totally ordered (TO) HTN
planning problems which plays a prominent role in HTN
planning, as evidenced by the fact that TO planning problem
benchmarks significantly outnumber partially ordered (PO)
ones in the IPC 2020 on HTN Planning. In spite of the sig-
nificance, most existing HTN plan verifiers (Behnke, Höller,

and Biundo 2017; Barták et al. 2020; Höller et al. 2022)
have no special treatments for TO problems, and the only
one having such an optimization is by Barták et al. (2021b).

The core of our TO plan verification approach is the CYK
parsing algorithm (Sakai 1961), which can be employed here
because a TOHTN planning problem is semantically equiv-
alent to a context-free grammar (CFG) (Höller et al. 2014,
Thm. 6), and hence, the TOHTN plan verification problem
is essentially the parsing problem for CFG. However, that
result by Höller et al. (2014) does not take into account so-
called method preconditions which occur quite often in prac-
tice in many TOHTN planning benchmarks and thus also be-
come an obstacle to directly applying the CYK algorithm to
plan verification. Consequently, we will extend the standard
CYK algorithm to adapt method preconditions.

The idea of viewing an HTN plan verification problem
as a parsing problem is widely used. For instance, Barták,
Maillard, and Cardoso (2018) and Barták et al. (2020) ex-
ploited the connection between HTN planning problems
and attributed grammars and proposed a parsing-based plan
verification approach for general HTN planning problems,
which can also be used to correct flawed HTN plans (Barták
et al. 2021a) and is then extended to have the special treat-
ments for the TO setting (Barták et al. 2021b). Notably, their
treatments for TOHTN planning problems still rely on an
exhaust search and thus have several overheads, which is
mandatory because the approach takes into account some
additional state constraints. However, those state constraints
are rare in many TOHTN planning benchmarks. For this
reason, we are not concerned with such constraints, which
allows us to fully exploit the connection between TOHTN
planning problems and CFGs and thus develop a more effi-
cient TO plan verification approach.

HTN Formalism
In order to explain how our TO plan verification approach
works, we first introduce the HTN formalism employed in
the paper. Since we only consider TOHTN plan verification
in this paper, the formalism presented here is targeted specif-
ically at the TO configuration, and it is an adaption of the one
by Geier and Bercher (2011), by Behnke, Höller, and Biundo
(2018), and by Bercher, Alford, and Höller (2019). We start
by presenting the definition of TOHTN planning problems
and explain in detail each component in the definition later.

Proceedings of the 5th Workshop on Hierarchical Planning

52

Definition 1. A totally ordered HTN planning problem P is
a tuple (D, tnI , sI) where D = (F,Nc, Np,M, δ) is called
the domain of P . F is a finite set of propositions, Nc is
a finite set of compound task names, Np is a finite set of
primitive task names, M is a finite set of methods m with
m ∈ 2F ×Nc × (Nc ∪Np)

∗, and δ : Np → 2F × 2F × 2F

is a function. sI ∈ 2F and tnI ∈ (Nc ∪ Np)
∗ are called

the initial state and the initial task network (or the goal task
network) of P , respectively.

We also define a tn ∈ (Nc ∪ Np)
∗ as a task network,

which is a sequence of task names.
In the definition presented above, task names are catego-

rized as being primitive and compound. A primitive task
name p, also called an action, is mapped to the respec-
tive precondition, add list, and delete list by the function δ,
written δ(p) = (prec(p), add(p), del(p)), where prec(p),
add(p), and del(p) respectively refer to the preconditions,
add list, and delete list of p, each of which is a set of proposi-
tions. A primitive task name p is applicable in a state s ∈ 2F ,
iff prec(p) ⊆ s, and we say that a state s′ is a consequence of
applying a primitive task p in a state s, written s→p s′, iff p
is applicable in s, and s′ = (s\del(p)) ∪ add(p). Similarly,
a state trajectory ⟨s0 · · · sn⟩ is a consequence of applying
a sequence of primitive task names tn = ⟨p1 · · · pn⟩ with
n ∈ N0, i.e., a primitive task network, in a state s iff s0 = s,
and for each 1 ≤ i ≤ n, si−1 →pi

si, and we say that the
state sn is obtained by applying tn in s, written s→∗

tn sn.
On the other hand, a compound task c in a task network

could be rewritten as another task network tn by a method
m = (prec(m), c, tn) where prec(m) refers to the precondi-
tion of m. We call this process the decomposition of c, writ-
ten c→m tn. We will also omit the subscript m in the nota-
tion, i.e., c → tn, to indicate that there exists some method
which decomposes c into tn. m can be applied to decom-
posing c if and only if its precondition is satisfied. We will
elaborate how to determine whether the precondition of a
method is satisfied (i.e., the semantics of method precondi-
tions) later on. The concept of decompositions can also be
extended to task networks:
Definition 2. Let tn and tn′ be two task networks where tn
is of the form tn = ⟨tn1 c tn2⟩ with c being a compound
task and tn1 and tn2 being two sequences of task names,
each of which might be empty, and m = (prec(m), c, t̂n)
be a method. We say that tn is decomposed into tn′ by m,
written tn →m tn′, if tn′ = ⟨tn1 t̂n tn2⟩. Similarly, we
write tn → tn′ to indicate that there exists some method
which decomposes tn into tn′. We also write tn →∗

m tn′ if
tn is decomposed into tn′ by a sequence m of methods and
tn→∗ tn′ if there exists such a method sequence.

For any two task networks tn and tn′ with tn →∗ tn′, a
compound task c in tn is eventually decomposed into a con-
tinuous subsequence t̂n in tn′ (Barták et al. 2021b). Hence,
we abuse the notation to let c →∗ t̂n denote that the com-
pound task c in some task network is decomposed into the
continuous subsequence t̂n of another task network by a se-
quence of methods, and we write c→∗

m t̂n if such a method
sequence m is understood in the context.

Although a method sequence could capture the decom-

position of a task network (or a compound task), it is am-
biguous because it does not specify the correspondence be-
tween the methods and the compound tasks occurring in the
decomposition process. In order to address this, we intro-
duce the notion of decomposition trees based upon the one
by Geier and Bercher (2011) which characterizes a decom-
position process unambiguously.
Definition 3. Given a TOHTN planning problem P , a de-
composition tree g = (V, E ,≺g, αg, βg) with respect to P is
a labeled directed tree where V and E are the sets of vertices
and edges, respectively, ≺g is a total order defined over V ,
αg : V → Np ∪ Nc labels a vertex with a task name, and
βg maps a vertex v ∈ V to a method m ∈ M . Particularly,
g is valid if it is rooted at a vertex r with αg(r) = cI , and
for every inner vertex v whose children in the total order
≺g forms the sequence ⟨v1 · · · vn⟩ (n ∈ N), if α(v) = c
for some c ∈ Nc, then βg(v) = m for some m ∈ M with
m = (prec(m), c, tn) and tn = ⟨αg(v1) · · ·αg(vn)⟩.

Let ⟨l1 · · · ln⟩ (n ∈ N) be the leafs of g ordered in ≺g .
We define the yield of g, written yield(g), as the task net-
work ⟨αg(l1) · · ·αg(ln)⟩. For convenience, we will simply
use L(g) to refer to the leafs of g ordered in ≺g .

Having the definition of decomposition trees in hand, we
can now define the semantics of method preconditions.
Definition 4. Let P be a TOHTN planning problem, g a
valid decomposition tree g with respect to P where L(g) =
⟨l1 · · · ln⟩ and yield(g) = ⟨αg(l1) · · ·αg(ln)⟩ (n ∈ N) con-
sists solely of primitive tasks, and m = (prec(m), c, tn)
a method with βg(v) = m for some inner vertex v ∈ V .
The precondition of m is satisfied if and only if for the
first vertex li (1 ≤ i ≤ n) in L(g) that is a descendant of
v, it holds that prec(m) ⊆ si−1 with sI →∗

tn
′ si−1 and

tn
′
= ⟨αg(l1) · · ·αg(li−1)⟩. For i = 1, we define s0 = sI .

Lastly, we define the solution criteria for TOHTN plan-
ning problems.
Definition 5. Given a TOHTN planning problem P , a solu-
tion to P is a task network tn consisting solely of primitive
tasks such that tn is executable in sI , i.e., sI →∗

tn s for
some s ∈ 2F , and there exists a valid decomposition tree
g with respect to P such that yield(g) = tn and for every
inner vertex v of g with βg(v) = m for some m ∈ M , the
precondition of m is satisfied.

TOHTN Plan Verification
Having presented the TOHTN planning formalism, we now
move on to introduce our CYK-based TOHTN plan verifica-
tion approach. The basis for using the standard CYK pars-
ing algorithm in TOHTN plan verification is that primitive
tasks, compound tasks, and methods in TOHTN planning
problems are respectively analogy to terminal symbols, non-
terminal symbols, and production rules in CFGs. Conse-
quently, the TOHTN plan verification problem is analogy to
the membership decision problem for CFGs, which is what
the CYK algorithm targeted at.

The CYK algorithm demands that an input CFG (resp. a
TOHTN planning problem) should be in Chomsky Normal
Form (Chomsky 1959) where every production rule (resp. a

Proceedings of the 5th Workshop on Hierarchical Planning

53

Algorithm 1: The CYK-based plan verification approach.
The lines without being numbered are the standard CYK al-
gorithm, and those being numbered are the modifications for
adapting method preconditions and 2RF.

Input: A plan π = ⟨p1 · · · pn⟩
A planning problem P in 2RF

Output: True or false depending on whether π is a
solution to P

▷ Let ⟨s0 · · · sn⟩ be the state sequence s.t.
s0 = sI , and si−1 →pi

si for each i ∈ {1 · · ·n}
for i← n to 1

A[i, i] = {c | c→ ⟨pi⟩} ∪ {pi}
for j ← i to n

for k ← i to j − 1

for m ∈

m

∣∣∣∣∣∣

m = (prec(m), c, tn),

tn = ⟨c′1 c′2⟩, c′1 ∈ A[i, k],

c′2 ∈ A[k + 1, j]

▷ Checking the method precondition
8: if prec(m) ⊆ si−1

A[i, j]← A[i, j] ∪ {c}
▷ Finding the unit productions

11: for m ∈
{
m

∣∣∣∣
c′ →∗

m ⟨c⟩, c′ ∈ Nc,

c ∈ A[i, j]

}

12: if prec(m) ⊆ si−1 for each m in m
13: A[i, j]← A[i, j] ∪ {c′}

if cI ∈ A[1, n] return true
else return false

method) decomposes a non-terminal symbol (resp. a com-
pound task) into two non-terminal symbols or into a terminal
symbol (resp. a primitive task). It then determines whether
a string is in the language of the CFG (resp. whether a plan
is a solution to the planning problem) by constructing parse
trees (resp. decomposition trees) in a bottom-up manner.

More concretely, given a string (resp. a plan) ⟨p1 · · · pn⟩
(n ∈ N), the ultimate goal of the CYK algorithm is to find,
for each subsequence πi

j = ⟨pi · · · pj⟩ (1 ≤ i ≤ j ≤ n), the
set A[i, j] of all possible non-terminal symbols c such that
c →∗ πi

j , i.e., c can be decomposed into πi
j by a sequence

of production rules (methods). Mathematically, this goal can
be accomplished via the following recursion formula:

A[i, j] =

{
c | c→ ⟨pi⟩

}
if i = j

{
c

∣∣∣∣
c→ ⟨c′1 c′2⟩, i ≤ k < j

c′1 ∈ A[i, k], c′2 ∈ A[k + 1, j]

}
if i < j

The interpretation of the formula is that, for each 1 ≤ i ≤
n, a non-terminal symbol c is in the set A[i, i] if it can be
decomposed into the terminal symbol pi by some production
rule, and for each i, j with 1 ≤ i < j ≤ n, A[i, j] has
a non-terminal symbol c if c can be decomposed into two
other non-terminal symbols c′1 and c′2 by some production
rule such that there exists a k with i ≤ k < j, c′1 ∈ A[i, k],
and c′2 ∈ A[k + 1, j], i.e., c′1 →∗ πi

k and c′2 →∗ πk+1
j .

Notably, the recursion holds because we make the restriction

that the input CFG must be in CNF.
In the CYK algorithm, the recursion is implemented via

dynamic programming where a two dimension table is con-
structed to memorize each entry A[i, j] (1 ≤ i ≤ j ≤ n),
and the table is filled in a right-left, bottom-up order. The
implementation is shown by Alg. 1 in which the lines with-
out being numbered are the code for the standard CYK al-
gorithm, and we substitute every component in CFGs (i.e.,
terminal/non-terminal symbols, production rules, etc.) with
its counterpart in TOHTN planning problems.

In order to adapt the CYK algorithm in TOHTN plan ver-
ification, we have to deal with method preconditions whose
counterpart does not exist in CFGs. This is however trivial
because we can simply check whether a method’s precondi-
tion is satisfied when filling the table, see Alg. 1, line 8.

Though the procedure presented above can already serve
as a mature TOHTN plan verification approach, it relies on
the strict constraint that an input planning problem must be
in CNF. It is unfortunately not trivial to transform an arbi-
trary TOHTN planning problem into CNF. Similar to how
such transformation is done for CFGs (Hopcroft, Motwani,
and Ullman 2007; Lange and Leiß 2009), transforming a
TOHTN planning problem into CNF usually requires four
steps ordered as follows:
1) binarization: splitting every method such that it contains

at most two subtasks,
2) deletion: deleting all methods and tasks which will result

in the empty task network,
3) elimination: eliminating all unit productions, and
4) termination: enforcing that for any method, if it contains

only one subtask, then the task is a primitive one.
As pointed out by Lange and Leiß (2009), the four steps (the
third one in particular) for transforming a CFG into CNF
will lead to a quadratic explosion of the size of the gram-
mar, which is also the case for a TOHTN planning prob-
lem. This is a significant overhead for TOHTN plan verifi-
cation because usually a planning problem already contains
an enormous number of methods. Further, due to the exis-
tence of method preconditions, the four-step transformation
on TOHTN planning problems need to modify method pre-
conditions accordingly.

In ordered to avoid these overheads, we only apply the
first step binarization to an input TOHTN planning prob-
lem and result in the planning problem being in so-called
2-regularation Form (2RF) (Behnke and Speck 2021), i.e.,
in which every method contains at most two subtasks (could
be either primitive or compound). Note that 2RF also has
its counterpart in CFGs called 2-normal Form (2NF) (Lange
and Leiß 2009). The advantage of adapting 2RF is that we
could avoid the quadratic explosion of the size of a problem
and the additional modifications to method preconditions.

The price for adapting 2RF instead of CNF is that we have
to merge the remaining three transformation steps into the
plan verification procedure. That is, after computing an entry
A[i, j] in the standard CYK algorithm, we shall also search
for all compound tasks c′ ∈ Nc such that c′ →∗ ⟨c⟩ for some
c ∈ A[i, j], and the precondition of every method occurring
in the decomposition process is satisfied. This is equivalent
to finding all method sequences m such that the precondition

Proceedings of the 5th Workshop on Hierarchical Planning

54

of each method in it is satisfied, and c′ →∗
m ⟨c⟩ for some

c′ ∈ Nc and c ∈ A[i, j], and such compound tasks c′ should
then also be included in A[i, j] (Alg. 1, lines 11 to 13).

For this purpose, we can do the following two things.
First, we want to find all compound tasks c and all method
sequences m such that c →∗

m ε where ε refers to the empty
task network. We call such a c a nullable task which is anal-
ogy to a nullable symbol in CFGs. We can directly apply
the procedure for finding all nullable symbols in a CFG to
finding all nullable tasks in a TOHTN planning problem
together with all method sequences that decompose them
into the empty task network. For the details about how this
procedure works, we refer to the work by Hopcroft, Mot-
wani, and Ullman (2007). Second, we will construct a graph
G = (V,E) with V = M , i.e., the vertices are the meth-
ods of the planning problem, and an edge (m′,m) ∈ E with
m′ = (prec(m′), c′, tn′) and m = (prec(m), c, tn) iff ei-
ther tn′ = ⟨c⟩ or tn′ = ⟨t0 t1⟩ such that there exists an
i ∈ {0, 1} with ti = c and t1−i being a nullable task. We
name such a graph as a unit production graph.

Having identified all nullable tasks in a planning prob-
lem, the unit production graph can be constructed by sim-
ply iterating through all methods in the planning problem.
As an example about how to construct the graph, consider
a method m = (prec(m), c, ⟨c′0 c′1⟩) where c′0 is a nullable
task and c′1 ∈ Nc. For each method m′ that can decompose
c′1, we add the edge (m,m′) to the graph (see the appendix
for more details about the construction).

For finding all method sequences m such that c′ →∗
m ⟨c⟩

for some c′, c ∈ Nc. We observe one key property of the unit
production graph G in which, for any two compound tasks
c′ and c, c′ →∗ ⟨c⟩ iff there exists a path in G from m′ to m
such that m′ and m respectively decompose c′ and c. Conse-
quently, we only need to conduct several depth-first search
in the reverse graph of G (i.e., reversing the direction of each
edge in G), each of which starts from a vertex m which can
decompose c and ends at a vertex m′ which decomposes
c′. For each found method sequence m = ⟨m1 · · ·mk⟩,
we shall also check whether the precondition of each mi

(1 ≤ i ≤ k) in it is satisfied. Notably, if mi contains a sub-
task t which is nullable, then we must also check whether
there exists a method sequence m′ such that t →∗

m′ ε and
the precondition of every method in it is satisfied. This is
trivial because for each nullable task, we have already found
all method decomposing it into the empty task network.

Taking together, Alg. 1 summarizes the procedure of our
TOHTN plan verification approach, given a planning prob-
lem in 2RF. We first implement the standard CYK algorithm
for computing each table entry A[i, h], and then for each
such entry A[i, j], we find all method sequences m such that
c′ →∗

m ⟨c⟩ for some c′ ∈ Nc and c ∈ A[i, j] and check
whether all method preconditions in the sequence are satis-
fied. If so, we then add c′ to A[i, j] (see the appendix for
more implementation details).

Empirical Evaluation
We ran the experiments on a Xeon Gold 6242 CPU. For each
instance, each verifier was given 10 minutes of runtime and
8 GB of RAM. The experiments were done both on the TO

Planning
CYK
Parsing

100

101

102

0 1370 2740 4110 5480 6850 8220 9590 10961

TO - valid

ru
nt

im
e

in
se

co
nd

s

verified plans

CYK
Planning
Parsing

100

101

102

0 175 351 527 703 878 1054 1230 1406

TO - invalid

ru
nt

im
e

in
se

co
nd

s

verified plans

CYK
Planning
Parsing
SAT

100

101

102

0 1413 2826 4239 5652 7065 8478 9891 11304

TO - valid - noMPrec

ru
nt

im
e

in
se

co
nd

s

verified plans

CYK
Parsing
Planning
SAT

100

101

102

0 132 265 398 531 664 797 930 1063

TO - invalid - noMPrec
ru

nt
im

e
in

se
co

nd
s

verified plans

Figure 1: The number of solved instances against runtimes.

benchmark set which have method preconditions and on the
one which does not. The benchmark set with method pre-
conditions are from the IPC 2020 on HTN Planning which
contain 12367 plan instances from 24 domains where 10961
instances are valid, i.e., those are solutions to some plan-
ning problems, and the remaining 1406 instances are invalid.
The benchmark set without method preconditions is again
from the IPC 2020 on HTN Planning, and it is obtained by
discarding method preconditions in original planning prob-
lems. This set again contains 12367 instances where 11264
are valid, and 1103 are invalid (note the increasing number
of valid instances after removing method preconditions).

Experiment Results
We compared our CYK-based approach with the parsing-
based one by Barták et al. (2021b), which is the current
state-of-the-art TO plan verifier, and with two general (i.e.,
PO) plan verifiers which can also be employed in verifying
TO plans, i.e., the SAT-based one by Behnke, Höller, and
Biundo (2017) and the planning-based one by Höller et al.
(2022), which respectively transform a verification problem

Proceedings of the 5th Workshop on Hierarchical Planning

55

Benchmark Instances Parsing-based Planning-based SAT-based CYK-based (Ours)
to-val 10961 9158 (83.55) 10881 (99.27) no support 10832 (98.82)
to-inval 1406 1301 (92.53) 1364 (97.01) no support 1406 (100.00)
to-val-no-mprec 11304 7889 (69.79) 9679 (85.62) 1036 (9.16) 9946 (87.99)
to-inval-no-mprec 1063 915 (86.08) 898 (84.48) 684 (64.35) 981 (92.29)

Table 1: Table comparing runs of multiple approaches for plan verification. For each verifier, the number in each row indicates
the number of solved instances in the corresponding benchmark set, and the respective percentage indicates the coverage rate.

into a SAT problem and an HTN planning problem.
In the experiments on the benchmark set with method

preconditions, we did not consider the SAT-based verifier
because it does not support method preconditions. For the
valid instances, the planning-based verifier achieve the best
performance by solving 10881 instances (99.27%). Our ap-
proach slightly underperforms it by solving 10832 instances
(98.82%) and beats the parsing-based one which solves
9158 instances (83.55%). For the invalid instances, our ap-
proach solved all 1406 instances (100%) compared with the
planning-based one and the parsing-based one which solve
1364 instances (97.01%) and 1301 instances (92.53%), re-
spectively. The results are summarized in Tab. 1 where the
rows to-val and to-inval respectively indicate the valid and
invalid instances.

In the experiments on the benchmark set without method
preconditions, we included the SAT-based verifier. Our ap-
proach outperforms the others in solving both valid and in-
valid instances. Specifically, our verifier solved 9946 valid
instances (87.99%) and 981 invalid instances (92.29%). The
planning-based one solved 9679 valid instances (85.62%)
and 898 invalid instances (84.48%), and the parsing-based
one solved 7889 valid instances (69.79%) and 915 invalid in-
stances (86.08%). The SAT-based verifier has the worst per-
formance, which only solved 1036 valid instances (9.16%)
and 684 invalid ones (64.35%), see the last two rows in Tab.
1 for the summary.

Further, Fig. 1 depicts the number of solved instances (the
x-axis) against the runtimes (the y-axis), i.e., how many in-
stances can be solved in a specific runtime, for the evalua-
tions of both valid and invalid instances on the two bench-
mark sets. One might observe that in solving the instances
with method preconditions, our approach has the similar per-
formance compared with the planning based one and out-
performs the parsing based one. For those without method
preconditions, our approach clearly beats the others.

Discussion
We now give some discussion over our CYK-based plan ver-
ification approach compared with others, i.e., the parsing-
based, the SAT-based, and the planning-based approach.

According to the experiment results, our approach out-
performs the parsing-based one (Barták et al. 2020, 2021b)
which is the only one by now having the special treatments
for the TO configuration. We believe that the major reason
for the underperformance of the parsing-based approach is
that the approach does not restrict the number of subtasks
in each method. As a consequence, the parsing-based ap-
proach, which, like our CYK-based approach, try to find all

possible compound tasks that can be decomposed into a sub-
sequence of a given plan, relies on an exhaustive search for
that purpose.

For example, in our approach, in order to decide whether
a compound task c can be decomposed into a subsequence
πi
j = ⟨pi · · · pj⟩ via a method m = (prec(m), c, ⟨c′1 c′2⟩), we

only have to check whether c′1 ∈ A[i, k] and c′2 ∈ A[k+1, j]
for some i ≤ k < j. In contrast, in the parsing-based ap-
proach, checking whether c can be decomposed into πi

j via
a method which has k (k ∈ N) subtasks ⟨c′1 · · · c′k⟩ requires
deciding whether πi

j can be divided into k subsequences
πi
j = ⟨π′

1 · · ·π′
k⟩ such that c′r →∗ π′

r for each 1 ≤ r ≤ k.
The latter one is clearly more computationally expensive.

Notably, the parsing-based approach does not restrict the
number of subtasks in a method for the purpose of support-
ing an additional state constraint imposed by the method
called the between-constraint which must hold between the
start and the end of the subsequence of the plan obtained
from the method. Although it is possible to transform a TO-
HTN planning problem into 2RF (or CNF) while maintain-
ing these additional constraints, it might cause an unavoid-
able quadratic explosion of the problem size, which is an-
other significant overhead. Further, despite that the parsing-
based approach support such an additional constraint, the
benchmark set on which we did the empirical evaluation
does not feature it, and hence, this extra functionality will
not incur overheads to the approach in the experiments.

For the planning-based approach (Höller et al. 2022), it
outperforms our approach in the experiment of verifying
valid plan instances with method preconditions and under-
performs ours in the remaining three experiments. We hy-
pothesize that the outstanding performance of the planning-
based approach in verifying valid plans is due to the heuris-
tics employed by the TOHTN planner which solves the plan-
ning problem transformed from a plan verification problem.
Particularly, the heuristics might rule out some methods in
advance whose preconditions are not satisfiable and hence-
forth significantly reduce the search space, as evidenced by
its underperformance in solving instances without method
preconditions. On the other hand, the heuristics might be less
powerful when confronting an unsolvable planning problem
(i.e., verifying an invalid plan), which might be the reason
for why it underperforms the CYK-based approach in veri-
fying invalid plans (with or without method preconditions).
Generally speaking, we argue that our CYK-based approach
as a decision is still better than the planning-based approach.

Lastly, the SAT-based approach has the worst perfor-
mance compared with others. We hypothesize that this is

Proceedings of the 5th Workshop on Hierarchical Planning

56

because phrasing a plan verification problem as a SAT for-
mula is already computationally expensive, and solving a
SAT problem is NP-hard as well.

Future Works
The TOHTN plan verification approach developed in the pa-
per is based on the CYK algorithm, which is in the fam-
ily of the so-called chart parsers. Some parsing algorithms
in the family, e.g., the LR parsing algorithm, have been
proved to be more efficient than the CYK algorithm when
an input CFG (resp. a planning problem) has certain prop-
erties, and some, e.g., the Earley parsing algorithm (Earley
1970), do not require any special format of input CFGs while
still maintaining reasonable time complexity. Thus, in future
works, we would like to explore the possibility of employing
other chart parsers in TOHTN plan verification and hence-
forth make the connection between TOHTN planning and
formal languages more strong.

Conclusion
In this paper, we developed a totally ordered HTN plan
verification approach that are tailored to method precondi-
tions by extending the standard CYK parsing algorithm. The
empirical evaluation results show that our approach signif-
icantly outperforms another parsing-based plan verification
approach by Barták et al. (2020; 2021b) which is also the
only approach by now features the special treatments for the
TO configuration. Further, though the approach slightly un-
derperforms the state-of-the-art plan verifier by Höller et al.
(2022) when input plans are indeed solutions, it has better
performance when an input plan is invalid. Additionally, our
approach always has better performance when method pre-
conditions are not considered independent of whether an in-
put plan is valid or not. We thus still regard our approach as
a better decision procedure.

Acknowledgment
Simona Ondrčková is (partially) supported by SVV project
number 260 575 and by the Charles University project GA
UK number 280122.

References
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Vali-
dation of Hierarchical Plans via Parsing of Attribute Gram-
mars. In Proceedings of the 28th International Conference
on Automated Planning and Scheduling, ICAPS 2018, 11–
19. AAAI.
Barták, R.; Ondrčková, S.; Behnke, G.; and Bercher, P.
2021a. Correcting Hierarchical Plans by Action Deletion. In
Proceedings of the 18th International Conference on Princi-
ples of Knowledge Representation and Reasoning, KR 2021,
99–109. IJCAI.
Barták, R.; Ondrčková, S.; Behnke, G.; and Bercher, P.
2021b. On the Verification of Totally-Ordered HTN Plans.
In Proceedings of the 33rd IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2021, 263–267.
IEEE.

Barták, R.; Ondrčková, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A Novel Parsing-based Approach for Ver-
ification of Hierarchical Plans. In Proceedings of the 32nd
IEEE International Conference on Tools with Artificial In-
telligence, ICTAI 2020, 118–125. IEEE.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This Is a Solu-
tion! (... But Is It Though?) - Verifying Solutions of Hierar-
chical Planning Problems. In Proceedings of the 27th Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2017, 20–28. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT -
Totally-Ordered Hierarchical Planning Through SAT. In
Proceedings of the 32nd AAAI Conference on Artificial In-
telligence, AAAI 2018, 6110–6118. AAAI.
Behnke, G.; and Speck, D. 2021. Symbolic Search for Op-
timal Total-Order HTN Planning. In Proceedings of the
35th AAAI Conference on Artificial Intelligence, AAAI 2021,
11744–11754. AAAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI 2019, 6267–
6275. IJCAI.
Chomsky, N. 1959. On Certain Formal Properties of Gram-
mars. Information and Control, 2(2): 137–167.
Earley, J. 1970. An Efficient Context-Free Parsing Algo-
rithm. Communications of the ACM, 13(2): 94–102.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity Results for HTN Planning. Annals of Mathematics and
Artificial Intelligence, 18(1): 69–93.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, IJ-
CAI 2011, 1955–1961. IJCAI.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence, ECAI 2014, 447–452. IOS.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In Proceedings of the 32nd International
Conference on Automated Planning and Scheduling, ICAPS
2022. AAAI.
Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2007. Intro-
duction to Automata Theory, Languages, and Computation.
Addison-Wesley.
Lange, M.; and Leiß, H. 2009. To CNF or not to CNF?
An Efficient Yet Presentable Version of the CYK Algorithm.
Informatica Didactica, 8: 1–21.
Myers, K. L.; Jarvis, P.; Tyson, M.; and Wolverton, M. 2003.
A Mixed-initiative Framework for Robust Plan Sketching.
In Proceedings of the 13th International Conference on Au-
tomated Planning and Scheduling, ICAPS 2003, 256–266.
AAAI.
Sakai, I. 1961. Syntax in Universal Translation. In Proceed-
ings of the International Conference on Machine Translation
and Applied Language Analysis, 593 – 608.

Proceedings of the 5th Workshop on Hierarchical Planning

57

Appendix
In the appendix, we would like to elaborate more techni-
cal details about our CYK-based TOHTN plan verification
approach. In our approach (as well as the CYK algorithm),
when computing an entry A[i, j], we have to find all methods
m (resp. production rules) such that c→m ⟨c′1 c′2⟩ for some
c ∈ Nc, k ∈ {i · · · j−1}, c′1 ∈ A[i, k], and c′2 ∈ A[k+1, j].
Most literature about the CYK algorithm in the context of
formal languages accomplish this step via iterating through
all production rules. This is however not efficient in the con-
text of plan verification. The reason for this is that in a CFG,
the number of production rules is considered to be relatively
smaller than the length of a string, whereas this is not the
case in plan verification. For instance, some TOHTN plan-
ning problem could have more than 10 thousands methods
compared with the length of an input plan which is normally
below one thousand.

Thus, in order to eliminate this overhead, we maintain two
mappings φ1 : Np → M and φ2 : N × N → M where
N = Np ∪ Nc. Specifically, given a p ∈ Np, φ1(p) = m
for some m ∈ M iff m decomposes some compound task
into ⟨p⟩, and similarly, given t1, t2 ∈ N , φ2(t1, t2) = m iff
m decomposes a compound task into ⟨t1 t2⟩. Consequently,
given two entries A[i, k] and A[k+1, j] (or one single entry
A[i, i]), we can quickly find all methods which decompose
a compound task into two (or one) subtask(s) that are (is) in
the respective entries (entry) by visiting the mapping(s).

Next, we would like to give a recursive procedure for find-
ing all nullable tasks together with the respective method se-
quences that decompose them into the empty task networks.
The procedure is not given in the main paper. We instead re-
fer to the work by Hopcroft, Motwani, and Ullman (2007)
for the procedure. The procedure works as follows:

Basis: If c→m ε for some m ∈M , then c is a nullable task,
and we mark ⟨m⟩ as a method sequence that decomposes
c into the empty task network.

Induction: If c →m ⟨t1 t2⟩ (or c →m ⟨t⟩) for some m ∈
M and t1, t2 (or t) are (is) nullable, then c is also nul-
lable, and for any two method sequences m1 and m2 that
respectively decompose t1 and t2 into the empty task net-
work (or any m with t →∗

m ε), ⟨m m1 m2⟩ (or ⟨m m⟩)
together with any permutation of it is marked as a method
sequence that decomposes c into ε.

Having identified all nullable tasks in a planning problem,
we can then construct the unit production graph. The proce-
dure for constructing the graph is described as follows: For
each method m ∈M with m = (prec(m), c, tn),
• if tn = ⟨t0 t1⟩ for some t0, t1 ∈ N (N = Nc ∪ Np),

and there exists an i ∈ {0, 1} such that t1−i is nullable,
then for each m′ that can decompose ti, we add the edge
(m,m′) to the graph, or

• if tn = ⟨t⟩ for some t ∈ Nc, then for each method m′

that decomposes t, we add the edge (m,m′) to the graph.
Now that we have clarified how to construct a unit produc-

tion graph, we move on to prove the most important property
of such a graph, that is, for any two compound tasks c and
c′, c can eventually be decomposed into c′ iff there exists a

path connecting two methods m and m′ in the graph which
respectively decomposes c and c′.
Theorem 1. Let c, c′ ∈ Nc, c→∗ ⟨c′⟩ if and only if there is
a path in the unit production graph G = (V,E) from m to
m′ such that m decomposes c and m′ decomposes c′.

Proof. (=⇒): We prove this by induction on the number of
steps in decomposing c into c′. The base case is c→ ⟨c′⟩. In
this case, a path (m′,m) with c′ being decomposed by m′

exists by the construction of the graph G.
Now suppose that c→∗ ⟨c′⟩ in k steps (k > 1), it follows

that there must exist a method m which decomposes c into
a task network tn such that either tn containing only one
subtask task ĉ that is in Nc or tn consisting two subtasks
where one is nullable, and the other ĉ is decomposed into
c′, because otherwise, c cannot be decomposed into c′. For
both cases, we have that ĉ →∗ ⟨c′⟩ in k − 1 steps. By the
induction hypothesis, there exists a path from m̂ to m′ in
the graph such that m′ decomposes c′ and m̂ decomposes ĉ.
Further, by the construction of the graph, (m, m̂) ∈ E, and
hence, there is a path in G from m to m′.

(⇐=): We prove this by induction on the length of the
path from m to m′. The base case is that (m,m′) ∈ E. By
construction, m decomposes a compound task c into a task
network tn such that either tn = ⟨c′⟩ or tn = ⟨t0 t1⟩ in
which there exists an i ∈ {0, 1} with ti = c′ and t1−i is
nullable. For the former, c → c′ holds naturally, and for the
latter, since t1−i →∗ ε (because t1−i is nullable), it follows
immediately that c→∗ ⟨c′⟩.

For the case where a path from m to m′ has length k
(k > 1), the path can be divided as two parts: a path from m̂
to m′ of length k − 1 and an edge (m, m̂) ∈ E. By the in-
duction hypothesis, there exist ĉ ∈ Nc with ĉ being decom-
posed by m̂ such that ĉ→∗ ⟨c′⟩. Further, by the construction
of the graph G, the presence of the edge (m, m̂) implies that
m decomposes a compound task c into a task network tn in
which either ĉ is the only subtask, or tn contains two sub-
tasks where one is ĉ and the other is nullable. For both cases,
we have c→∗ ⟨ĉ⟩ and henceforth c→∗ ⟨c′⟩.

The correctness of Alg. 1 thus follows immediately.
Theorem 2. A plan π = ⟨p1 · · · pn⟩ is a solution to a plan-
ning problem P if and only if Alg. 1 returns true.

Lastly, we would like to discuss the time complexity of
our CYK-based plan verification approach. For an input plan
⟨p1 · · · pn⟩, one can easily recognize that the time required
for visiting all entries A[i, j] (1 ≤ i ≤ j ≤ n) is O(n3).
Further, when computing each entry A[i, j], we need to visit
at most all |M | methods for finding all c ∈ Nc with c →∗

⟨c′⟩ and c′ ∈ A[i, j]. Therefore, the time complexity of the
CYK-based plan verification approach is O(|M | × n3).
Theorem 3. Alg. 1 has the time complexity O(|M | × n3).

Note that the time complexity of the CYK-based approach
also emphasize the importance of maintaining the mappings
φ1 and φ2 because, as said, |M | is normally larger than |n|
in plan verification, and hence, if we visit all methods in each
iteration like what is done in most literature, the actual time
complexity in practice would be O(n4).

Proceedings of the 5th Workshop on Hierarchical Planning

58

T-HTN: Timeline Based HTN Planning for Multiple Robots

Viraj Parimi1, Zachary B. Rubinstein2, Stephen F. Smith2

1 Massachusetts Institute of Technology, 2 Carnegie Mellon University

Abstract

Effective coordinated actions by a team of robots operating
in close proximity to one another is an important requirement
in many emerging applications, ranging from warehousing
and material movement to the conduct of autonomous house-
keeping and maintenance of deep space habitats during un-
manned periods. Yet, such multi-robot planning problems re-
main a significant challenge for contemporary planning tech-
nologies, due to several complicating factors: goals must be
assigned to robots and accomplished over time in the pres-
ence of complex temporal and spatial constraints in a manner
that optimizes overall team performance, attention must be
given to the durational uncertainty inherent in robot task exe-
cution, and planning must be responsive to changing and un-
expected execution circumstances. In this paper, we present
T-HTN, a novel planner that attempts to overcome this chal-
lenge by coupling the structure and efficiency of Hierarchical
Task Network (HTN) models with the flexible scheduling in-
frastructure of timeline-based planning systems. We present
initial results on a simple set of multi-robot problems that
show the potential of T-HTN in comparison to a state-of-the-
art PDDL-style temporal planner.

Introduction
Generation of multi-robot plans that optimize overall team
performance in the presence of tight temporal-spatio con-
straints remains a significant challenge for contemporary
automated planning frameworks. On one hand, heuristic,
action-based temporal planners (both PDDL-style (Coles
et al. 2010; Do and Kamhbampati 2003; Eyerich, Mat-
muller, and Roger 2009) and HTN-style (Qi et al. 2017))
typically achieve tractability by constraining the plan gen-
eration process to forward state-space search (i.e., expand-
ing plans in a strict time-forward order). This assumption
can be quite awkward for satisfying certain types of tem-
poral constraints (e.g., task deadlines), and more generally
can be quite limiting with respect to optimizing team per-
formance objectives across a set of goals (e.g., minimizing
makespan, maximizing the number of goals satisfied). On
the other hand, timeline-based planners (e.g., (Muscettola
et al. 1992, 1998; Fratini, Pecora, and Cesta 2008; Verfail-
lie and Lematre 2003; Umbrico et al. 2017) provide a flex-
ible, Simple Temporal Network (STN)-based infrastructure
(Dechter, Meiri, and Pearl 1991) that allows planning ac-
tions to be inserted opportunistically at various time points

across an agent’s planning horizon during plan generation
so as to better optimize global properties of the plan (such
as its makespan). But timeline-based systems lack general
principles for global search control, and tend to be driven by
use of hand-crafted, domain specific heuristics that do not
transfer easily to new problems.

Drawing inspiration from previous work in constraint-
based scheduling (Smith, Becker, and Kramer 2004; Rubin-
stein, Smith, and Barbulescu 2012), wherein global search
control revolves around allocation of resources to instanti-
ated task networks, this paper proposes a multi-agent plan-
ning and scheduling framework that attempts to combine the
strengths of both action-based and timeline-based planning
approaches, and describes its initial implementation in a pro-
totype planning system called T-HTN. To overcome the in-
efficiency and idiosyncrasy of reasoning about actions at the
individual component level, T-HTN couples timeline-based
reasoning with an HTN planning model designed for re-
source allocation. By introducing hierarchical structure that
organizes task decomposition around allocation of resources
to tasks and placement of their constituent actions on re-
source timelines, T-HTN is able to achieve both search ef-
ficiency and flexibility, while retaining the representational
expressiveness and generality of state-of-the-art temporal
planning frameworks.

Some previous efforts have attempted to exploit the struc-
ture imposed by an HTN planning model within a rich
temporal reasoning infrastructure. In (Qi et al. 2017), the
SHOP2 planner was extended to include a temporal rea-
soning component and provide the ability to generate plans
with durative actions. However SHOP2’s reliance on for-
ward plan-space search was retained to avoid the added com-
plexity of timeline-based reasoning, and hence the issue of
plan quality in the case of multiple goals and actors was
not addressed. On the timeline-based planning front, recent
work by (Umbrico et al. 2017) has also proposed the use of
hierarchical structure as a means of directing search con-
trol. However, this framework is rooted in the dynamical
systems origin of the timeline-based planning paradigm of
modeling and controlling a system of physical components
over time, and hence their notion of hierarchy focuses only
on aggregate physical system structure. Perhaps closest in
spirit to our approach is the recently introduced FAPE plan-
ner (Bit-Monnot et al. 2020), which also aims at integrating

Proceedings of the 5th Workshop on Hierarchical Planning

59

Figure 1: Consider two UR5 robotic arm manipulators
mounted on shared railway network who are tasked to move
the red cube from its initial location to a target location
within a specified deadline.

HTN and timeline-based planning to gain search efficiency.
However, FAPE is designed to accommodate a mix of gen-
erative and HTN planning. It incorporates a mix of search
control strategies to this end, and in the case of a fully speci-
fied HTN model (our interest in this paper), FAPE falls back
on the same forward heuristic search algorithm that limits
other HTN planners. T-HTN, in contrast, retains the flexibil-
ity to opportunistically expand the developing plan and cen-
ters plan expansion around allocation of resources to achieve
search efficiency.

In this paper, we summarize the T-HTN planner, and
present initial experimental results on a set of simple multi-
robot planning problems that show its potential in compar-
ison to POPF (Coles et al. 2010), a state-of-the-art action-
based temporal planner.

Running Example
Figure 1 introduces a simple problem, motivated by our re-
search interest in robotic systems for autonomous mainte-
nance of deep space habitats, that we will use as a running
example throughout the paper. In this scenario, two UR5
robotic manipulators are mounted on a shared railway net-
work. The network is divided into rail blocks and two en-
sure safe operation, only one robot can occupy a given rail
block at a time. Three attributes are used to model the state
of each robot at any point in time: the rail block it is oc-
cupying, the position of its arm and the state of its gripper.
Initially, each robot arm starts in the “home” (contracted)
position, which is required for rail travel, and each arm’s
gripper state is empty. Each arm has primitive actions for
travelling across rail blocks (rail move), for grasping (grasp)
and releasing (release) objects, and for returning the arm to
its home position (move to home state). Figure 2 shows a
move-item HTN for the example problem.

Technical Approach
Like all timeline-based planning systems, T-HTN replaces
the classical planning representation of current state as a
forward-rolling collection of facts with an explicit charac-
terization of its evolution over time, where various aspects

move item ?item ?drop location
Resources: ?item

pick item ?robot ?item
Resources: ?robot, ?item

drop item ?robot ?item ?drop location
Resources: ?robot, ?item

grasp ?robot ?item
Resources: ?robot, ?item

move to home state ?robot
Resources: ?robot

release ?robot ?item ?drop location
Resources: ?robot, ?item

move to home state ?robot
Resources: ?robot

Figure 2: Compiled HTN decomposition tree for the work-
ing example as described in Figure 1

of state (referred to as state variables) are represented as se-
quences of facts (or state values) that are true over time. By
definition, this change results in a greatly expanded search
space vis a vis traditional HTN planning formalisms, as
states corresponding to specific intervals across the plan-
ning horizon must now be examined to situate actions in
the plan. To gain search efficiency in this expanded search
space, T-HTN introduces and exploits additional problem
structure. Specifically, we ascribe special status to objects
declared as resources and assume that all primitive (leaf)
nodes in a HTN plan (referred to as actions) will ultimately
be allocated to and scheduled on the specific resource(s) that
will carry them out. Accordingly each declared resource has
an associated state variable that represents the resource’s
availability over time, referred to as its timeline. When an
action in the plan is scheduled on a resource r, an action
token is inserted onto r’s timeline for the determined inter-
val. This action token indicates all aspects of the action’s
state that are true at the start, end or throughout the sched-
uled interval, and the key assumption is that these aspects of
state will change only as new actions are subsequently in-
serted before or after this action token on r’s timeline. The
insertion of an action token on r’s timeline may also result
in derivative state changes to other timelines (e.g., the ef-
fects of a grasp action will dictate the start of a change to
the location of the grasped item). To allow for specifying
this additional resource structure, T-HTN uses an extended
version of HDDL (Holler et al. 2020) for representing the
domain and problem inputs.

Language Extensions
Using a model similar to the one used in the Action Nota-
tion Modeling Language (ANML) (Smith, Frank, and Cush-
ing 2007) for representing resources and complex objects,
T-HTN uses types to designate objects as resources. In
this paper we restrict attention to resources of type dis-
crete reusable resource. The aspects of state that are stored
with an action token on a given resource’s timeline are spec-
ified as an optional second form on the type definition that
denotes variable-type pairs (delimited by matching curly
brackets). When objects of a resource type are created, rele-
vant aspects of state are initialized by providing an optional
second argument (also delimited by curly brackets and in
the form of predicate = value). As new action tokens are
inserted onto a resource timeline, the preconditions and ef-

Proceedings of the 5th Workshop on Hierarchical Planning

60

fects of the corresponding actions will dictate how relevant
aspects of state will change. The following snippet is an
example definition of robot and rail block resource
types and initialization of a pair of robots:

1 Definition:
2 (:types
3 robot {?block - rail_block
4 ?arm-position - state
5 ?gripper-state - item} -
6 discrete_reusable_resource

)
7 Initialization:
8 (:objects
9 ur5A, ur5B - robot)

10 (:object-instances
11 ur5A {block = blockA,
12 arm-position = home, gripper

-state = empty}
13 ur5B {block = blockD,
14 arm-position = home, gripper

-state = empty})

A second extension that T-HTN makes to HDDL in-
volves specification of temporal constraints. In this case,
we borrowed directly from PDDL 2.1, incorporating its
:duration field and the temporal qualifiers (atstart,
atend, overall) used in preconditions and effects into
the action definition of HDDL. For example:

1 (:action move_to_home_state
2 :parameters (?r - robot)
3 :duration (= ?duration 10)
4 :precondition (and
5 (atstart (unsafe state

?r.arm-position)))
6 :effect (and
7 (atend (= ?r.arm-position

home)))
8)

By definition, any resource that is allocated to an action is
unavailable overall of the action’s scheduled interval.

A third extension to HDDL allows for the use of special-
ized algorithms for handling specific planning sub-problems
efficiently. In our running example, algorithms for solving
the multi-agent path-finding problem (MAPF) are relevant
to the movement of robots along the rail network in service
of tasks in a collision-free manner. Rather than modeling the
movement possibilities as adjacent blocks on the rail and
trying all combinations until a goal location is found, ap-
plication of a specialized planner can quickly determine an
efficient route by coupling a shortest-path algorithm with a
collision-avoidance strategy. This extension is achieved in
T-HTNwith two additional constructs: (1) the definition of a
functional predicate with f-predicate and (2) the defini-
tion of functional methods with f-method keywords. Us-
ing these constructs, one can tie specialized external plan-
ners to the domain representation based on their unique
name identifiers. Functional methods are slightly different in
their representation than standard methods in terms of their
defined task network. Since they are connected to a special-
ized external planner, we provide a simple wrapper function

whose name is restricted to be the same as the correspond-
ing functional method. Its purpose is to first convert the input
from the parsed format to the API that the specialized plan-
ner supports and then to convert the output of the specialized
planner into a sequence of actions and temporal constraints
that it can be linked into the overall task network. The fol-
lowing snippet shows a specification of these constructs for
the MAPF planner in our example scenario:

1 Predicate:
2 (:f-predicates
3 (clear ?from ?to - rail_block)
4)
5
6 Method:
7 (:f-method m_clear_and_move
8 :parameters (?r - robot
9 ?to - rail_block)

10 :task (clear_and_move ?r ?to)
11 :precondition (and
12 (atstart (not (clear
13 ?r.block ?to))))
14 :effect (and
15 (atend (clear ?r.block ?to))

)
16)

A final extension to HDDL allows for specifying a
broader set of temporal constraints between tasks. HDDL
allows specification that tasks must be done in a particu-
lar order for example, but does not allow specification that
a task must be done immediately after another task com-
pletes. To address this limitation, T-HTN introduces the
:sync-constraints field to the :method construct,
in which any set of pairwise constraints can be added. Us-
ing built-in constraint types, this construct supports gen-
eral specification of Allen temporal relations between tasks.
In the following example using :sync-constraints,
meets denotes that task1 must start immediately after
task0 completes.

1 (:method m_pick_item

2
...

3 :ordered-subtasks (and
4 (task0 (grasp ?r ?i))
5 (task1 (move_to_home_state ?r)))
6 :sync-constraints (and
7 (task0 meets task1))
8)

Core Search Procedure
Leveraging the domain representation, T-HTN employs an
incremental algorithm for generating and feasibly inserting a
new task plan into the current global multiagent plan/sched-
ule. It first enumerates all possible decompositions of the in-
coming request and then instantiates a task network for each
decomposition that is tied to an underlying STN. Each pos-
sible task network instantiation still needs to be grounded
with a specific set of resource assignments, and the choice
of resources can significantly affect overall plan quality. Al-
ternative sets of resource assignments for a given instanti-

Proceedings of the 5th Workshop on Hierarchical Planning

61

ated task network are explored by applying a backward time-
line scanning procedure to each. For a given set of resource
choices, the scanning procedure is applied to determine the
set of slots on relevant resource timelines where actions can
be feasibly scheduled. We believe this ability to (1) organize
the search around alternative sets of resource choices and
(2) exploit timeline structure to determine feasible options
is key to achieving overall planning/scheduling efficiency in
multi-agent domains.

Enumerating Decompositions As mentioned before,
T-HTN uses the standard HTN task decomposition process
by methods to produce an AND/OR HTN that represents al-
ternative solution paths. Once the path decomposition tree
is generated, the next step is to enumerate all the possible
decompositions, by combinatorically expanding the existing
OR nodes. Algorithm 1 provides an efficient, high-level, re-
cursive algorithm that enumerates all paths in the tree while
guaranteeing that no potential alternatives are skipped. This
algorithm follows from a straightforward depth-first search
procedure where, at each level, we keep track of the choices
made thus far and then recursively maintain a cartesian prod-
uct of all such decisions. The worst-case time complexity of
Algorithm 1 is dominated by the size of the cartesian prod-
uct, which is computed in Line 15.

Algorithm 1: Algorithm to return all the possible instantia-
tions of a given path decomposition tree.

1: procedure ENUMERATE
DECOMPOSITIONS(vertex)

2: Initialize empty leafs vector
3: if vertex is a leaf then
4: Add vertex to leafs
5: return leafs
6: else if vertex is OR then
7: for all children c of vertex do
8: leafs +=

ENUMERATE DECOMPOSITIONS(c)
9: end for

10: else
11: Initialize empty op vector
12: for all children c of vertex do
13: op += ENUMERATE DECOMPOSITIONS(c)
14: end for
15: leafs = cartesian product(op)
16: end if
17: return leafs
18: end procedure

Instantiating Alternative Task Networks For each pos-
sible alternative decomposition in turn, T-HTNinstantiates a
task network that is tied with the underlying STN and con-
tains tokens corresponding to constituent tasks and actions.
Each token designates a start and end time point for a par-
ticular task/action, and, if the token corresponds to an ac-
tion, the corresponding duration constraint is enforced be-
tween the start and end time points. Plans are generated for
a task network by scheduling its action tokens on the time-

lines of compatible resources. An action token is scheduled
on a compatible resource timeline by searching for slots,
i.e., temporal intervals of availability between tokens on the
timeline, in which the action token can be feasibly inserted.

Algorithm 2: Algorithm to return an instantiated task net-
work (connected to the underlying STN) that enforces all
pre-specified temporal constraints.

1: procedure EXPAND(vertex, tree, STN)
2: Create a token for vertex
3: Connect token to tree
4: if vertex is not leaf then
5: for all children c of vertex do
6: EXPAND(c, tree)
7: end for
8: Add synchronization constraints to the STN
9: Add contains constraints to the STN

10: end if
11: return tree
12: end procedure
13: procedure INSTANTIATE TASK NET(search, STN)
14: Instantiate an empty tree
15: tree← EXPAND(search.root, tree, STN)
16: Add the release time constraint to search.root
17: Add the due date constraint to search.root
18: return tree
19: end procedure

CZ

move item box box drop loc

pick item ?robot box
Open: ?robot

drop item ?robot box box drop loc
Open: ?robot

grasp ?robot box
Open: ?robot

move to home state ?robot
Open: ?robot

release ?robot box box drop loc
Open: ?robot

move to home state ?robot
Open: ?robot

<
0,
∞ >

<
0, 300 >

<
0,∞

>
< 0,∞ >

< 0,∞ >

<
0,
∞ >

<
0,∞

>

<
0,
∞
>

<
0,∞

>

<
0,
0
>

< 0, 0
>

Figure 3: Instantiated task network for the working example
as described in Figure 1. Nodes in red represent the high-
level tasks, and the nodes in green represent the action prim-
itives. The blue edges correspond to the release time and
due date constraints, while the red edges correspond to the
contains constraint. The black edges correspond to the pre-
specified synchronization rules.

T-HTN enforces a contains temporal constraint between
each higher-level token and its corresponding decomposi-
tions so that the two levels are temporally linked. Such con-
straints ensure that any temporal constraints imposed on an
aggregate task are also applied to its constituent sub-tasks.
If the constituent sub-tasks of an aggregate task are known
to be ordered, then the contains constraint need only be en-
forced between the start time point of the parent task to the
start time point of the first task in ordered decomposition

Proceedings of the 5th Workshop on Hierarchical Planning

62

and the end time point of the last sub-task in the ordered
decomposition to the end time point of the parent task. Ab-
solute temporal constraints, such as release times and due
dates, are asserted to corresponding root task and propagated
down the network via the contains constraints. To efficiently
compute all resource and parameter assignments, we segre-
gate choices based on whether they have been already made
or not. Decisions that have been made prior are moved to a
closed set, while the decisions that remain to be made are
moved to the open set. A cartesian product is then com-
puted on all the possible assignments of open set parameters
and these are used to ground the generated task network for
scheduling. Algorithm 2 provides a high-level overview of
how task network generation proceeds. Assuming that there
can be V nodes in the generated tree, the worst-case time
complexity of the algorithm is O(V) since each vertex needs
to be visited at least once so that it can be part of the task
network. Figure 3 shows the generated task network for the
working example as described in Figure 1.

Finding slots Once the instantiated task network is built,
it acts as a template for all possible resource and parameter
assignments. For each possible combination of assignments,
T-HTN determines the set of feasible slots by a backward
timeline scanning process that repeatedly attempts to back-
ward schedule the action tokens in the instantiated task net-
work at each possible start point. The timeline scanning pro-
cess iterates through all required resource timelines in re-
verse order, identifying sequential pairs of tokens currently
on the timeline that delineate potential slots. The search of
slots pivots around resources of type robot, while consider-
ing other required resources (e.g., rail blocks) as dependent
resources. The action tokens of the instantiated task network
are only scheduled on robot and rail-block timelines.

At the same time, the effects of an inserted action may
also imply changes to other, dependent state variable time-
lines. For each combination of slots identified on a resource
timeline and its dependent state variable timelines, T-HTN
queries the underlying STN to confirm the feasibility of that
slot based on current temporal bounds. This process helps
prune infeasible combinations of slots early on, and thereby
speeds up the scanning process. Following these checks,
T-HTN constructs a coherent world state of the environment
by iteratively modifying the initial world state with the ef-
fect literals encapsulated by the currently considered slots.
This updated world state is utilized to check the precondi-
tions of actions, and assuming that all preconditions are ver-
ified, the temporal constraints imposed on the action token
corresponding to the action are enforced in the underlying
STN. This includes retraction of the sequencing constraint
between the two tokens on the timeline surrounding the cur-
rent slot, and the posting of two new sequencing constraints
to insert the new action token into this slot. If all of these
constraints can be consistently asserted, the slot is a feasible
assignment for the action token. T-HTN uses this procedure
to generate sets of feasible slot assignments (options) for all
action tokens in an instantiated task network by trying to
schedule each of the possible combinations of assignments
in their Cartesian product. The maximum number of options

generated before terminating the search can be restricted by
setting a customizable variable to the preferred number. Fi-
nally, once all options have been generated, they are evalu-
ated according to some set of objective criteria (e.g., mini-
mize overall task makespan, complete task as early as possi-
ble, reduce disruption to plans of other robots), and T-HTN
commits to the best option.

Algorithm 3: Algorithm to find a set of feasible slots for a
given instantiated task network while attempting to satisfy
any failing precondition literals.

1: procedure SATISFY PRECONDITION(lit,
task net, STN)

2: Find the satisfying task tk
3: Identify tk’s required resources and parameter

assignments
4: if tk is an action primitive then
5: Create token corresponding to tk
6: Add token to task net
7: Add temporal constraints of token to STN
8: else
9: tokens ← Call the specialized external

planner
10: for all token in tokens do
11: Add token to task net
12: Add temporal constraints of token to STN
13: end for
14: end if
15: end procedure
16: procedure FIND SLOTS(task net, STN)
17: Instantiate an empty slots data structure
18: for all Leaf tasks tk in task net.leafs do
19: Collect tk’s required resourceR assignments
20: for all Slots s overR do
21: Check temporal bounds of s using STN
22: Compute the world state ws using s
23: for all Precondition literal p over tk do
24: if p fails against ws then
25: SATISFY PRECONDITION(p,

task net, STN)
26: end if
27: end for
28: Enforce temporal constraints of tk onto the

STN
29: slots += s
30: end for
31: end for
32: return slots
33: end procedure

Note that sometimes it is hard to encapsulate the entire
precondition check within single or multiple literals. By uti-
lizing the functional predicate constructs introduced earlier,
we use specialized algorithms to compute such prerequi-
site checks efficiently and optimally where appropriate1. If,
however, any precondition literal fails either via a functional

1In our current context, this refers to the MAPF solver men-
tioned earlier.

Proceedings of the 5th Workshop on Hierarchical Planning

63

predicate call or via a violation of a constant literal in the
process of checking preconditions against an updated world
state, we attempt to satisfy such failing preconditions in two
different ways. First, we iterate through the list of actions
and identify potential actions whose effects match the fail-
ing precondition. If we find such an alternative, the newly
instantiated tokens are then added to the same task network,
and the procedure continues normally. Second, we iterate
through the list of functional methods and identify poten-
tial solutions whose effects match the failing precondition.
If we find such a method, we call the specialized planner
associated with that functional method. We update the task
network by adding all newly generated action tokens, after
which the procedure continues normally. Whenever T-HTN
finds an alternative action or method, it validates that alter-
native by comparing its set of preconditions with the up-
dated world state. If there is any violation, T-HTN contin-
ues to look for other alternatives until they are exhausted.
Since this process can potentially lead to infinite recursion,
we employ a conservative approach where the act of sat-
isfying preconditions is terminated after the first recursive
level. Algorithm 3 provides a high-level overview of the out-
lined search procedure. Assuming that there are T leaf ac-
tions to be scheduled and at most N potential slots for each
such task, then the worst-case complexity of the algorithm is
O(TN) which is going to be heavily dominated by the size
of slots since as each leaf gets scheduled N ≫ T .

To summarize, our developed framework, T-HTN com-
bines Algorithms 1, 2 and 3 to satisfy any incoming request
given a set of timelines tied to an underlying STN. It first
parses the incoming request and generates a corresponding
path decomposition tree that gets processed by Algorithm
1 to generate all possible alternative decompositions. Each
decomposition is then passed to Algorithm 2 to form a cor-
responding task network that enforces all the relevant tem-
poral constraints in the underlying STN. The generated task
network is then passed to Algorithm 3, which finds a set of
feasible slots on the required resource timelines while at-
tempting to satisfy any failing precondition literals. Since
Algorithms 2 and 3 are repeated for all possible decomposi-
tions, the overall complexity of T-HTN also depends on the
total number of such possible decompositions as defined by
the input HTN. Assuming that there are at most D such de-
compositions, the worst-case complexity of our approach is
O(DTN) which is heavily dominated by Algorithm 3.

Looking back at the working example, assuming the robot
parameter assignment in the corresponding task network
shown in Figure 3 was UR5A, it is clear to observe that
UR5B must move out of the way for the actions to take
place successfully. This means that when T-HTN tries to
schedule the instantiated task network with UR5A as the
robot parameter assignment, a satisfying precondition pro-
cedure is triggered that calls the m clear and move func-
tional method. This method is internally linked to the spe-
cialized MAPF solver, which computes the best joint rail
moves for both robots. Moreover, to pick the box, UR5A
is first expected to be close to the object before attempting
the grasp. This prerequisite condition also fails, triggering
another reachable functional method that is also tied to

CZ

move item box box drop loc

pick item ur5A box drop item ur5A box box drop loc

rail move ur5A blockA

rail move ur5A blockB

rail move ur5A blockC

rail move ur5A blockD

grasp ur5A box

move to home state ur5A

rail move ur5A blockA

rail move ur5A blockB

rail move ur5A blockC

rail move ur5A blockD

release ur5A box box drop loc

move to home state ur5A

< 0,∞ > < 0, 300 >

< 0,∞ >
< 0,∞ >

< 0,∞ >

<
0,
∞

>

<
0,
∞

>

< 0, 0 >

< 0, 0 >

< 0, 0 >

< 0, 0 >

< 0, 0 >

<
0,∞

>

<
0,
∞

>

< 0, 0 >

< 0, 0 >

< 0, 0 >

< 0, 0 >

< 0, 0 >

Figure 4: Updated instantiated task network for the work-
ing example as described in Figure 1. Nodes in red repre-
sent the high-level tasks, and the nodes in green represent
the action primitives. The nodes in magenta were added to
the original task network by a specialized planner who was
triggered by T-HTN to satisfy a failing precondition. The
blue edges correspond to the release time and due date con-
straints, while the red edges correspond to the contains con-
straint. The black edges correspond to the pre-specified syn-
chronization rules.

the MAPF solver. In this case the path of the calling robot
to the required destination is computed and installed in the
plan. This results in the generation of an updated task net-
work, which is shown in Figure 4. Figure 5 provides a final
snapshot of the timelines generated by T-HTN as a result
of scheduling the problem scenario outlined in the working
example.

Continual Multiagent/Multi-Robot Planning
The core search procedure just summarized is repeat-
edly applied to incrementally generate, extend and man-
age multiagent/multi-robot plans over time as new pending
requests and unexpected execution results that require re-
planning are received. New tasks are allocated to specific re-
sources and integrated into the overall plan as new requests
are received. In some cases, the remaining temporal flexi-
bility in the current plan/schedule (or equivalently the con-
tinuing availability of required resources) will seamlessly
accommodate additional requests. In other, more resource-
constrained situations, the addition of new tasks may result
in the delay or removal of some less important, previously
scheduled tasks. In re-planning settings, it may also be the
case that some previously planned/scheduled actions may no
longer be relevant and can be retracted to create resource
availability for performing corrective tasks. This inherently
incremental search approach to planning and scheduling is
well suited to such continual planning problems.

Experiments
To benchmark T-HTN’s performance, we designed a multi-
request variant of the original scenario, which involves mov-

Proceedings of the 5th Workshop on Hierarchical Planning

64

Figure 5: Final snapshot of the timelines generated by T-HTN in response to scheduling the working example outlined in Figure
1. The red node encapsulates the task network, which was shown in Figure 4 and the blue arrows signify the release time and
due date constraints. The pink arrows relate to the ⟨0,∞⟩ sequencing constraint. In contrast, the brown arrows mark the ⟨0, 0⟩
contains constraint that joins the tokens on the robot and corresponding dependent timelines. The head and tail tokens on all the
timelines act as auxiliary tokens, which do not have any significance apart from helping in a coherent token insertion procedure.

ing random objects from one location to another in the pres-
ence of a rail network that acts as a shared global resource
constraint between the two robotic manipulators. Each re-
quest specifies the movement of a distinct, unique object
from its initial location to another pre-specified destination
location. All requests were given the same release-time and
deadline constraints to facilitate comparative analysis. For
the experiments, T-HTN utilizes an objective metric to prior-
itize plans that minimize makespan. The entire T-HTN plan-
ner, including the domain representation parser, was built in
C++.

To evaluate the potential of the T-HTN framework, we
compare its performance to another state-of-the-art plan-
ner that can be configured to optimize for makespan called
POPF (Coles et al. 2010). POPF is a forward-chaining tem-
poral planner built on the foundations of grounded forward
search in combination with linear programming to handle
continuous linear numeric change. Within the POPF domain
specification, we specify one global deadline to be enforced
on all requests, which is consistent with the common release
and due dates specified in T-HTN input requests. We com-
pare the two planners based on two metrics: computational
cost to generate the plan and the resulting plan makespan.
The experiments vary in the number of rail blocks, increas-
ing the number of resources that must be managed, and the
number of requests, which increases the size of the overall
plan. We consider an experimental design that varies both
the number of rail blocks and the number of requests from 5
to 25 in increments of 5. A time limit of 10 minutes was im-
posed for solution of any problem instance. All experiments
were run on a Dell machine with Intel(R) Core(TM) i7-4790

CPU @ 3.60GHz to ensure a fair comparison.
Tables 1 and 2 show the results obtained relative to both

performance objectives.With respect to makespan (Table 1),
it can be seen that T-HTN outperforms POPF on the major-
ity of problem instances solved by both techniques.

The more significant results are shown in Table 2. T-HTN
dominates with respect to computational cost across all
experiments and the differential increases significantly as
problem size increases. Notably, POPF increasingly times
out before generating a solution as the size of the problem
grows. A natural question to ask with respect to computa-
tional cost is what impact the specialized MAPF algorithm
had on comparative computational cost. To provide some in-
sight, we conducted additional comparative experiments on
problems involving just a single request that required multi-
ple rail block moves, and in these experiments, it was found
that T-HTN and POPF produced comparable compute times.
Their average compute times over 10 different problem in-
stances of single requests were 0.073 and 0.005 seconds re-
spectively. Hence, it appears that the combinatorics of order-
ing multiple task requests dominates the computational cost
of POPF solutions.

Summary
In this paper, we have presented a multiagent / multi-robot
planning framework that combines the structural advantages
of an HTN representation with the expressiveness and flex-
ibility of timeline-based planning frameworks. We have ar-
gued that by emphasizing resource allocation as the basic
decision-making focus, it is possible to overcome the com-
plexity of the resulting expanded search space and efficiently

Proceedings of the 5th Workshop on Hierarchical Planning

65

Requests 5 10 15 20 25

Blocks POPF T-HTN POPF T-HTN POPF T-HTN POPF T-HTN POPF T-HTN

5 620 600 1320 1040 1960 1500 2400 2000 3320 2580

10 800 800 2480 1340 Timeout 2120 Timeout 2300 Timeout 3000

15 1220 1020 1900 2060 Timeout 2320 Timeout 3620 Timeout 5040

20 960 1620 3600 2560 Timeout 3320 Timeout 4620 Timeout 5780

25 Timeout 1320 2280 2200 Timeout 3620 Timeout 5020 Timeout 5260

Table 1: Comparison of POPF and T-HTN with respect to the makespan of the generated plan.

Requests 5 10 15 20 25

Blocks POPF T-HTN POPF T-HTN POPF T-HTN POPF T-HTN POPF T-HTN

5 0.22 0.23 3.3 0.54 15.14 2.03 51.32 3.43 196.26 10.61

10 100.72 0.37 255.90 0.87 Timeout 2.99 Timeout 5.63 Timeout 5.78

15 2.64 0.50 94.00 1.62 Timeout 3.61 Timeout 7.42 Timeout 11.56

20 0.92 0.91 327.62 2.84 Timeout 4.43 Timeout 17.29 Timeout 15.93

25 Timeout 0.76 73.69 2.12 Timeout 6.10 Timeout 10.88 Timeout 14.28

Table 2: Comparison of POPF and T-HTN with respect to their computational times in seconds for generating a valid plan.

produce high quality multiagent plans.
To demonstrate this claim, we have developed the T-HTN

planner/scheduler. Starting with the HDDL domain repre-
sentation language, we introduced extensions to give re-
sources and resource timelines special status, to include du-
rative actions and incorporate complex temporal constraints
between them, and to enable the use of specialized algo-
rithms to solve well understood planning sub-problems. We
then presented a core search algorithm that exploits these
representational extensions to generate multiagent plans effi-
ciently. Initial comparative experiments carried out in multi-
robot scenarios involving two UR5 robot arms mounted on
a shared rail network provided evidence in support of our
overall design hypothesis.

Future Work
One immediate direction for future research is more exten-
sive experimentation and analysis of T-HTN’s performance
characteristics. The results we have presented are prelim-
inary and restricted to relatively simple sets of two-robot,
object movement scenarios. We would like to expand exper-
imentation to include other International Planning Competi-
tion (IPC) domain problems of general interest to the plan-
ning community. One complication here is mapping these
domains and problems into the T-HTN’s extended HDDL
representation.

With regard to further development of T-HTN, a num-
ber of simplifying assumptions were made in its initial im-
plementation that provide focal points for future research.

First, resource timelines have been realized exclusively as
single capacity resources (i.e., resources capable of doing
just one task at a time). Although it appears straightforward,
one short-term extension will be to extend resource time-
line representations to accommodate multi-capacity robotic
systems that can simultaneously accomplish multiple tasks
(e.g., perform a visual inspection while carrying out a move-
object request).

A second related simplification made in T-HTN was to
restrict any agent (resource) from interleaving the execu-
tion of multiple task requests. Although interleaved accom-
plishment of multiple requests could lead to more efficient
overall behavior in some circumstances, it also runs the risk
of search space explosion. How to selectively relax this as-
sumption is a longer term resource challenge.

Acknowledgements: This research was funded in part by
the NASA Space Technology Research Institute for Deep
Space Habitat Design under grant #80NSSC19K1052, and
the CMU Robotics Institute.

Proceedings of the 5th Workshop on Hierarchical Planning

66

References
Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: A Constraint-based Planner for Generative
and Hierarchical Temporal Planning. ARXiv Preprint.
Coles, A.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In Proceedings
of the Twentieth International Conference on International
Conference on Automated Planning and Scheduling,
ICAPS’10, 42–49. AAAI Press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal
constraint networks. Artificial Intelligence, 49(1): 61–95.
Do, M.; and Kamhbampati, S. 2003. Sapa: A
multi-objective metric temporal planner. Journal of
Artificial Intelligence Research, 20: 155–194.
Eyerich, P.; Matmuller, R.; and Roger, G. 2009. Using the
Context-Enhanced Additive Heuristic for Temporal and
Numeric Planning. In Proceedings of the Nineteenth
International Conference on International Conference on
Automated Planning and Scheduling, 130–137. AAAI
Press.
Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying
Planning and Scheduling as Timelines in a
Component-Based Perspective. Archives of Control
Sciences, 18(2): 231–271.
Holler, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings AAAI 2020, 9883–9891. New York, NY.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote Agent: to boldly go where no AI system has gone
before. Artificial Intelligence, 103(1-2): 5–47.
Muscettola, N.; Smith, S.; Cesta, A.; and D’Aloisi, D.
1992. Coordinating Space Telescope Operations in an
Integrated Planning and Scheduling Framework. IEEE
Control Systems, 12(1).
Qi, C.; Wang, D.; Muoz-Avila, H.; Zhao, P.; and Wang, H.
2017. Hierarchical Task Network Planning with Resources
and Temporal Constraints. Knowledge-Based Systems,
133(C): 17–32.
Rubinstein, Z.; Smith, S.; and Barbulescu, L. 2012.
Incremental Management of Oversubscribed Vehicle
Schedules in Dynamic Dial-A-Ride Problems. In
Proceedings AAAI 2012. Toronto,.
Smith, D. E.; Frank, J.; and Cushing, W. 2007. The ANML
Language.
Smith, S.; Becker, M.; and Kramer, L. 2004. Continuous
Management of Airlift and Tanker Resources: A
Constraint-Based Approach. Mathematical and Computer
Modeling, 39(6-8): 581–598.
Umbrico, A.; Cesta, A.; Orlandini, A.; and Mayer, M. 2017.
PLATINUm: A New Framework for Planning and Acting.
In 16th International Conference of the Italian Association
for Artificial Intelligence.
Verfaillie, C., G.and Pralet; and Lematre, M. 2003. How to
model planning and scheduling problems using constraint
networks on timelines. Knowledge Engineering Review,
25(3): 319–336.

Proceedings of the 5th Workshop on Hierarchical Planning

67

Teaching an HTN Learner

Ruoxi Li1, Mark Roberts2, Morgan Fine-Morris2,3, Dana Nau1

1Dept. of Computer Science and Institute for Systems Research, Univ. of Maryland, College Park, MD, USA
2Navy Center for Applied Research in AI, Naval Research Laboratory, Washington, DC, USA

3Department of Computer Science, Lehigh University, Bethlehem, PA 18015, USA
rli12314@cs.umd.edu, mark.roberts@nrl.navy.mil, nau@umd.edu, mof217@lehigh.edu

Abstract
We describe Teachable-HTN-Maker, a modified version of
the well-known HTN-Maker algorithm that learns Hierarchi-
cal Task Network (HTN) methods. Instead of learning meth-
ods from all subsequences of a solution plan as HTN-Maker
does, Teachable-HTN-Maker learns from a curriculum con-
sisting of examples that are presented in a meaningful order.
We compare Teachable-HTN-Maker against HTN-Maker in
two planning domains, and observe that it learns fewer meth-
ods and better ones.

1 Introduction
Curriculum learning (Bengio et al. 2009) is a training strat-
egy for machine learning. It was inspired by the observation
that humans and animals learn much better when the exam-
ples are not randomly presented but organized in a meaning-
ful order that starts by illustrating simple concepts and grad-
ually introduces more complex ones. In this paper we in-
vestigate how to apply this strategy to improve HTN-Maker
(Hogg, Muñoz-Avila, and Kuter 2016).

HTN-Maker learns methods for annotated tasks from sub-
sequences of a solution plan. However, it tries to learn meth-
ods for all of the annotated tasks from all of the subse-
quences. Many of the methods learned by are not useful be-
cause they have undesirable preconditions or decomposition
strategies. As a result, an HTN planner that uses methods
learned by HTN-Maker may not perform efficiently.

In this paper we make the following contributions:
• We describe Teachable-HTN-Maker, a modified version

of HTN-Maker. Instead of examining every subsequence
of a solution plan, Teachable-HTN-Maker examines only
the subsequences that we tell it to examine in an order
that we specify. This modification makes it possible for
Teachable-HTN-Maker to learn from curricula.

• We compare Teachable-HTN-Maker and HTN-Maker on
two sets of planning problems. One is to move a stack
of n blocks in the Blocks World, maintaining their order
(which requires moving the stack twice). The other is to
deliver n packages in the Logistics domain. In our exper-
iments, Teachable-HTN-Maker learned fewer methods
and better ones than HTN-Maker, and did so with less
running time. A planner using the methods learned by
Teachable-HTN-Maker solves more problems with lower
runtime than with the methods learned by HTN-Maker.

2 Background and Related Work
Automated planning systems typically require that a do-
main expert provide knowledge about the dynamics of the
planning domain. In classical planning, the domain knowl-
edge includes semantic descriptions of actions. In Hierarchi-
cal Task Networks (HTNs), the domain knowledge includes
structural properties and potential hierarchical problem-
solving strategies. A significant knowledge engineering bur-
den for a domain expert is required to write HTN decom-
position methods. HTN-Maker (Hogg, Muñoz-Avila, and
Kuter 2016) overcomes this burden, in part, by learning
HTN methods after analyzing the semantics of a solution
plan for planning problems.

Several other works have investigated ways to learn HTN
methods (Lotinac and Jonsson 2016; Zhuo, Munoz-Avila,
and Yang 2014; Xiao et al. 2020). Furthermore, Choi and
Langley (2005) have investigated how to learn hierarchical
logic programs that are analogous to HTN methods. How-
ever, none of those investigations used curricula.

Algorithm 1 describes the high-level operation of HTN-
Maker. Its input includes the domain D, initial states from
a planning problem P in a planning domain, an execution
trace E (which can be a plan produced by a planner), a set
T of annotated tasks to be accomplished, and the Boolean
choice p of whether pruning is enabled. Each task’s anno-
tations include preconditions that need to be true to accom-
plish the task, and effects that must be true after accomplish-
ing the task (see Figures 2 and 3 for examples).

During the learning process, if pruning is enabled, newly
learned methods from the following two categories will be
pruned by (i.e., removed from the set of learned methods):
1) subsumed methods, where method m1 subsumes method
m2 if there exists a substitution that may be applied to m2

such that both have the same head and subtasks and the pre-
condition of the m2 implies the precondition of m1; and 2)
unneeded methods: if the preconditions of a subtask are ful-
filled, the subtask could just be called directly.

The procedure LearnMethods performs the analysis for
τ on the subtrace E [start, end]. HTN-Maker analyzes all
O(k2) subtraces for an E of length k, and often learns many
methods with undesirable preconditions or decomposition
strategies. To address these issues, we modify HTN-Makerf
(distribution version ch-htn-tools-1.1) to use a curriculum to
guide the learning process.

Proceedings of the 5th Workshop on Hierarchical Planning

68

Algorithm 1: A high-level description of HTN-Maker.
Input: domain D, problem P , solution trace E ,
Annotated tasks T , Pruning enabled p
Output: A set of HTN methodsM

1: M = ∅
2: for end← 1 to |E| do
3: for start← end down to 1 do
4: for τ in T do
5: LearnMethods(start, end, τ,D,P, E ,M, p)
6: returnM

Algorithm 2: Teachable-HTN-Maker.
Input: domain D, problem P , solution plan E ,
curriculum C
Output: A set of HTN methodsM

1: M = ∅
2: for (start, end, τ) in C do
3: LearnMethods(start, end, τ,D,P, E ,M, p)
4: returnM

3 Teachable HTN-Maker
Suppose we want to teach an HTN method learner how to
solve some task τ . A curriculum would start by teaching the
learner how to solve very simple subtasks of τ , then increas-
ingly complicated subtasks, until we teach it how to solve
τ itself. If the learner learns from plan traces, then the plan
traces for the subtasks of τ will be subtraces of the plan trace
for τ . More specifically, if E is a plan trace for τ , then the
plan trace for each subtask τi is a subtrace E [starti, endi]
of E . Thus we can represent our curriculum as a sequence of
triples of the form (starti, endi, τi).

Teachable-HTN-Maker is a modified version of HTN-
Maker that takes such triples as input, and analyzes only
these triples rather than analyzing every subsequence of E .
The pseudocode is in Algorithm 2.

4 Experimental Setup
To examine whether a curriculum can improve upon the
methods learned by HTN-Maker, we compared Teachable-
HTN-Maker and HTN-Maker in the Blocks World domain
and the Logistics domain from the 2nd International Plan-
ning Competition (IPC-2). Although these domains are con-
ceptually simple, large problems remain a challenge for
planners. For our comparisons, we measured the total num-
ber of methods each system learned (with or without prun-
ing) and the time they took to learn those methods, and we
evaluated the methods’ planning performance.

Blocks World Domain The first domain includes a num-
ber of blocks sitting on a table (possibly on top of each
other), and a robotic hand that can grasp one block at a time.
The objective is to learn methods to move a stack of n blocks
using the robotic hand, keeping the top-to-bottom order of
the blocks the same as in the original stack.

For example, let τ1 be the task of moving a stack of two
blocks (A and B) from block C onto the table, while main-

Figure 1: To move two blocks A and B from block C to the
table while maintaining their order, the plan π1 inverts their
order (state s1), then inverts it again (state s2).

(:task Make-1Pile
:parameters

(?a)
:precondition

(and)
:postcondition

(and
(on-table ?a)
(clear ?a)))

(:task Make-2Pile
:parameters

(?a ?b)
:precondition

(and)
:postcondition
(and (on-table ?b)

(on ?a ?b)
(clear ?a)))

Figure 2: Example annotated tasks in the Blocks World.

taining their order (i.e. A on B). Let π1 be the following plan
for that task:

Action 1: unstack(A,B)
Action 2: putdown(A)
Action 3: unstack(B,C)
Action 4: stack(B,A)

Action 5: unstack(B,A)
Action 6: putdown(B)
Action 7: pickup(A)
Action 8: stack(A,B)

Figure 1 shows what the plan does.
To teach how to accomplish τ1, we can use the curriculum

shown below. It consists of seven subplans of π1, starting
with simpler ones and combining them into progressively
harder ones. For each subplan, the curriculum includes the
annotated task (see Figure 2 for examples) that the subplan
accomplishes.

Subplan of π1 Annotated Task
1. Actions 1 and 2 Make-1Pile
2. Actions 3 and 4 Make-2Pile
3. Actions 1 through 4 Make-2Pile
4. Actions 5 and 6 Make-1Pile
5. Actions 7 and 8 Make-2Pile
6. Actions 5 through 8 Make-2Pile
7. Actions 1 through 8 Make-2Pile

The preconditions of the methods learned from this curricu-
lum include cases where part of the stack has already been
moved, but not cases where a block is held in the robot hand.

Logistics Domain The objective in the Logistics domain
is to move packages among locations in various cities, using
trucks within cities and airplanes between cities. Let τ2 be
the task of moving three packages p1, p2, p3 within a city,
from locations p1s, p2s, p3s to p1d, p2d, p3d, respectively.
Let π2 be the following plan for τ2:

Action 1: drive-to(p1s)
Action 2: load(p1)
Action 3: drive-to(p1d)
Action 4: unload(p1)
Action 5: drive-to(p2s)
Action 6: load(p2)

Action 7: drive-to(p2d)
Action 8: unload(p2)
Action 9: drive-to(p3s)
Action 10: load(p3)
Action 11: drive-to(p3d)
Action 12: unload(p3)

Proceedings of the 5th Workshop on Hierarchical Planning

69

Here is a curriculum to teach how to perform τ2. As before,
each curriculum entry includes a subplan of π2 and an anno-
tated task (see Figure 3) that the subplan accomplishes:

Subplan of π2 Annotated Task
1. Actions 1 through 4 Deliver-1Pkg
2. Actions 5 through 8 Deliver-1Pkg
3. Actions 1 through 8 Deliver-2Pkg
4. Actions 9 through 12 Deliver-1Pkg
5. Actions 1 through 12 Deliver-3Pkg

Methods First, we randomly generate problems with cor-
responding solution traces for moving a stack of n blocks in
the Blocks World domain and delivering n packages in the
Logistics domain. Then we compare the average number of
methods learned (with and without pruning) as well as the
time (ms) taken by HTN-Maker and our Teachable-HTN-
Maker. After we learn HTN methods for each problem, we
evaluate the methods by using them to solve the planning
problems using an HTN planner: HTN-Maker’s implemen-
tation of the SHOP (Nau et al. 1999) planning algorithm.
Finally, we compare the average length of the plan gener-
ated by the HTN planner as well as the running time (ms)
for those problems. For each stage of experiments (method
learning or planning with the learned methods), for each
problem domain (Blocks World or Logistics), as well as
for each configuration of learning approaches (HTN-Maker
or Teachable-HTN-Maker) and pruning strategies (with or
without pruning), we allow a limit of 2 hours of running
time on each test suite.

5 Results and Discussion
The results of the method learning experiments (Figure 4a)
show that Teachable-HTN-Maker learns significantly fewer
methods in less time than HTN-Maker (both with and with-
out pruning). HTN-Maker’s run time increases with problem
size, such that it cannot solve problems with larger than a
certain amount of blocks or packages. The evaluation results
(Figure 4b) show that the HTN planner takes significantly
less time to solve more problems using the methods learned
by Teachable-HTN-Maker (both with and without pruning).

In the Logistics domain, the number of methods learned
increases exponentially with the number of packages. This is
caused by the existence of alternative ways to bind variable
names to object names when learning methods for Deliver-
nPkg tasks. More specifically, when learning methods for
the task Deliver-2Pkg from a solution plan that first has
package A then package B delivered to the destination, there
are 3 possible ways to bind the object names in the domain to
the variable names in the annotated task: 1) o1 to A and o2 to
B, 2) o1 to B and o2 to A, or 3) both o1 and o2 to B. We have
not yet implemented a solution to prevent unwanted name
binding or to prune the unwanted methods caused by un-
wanted name binding. Nevertheless, Teachable-HTN-Maker
still learns fewer methods with the same deficiency.

HTN-Maker nondeterministically chooses subtask group-
ings to form methods when there are several possibilities.
The implementation tested in the evaluations caused the al-
gorithm to make deliberate choices when a method decom-
positions is learned from right to left, such that the right

(:task
Deliver-1Pkg

:parameters
(?o - obj
?d - location)

:precondition
(and)
:effect
(and (at ?o1 ?d)))

(:task Deliver-2Pkg
:parameters
(?o1 - obj
?o2 - obj
?d - location)

:precondition
(and)
:effect

(and (at ?o1 ?d)
(at ?o2 ?d)))

Figure 3: Example annotated tasks in the Logistics domain.

subtask (if any) always corresponds to a previously learned
method instance that extends over the largest subplan (if
there are multiple ones). For the Blocks World example
problem described previously (Figure 1), the method learned
from the 7th curriculum step (Figure 5) effectively moves
a stack of blocks b and a from above c onto table while
maintaining the order by dividing the task into two sub-
tasks that respectively reach state s1 and s2. The learned
method has ((MAKE-2PILE ?a ?b) (MAKE-2PILE ?b
?a)) as subtasks (Figure 5). Respectively, the original
HTN-Maker learns a method that has ((UNSTACK ?a ?b)
(MAKE-2PILE ?b ?a)) as subtasks, where the subtask
(MAKE-2PILE ?b ?a) takes the remaining 7 out of 8 total
actions. The method learned with the curriculum is concep-
tually more desirable.

In the Blocks World domain, the plans produced by the
planner using methods learned by HTN-Maker are slightly
shorter than the plans produced by the planner using meth-
ods learned by Learnable-HTN-Maker. For example, to
move a stack of 2 blocks A and B (over C) onto the table
while maintaining the order (Figure 1), it takes 6 actions: un-
stack A from B, put down A, unstack B from C, put down B,
pick up A, and stack A on B. On the contrary, the plan pro-
duced by the planner using methods learned by Teachable-
HTN-Maker has 8 actions. As the number of blocks in-
creases, the length difference between the plans decreases
by percentage. However, it takes significantly longer time to
find the plans using methods learned by HTN-Maker.

In the Logistics domain, the planner couldn’t solve prob-
lems with more than 3 packages using the methods learned
by HTN-Maker, and with the pruned methods couldn’t
solve any of the problems. In contrast, when using methods
learned by Teachable-HTN-Maker (with or without prun-
ing), the planner always found a solution. In Figure 4(b),
notice that when the HTN planner used Teachable-HTN-
Maker’s methods (without pruning) for 5 packages, its av-
erage running time was relatively large. In another set of
experimental runs (not shown here) on the same problems,
its average running time was much smaller. We believe the
variation in running time was because the HTN planner ran-
domized its choices among applicable HTN methods. We
will further investigate this in the future.

6 Conclusions
We have described Teachable-HTN-Maker, a modified ver-
sion of HTN-Maker learns using a curriculum. Our prelim-

Proceedings of the 5th Workshop on Hierarchical Planning

70

Number of blocks Number of packages Number of blocks Number of packages

Blocks World Logistics (semi-log scale) Blocks World Logistics
(b) Planning with the learned methods(a) Method learning

Figure 4: The plots show (a) average number of methods learned and running time for HTN-Maker and Teachable-HTN-Maker,
both with and without pruning; and (b) the HTN planner’s average plan length and running time on the same problems using
the learned methods. In the Blocks World problems, each problem is to move a stack of n blocks, maintaining their order; and
each data point is the average of 20 randomly generated problems of size n (2 ⩽ n ⩽ 40). In the Logistics problems, each
problem is to deliver n packages, and each data point is the average of 5 randomly generated problems of size n (2 ⩽ n ⩽ 10).

On some of the larger problems, no results are shown for HTN-Maker or the HTN planner using the HTN-Maker methods
because our 2-hour time limit (see “Methods” in the main text) was exceeded before reaching those problems.

In (b), the zero values for HTN-Maker with pruning in the Logistics problems mean that the HTN planner could not solve
the problems using the learned methods.

(:method MAKE-2PILE
:parameters (?b - BLOCK ?a - BLOCK)
:vars (?c - BLOCK)
:precondition(and (not (= ?b ?a))
(ON ?b ?c) (ON ?a ?b) (not (= ?a ?c))
(not(= ?b ?c)) (CLEAR ?a) (HAND-EMPTY))
:subtasks ((MAKE-2PILE ?a ?b)
(MAKE-2PILE ?b ?a)))

Figure 5: Final method learned for Figure 1.

inary experiments in the Blocks World domain and Logis-
tics domain show that it learns significantly fewer and better
methods with less computational effort.

Future Work In future work, we will evaluate our ap-
proach in more sophisticated problems with more varieties
of annotated tasks and in more domains, e.g., the Depots,
Zeno Travel, and Satellite domains, and domains from the
2020 IPC for Hierarchical Planning (Höller et al. 2020). It
is both a challenge and an opportunity to figure out how to
generate optimal curriculum as the planning problem gets
more sophisticated. We will also consider evaluating how
different curricula influence the performance of Teachable-
HTN-Maker, and evaluate the methods in different problems
of the same kind instead of only evaluating them in the ex-
actly same problem where they were learned.

The annotated tasks input to HTN-Maker do not specify
any precondition, this allows HTN-Maker to learn meth-
ods for the same annotated task from subtraces with dif-

ferent starting positions. The learned methods would re-
spectively have different preconditions, including the ones
we are not interested in. A straightforward augmentation
to HTN-Maker is to specify preconditions in the annotated
tasks and let those preconditions to be checked when learn-
ing methods from a subtraces. We would like to compare our
approach with the augmented version.

Method instances learned from different subtraces can be
generalized into the same lifted method (e.g., the method in-
stances learned from step 1 and 4 of Blocks World curricu-
lum). However, HTN-Maker cannot recognize the seman-
tic equivalence among those subtraces, and therefore spends
unnecessary computational resources on learning the same
lifted methods from such subtraces. We hope to significantly
strengthen the system by making it learn each lifted method
only once. This is analogous to DreamCoder (Ellis et al.
2020), which learns concepts incrementally.

Acknowledgments. At UMD, this work has been sup-
ported in part by ONR grant N000142012257 and NRL grants
N0017320P0399 and N00173191G001. At NRL, Mark Roberts
thanks ONR and NRL for funding this research. The information
in this paper does not necessarily reflect the position or policy of
the funders, and no official endorsement should be inferred.

References
Bengio, Y.; Louradour, J.; Collobert, R.; and Weston, J.
2009. Curriculum learning. In Proceedings of the 26th an-
nual international conference on machine learning, 41–48.

Proceedings of the 5th Workshop on Hierarchical Planning

71

Choi, D.; and Langley, P. 2005. Learning teleoreactive logic
programs from problem solving. In International Confer-
ence on Inductive Logic Programming, 51–68. Springer.
Ellis, K.; Wong, C.; Nye, M.; Sable-Meyer, M.; Cary, L.;
Morales, L.; Hewitt, L.; Solar-Lezama, A.; and Tenen-
baum, J. B. 2020. Dreamcoder: Growing generalizable, in-
terpretable knowledge with wake-sleep bayesian program
learning. arXiv preprint arXiv:2006.08381.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2016. Learning
hierarchical task models from input traces. Computational
Intelligence, 32(1): 3–48.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the 34th AAAI Conference on Artificial In-
telligence (AAAI 2020), 9883–9891. AAAI Press.
Lotinac, D.; and Jonsson, A. 2016. Constructing hierarchical
task models using invariance analysis. In ECAI 2016, 1274–
1282. IOS Press.
Nau, D.; Cao, Y.; Lotem, A.; and Munoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Proceed-
ings of the 16th international joint conference on Artificial
intelligence-Volume 2, 968–973.
Xiao, Z.; Wan, H.; Zhuo, H. H.; Herzig, A.; Perrussel, L.;
and Chen, P. 2020. Refining HTN Methods via Task Inser-
tion with Preferences. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, 10009–10016.
Zhuo, H. H.; Munoz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Artificial intelligence, 212: 134–157.

Proceedings of the 5th Workshop on Hierarchical Planning

72

Urban Modeling via Hierarchical Task Network Planning

Michael Staud
StaudSoft UG, Ravensburg , Germany

michael.staud@staudsoft.com

Abstract

In this paper we present a new method for city modeling
based on hierarchical task network planning. The planner cre-
ates actions that are executed in a city simulation. These ac-
tions generate step by step a city model within the simulation.
The advantage of this approach is that it takes into account
that real cities are not designed on a drawing board, but have
a history of development. By simulating this development,
economic aspects can be taken into account. The result is a
much more realistic urban model.
An urban simulation is an extremely complex planning do-
main for a planner. Therefore, we have developed a new
domain-independent hierarchical task network planning algo-
rithm that divides the planning problem into smaller planning
problems. Our planning algorithm is sound and complete. We
give preliminary results on its performance.

1 Introduction
Cities play a very important role in our daily lives. Most
of our life takes place in a city, cities have shaped our so-
cial development. Therefore, it is important to be able to
create models of cities quickly and efficiently. This field
is called urban modeling. It involves either creating virtual
cities based on existing cities or creating virtual cities based
on parameters (Kelly and McCabe 2007). These can then be
used in movies, games or artificial intelligence (Formichella,
Lucien 2020; Glockner, Cyrill 2018).

Virtual cities today are generated through procedural
generation which is used to mimic the work of artists
(Freiknecht and Effelsberg 2017; Van Der Linden, Lopes,
and Bidarra 2013). Procedural generation itself is not lim-
ited to generating cities, but can also be used to create tex-
tures, sounds, models or even stories (Togelius et al. 2013).
A popular approach is to use a modified L-system(Rozenberg
and Salomaa 1980) to create the road network of an urban
environment. Buildings, also generated using an L-system,
are then placed between the roads (Parish and Müller 2001).
Other approaches include agent-based simulations (Lech-
ner, Watson, and Wilensky 2003), template-based generation
(Sun et al. 2002) or grid layouts (Kelly and McCabe 2006).

The problem with all of the approaches mentioned so far
is that they only attempt to mimic the structure of a city.
They do not create the structure of a city, nor do they deal
with growth and development over time. However, a city

grows depending on its economic structure. Businesses or
factories grow only where they are profitable. Residential
areas grow only when jobs are available. In addition, our ap-
proach generates a lot of other information that is useful for
a credible simulation (building type, traffic routes, ...).

1.1 Our Approach

We therefore propose a new way to model cities by formulat-
ing the complex interactions in a city as a planning domain.
To create a city, a planning problem is defined that contains
information about the goal (e.g., to create a city of a cer-
tain size) and the environment. The environment consists of
the terrain, which is defined as a graph and contains infor-
mation about whether a node is buildable, whether there is
water, and what resources are available (see Section 5).

One problem we faced in our approach was that such a
planning problem is too large to be handled by current plan-
ners. To solve this problem, we use a new type of domain-
independent hierarchical task network planning (HTN plan-
ning) (Ghallab, Nau, and Traverso 2004). We defined a new
type of abstract tasks that are defined by the domain de-
signer. We call them separable abstract tasks (see Section
3). When our planning algorithm encounters such a task, it
generates a new independent planning problem from it and
tries to solve it independently of the main problem. This pro-
cess can be recursive. We call this a planning process (see
Section 4.2).

To make this work, we use what we call a hierarchical
world state. Several abstraction layers are defined in the do-
main. The number of layers is stored in the variable n. Each
layer contains the same information, but in a more abstract
form. Layer one is the most abstracted. The layer n contains
only non-abstracted information (see Section 3).
Our contribution is:
• A new sound and complete domain-independent HTN

planning algorithm (see Section 4).
• The application of HTN planning to urban modeling (see

Section 5).
In the next section, we will first describe HTN planning in

detail and then our new approach. Then we will describe the
domain we used to create an urban simulation. After that,
we will present some preliminary results.

Proceedings of the 5th Workshop on Hierarchical Planning

73

2 Hierarchical Task Planning
We define the set of all constants as C and the set of all
variables as V . A literal is an atom or its negation. The set
of all atoms is denoted by A. An atom is a predicate applied
to a tuple of terms. A term can be a constant or a variable.

The following definitions are adapted from Bercher,
Keen, and Biundo (2014). We use total-order hierarchical
task network planning (Ghallab, Nau, and Traverso 2004,
238). A hierarchical planning domain is a tuple D =
(Ta, Tp,M) containing 3 finite sets. Ta is the set of abstract
tasks, Tp is the set of primitive tasks, and M is the set of
methods. Primitive and abstract tasks are also tuples of the
form t(τ) = 〈prect(τ), eff t(τ)〉. Each task has a precondi-
tion prect(τ) and an effect eff t(τ). Moreover, each task has
a set of parameters τ . If all parameters of a primitive task are
equal to atoms, the task is grounded and is called an action.
A method is a tuplem = 〈ta(τm), Pm〉, where ta(τm) is the
abstract task it can replace, Pm is a set of plan steps and τm
are the parameters of the method. A plan step is a uniquely
labeled task l : t(τ). A plan is also a sequence of plan steps.
A solution is a plan in which each task is an action and its
preconditions are satisfied at each step. In addition, the so-
lution transforms the initial state into the goal state. A task
can be executed in a particular world state only if its precon-
ditions are satisfied. The preconditions, which are a set of
literals, are satisfied if every positive literal is in the current
world state and if every negative literal is not in the current
world state. The effects of a task are also a set of literals.
Positive literals add atoms to the world state when the task is
”executed”. Negative literals remove an atom from the world
state. The function σ : P × Tp → P applies the effects of a
primitive task to a world state.

A plan step l : t(τ) associated with an abstract task can
be decomposed by a method m = 〈ta(τm), Pm〉, where the
plan step l in the current plan is replaced by the plan steps in
Pm. A world state w is a set of atoms. A derived predicate
(Edelkamp and Hoffmann 2004) is defined by a rule contain-
ing a logical formula with variables. If the rule of a predicate
evaluates to true, it is added to the world state. Otherwise, it
is removed. The logical formula may contain quantifiers.

A problem is a tuple P = 〈initP , goalP ,PSP 〉, where
initP is the initial state consisting of atoms, the goal goalP
is a set of literals. The initial plan is stored in PSP .

3 Hierarchical World State
The world state is divided into n layers. Each predicate and
task has an associated hierarchical layer l. The layer 1 has
the highest level of abstraction (see Section 5 for an ex-
ample). The layer with the highest index n stores the ac-
tual, non-abstracted facts of the simulation. A task can only
change predicates on the same layer. To jump from layer l to
layer l + 1 during the planning process, we introduce a new
type of abstract tasks, the separable abstract tasks. They are
not directly decomposed into a method if they do not ap-
pear in the initial plan initP . Instead, they give the planner
a hint that this abstract task needs to be decomposed in an-
other planning process that operates at layer l + 1. It should
be noted that a separable abstract task can occur in the ini-

tial state of one planning process and by decomposition in
another planning process. This is the reason why we do not
simply use normal abstract tasks in the initial state. How the
planning processes operates in detail is described in Section
4.2.

3.1 Information Flow to the Layer l + 1

The following rules enforce the separation of layers:
• A task of layer i can only use predicates in its precondi-

tion of layer l ≤ i.
• A task can only have predicates in its effects of the same

layer as itself.
• Primitive tasks are allowed only in the highest layer n.
• Normal abstract tasks cannot have effects.
• Separable abstract tasks may only occur in the layers l <
n.

• Normal abstract tasks of layer l can only be decomposed
into plan steps with tasks of layer l.

• Separable abstract tasks of layer l can only be decom-
posed into plan steps with tasks of layer l + 1.

Therefore, the initial tasks belong to layer 1 and it must
be ensured by the domain developer that they can be decom-
posed into the primitive tasks across the n layers.

3.2 Information Flow to the Layer l − 1

To pass information from a layer l to a layer l − 1, all pred-
icates on the layers l < n must be derived predicates unless
they never occur in an effect of a task. A derived predicate of
layer l can only use predicates in its formula that come from
layer l+1. Derived predicates of layer l′ are only updated in
the world state of the main system or in a planning instance
of layer l if l′ < l holds (see Section 4). If the predicates
have the same layer as the planning instance, they are not
treated as derived predicates. Thus, effects that change de-
rived predicates do not cause inconsistencies in a planning
process of layer l, since a task of layer l can only change
predicates of layer l. And there is also no inconsistency in
the world state of the main system, since only primitive tasks
are applied to it and they cannot change derived predicates.

4 Planning Algorithm
The general idea is to split the planning process into many
smaller processes. This can increase the performance by an
exponential factor (Korf 1987). The system consists of 2
main modules (see Figure 1):
• Main System: stores the main plan that is created dur-

ing the planning process. It also stores the world state w,
which is initialized by the initial state initP of the prob-
lem. The main system always contains the entire world
state (see Algorithm 1).
The main plan is a series of plan steps of primitive tasks.
When the planning algorithm is finished, it will contain
the plan which will transform the initial state into the goal
state, if this is possible.

• Planning Processes: These are small planning problems
that are solved during the planning process and operate
on a particular layer l of the world state (but they can
contain predicates of a level l′ < l). At each step of the

Proceedings of the 5th Workshop on Hierarchical Planning

74

main system, all planning processes are invoked. When
not suspended, a process takes the current world state of
the main system as input to provide the next action to
be added to the main plan. However, it does not use the
entire world state for planning, only the horizon (see Sec-
tion 4.1). Similar to adversarial search, no complete plan
is created, only the next best action is returned (though
the other possible actions are stored to allow backtrack-
ing).

If it is not possible to generate a next action, the entire sys-
tem (main system and planning processes) will backtrack.
This means that the action added to the main plan is re-
moved, planning processes can be removed or deleted. This
process continues until a step is found where another choice
point can be selected in the search tree of a planning pro-
cess. In our practical experiments, backtracking was never
used because each planning process always found a solution
that was valid in the world state of the main system.

4.1 Horizon
The horizon is a set containing all atoms that can be used in
a planning problem. By ”used” it is meant that they may ap-
pear in a precondition or effect of a task during the planning
process. Formally, this means that the set contains exactly
those atoms that occur in each task of the task decomposi-
tion graph of a planning process (Bercher, Keen, and Biundo
2014). When constructing the task decomposition graph,
separable abstract tasks are treated in the same way as in the
planning process. They are not decomposed unless they oc-
cur in the initial plan of the planning problem. When derived
predicates occur in the graph, the predicates on which they
depend are added to the horizon only if their level l is equal
to or less than the level of the planning process (see Section
4.2). All this makes the horizon much smaller than the orig-
inal problem and increases planning performance (both in
terms of time and memory).

4.2 Planning Processes
When a planning process plans, it treats separable abstract
tasks as primitive tasks unless they occur in the initial plan
of the planning problem. If they do occur in the initial plan,
they are decomposed like a normal abstract task. Similar to
primitive tasks, separable abstract tasks are passed to the
main system. However, they are then handled differently. In-
stead of adding them to the main plan, a new subplanning
process is started by the main system and added to the list
of planning processes. The planning process that tried to ex-
ecute the separable abstract task is suspended until the new
subplanning process finishes its task. The subordinate plan-
ning process can in turn create new subordinate processes.
This is illustrated in Figure 1.

• Primary Planning Process: This process directly tries
to solve the given problem. This means that its initial
state and goal match with the one defined in the problem.
However, it does so only within its horizon (see Section
4.1) using derived tasks and separable abstract tasks. It is
initially generated by the main system and not by a sep-
arable task. Layer 1 is assigned to it. Therefore, the goal

Task 1
Main Plan

Task 2 Task 3 Task 4 Task 5

Planning Processes

Task 1 Task 2 Task 3 Task 4 Task 5

Sep. Task 3

Task 6

Sep. Task 4 Sep. Task 5

Sep. Task 1 Sep. Task 2Layer 1

Layer 2

Layer 3

Main System

Figure 1: Example of a planning process in a domain with 3
layers. The grey processes are already completed.

goalP can only contain predicates associated with layer
1.

• Instanced Planning Process: This is created whenever a
separable abstract task of layer l is returned by a planning
process as the next task. The goal of the planning process
is equal to the effects of the separable abstract task. The
initial plan contains only the separable abstract task. It
takes the world state of the main system at each step and
then determines the task that will be returned to the main
system. So the initial state is equal to the current world
state of the main system. The layer l+1 is assigned to it.

A single planning process is much easier to solve than the
full planning problem because it plans only within its own
horizon (see Section 4.1).

The algorithm of the main system can be seen in
Algorithm 1. The initial problem is the tuple P =
〈initP , goalP ,PSP 〉. A planning process is a tuple pp =
(Hs, G, PT , S, l), where Hs is the current task stack con-
taining which primitive tasks to execute and which abstract
tasks to decompose. G stores the goal of the planning pro-
cess. PT is the parent planning process that produced this
process. For the primary planning process, it holds PT = ⊥.
Whether the process is suspended because it is waiting un-
til another planning process is finished is stored in S ∈
{>,⊥}. The layer of the planning process is stored in l.
The getNextTask function triggers the planning algorithm
of a process. It returns ⊥ if the process was suspended or
if failed. Otherwise, it returns a separable abstract task or a
primitive task. Abstract tasks are never returned. The derived
predicates are updated in update hierarchical state(w).

Our planning system uses the Monte Carlo tree search
algorithm (Kocsis and Szepesvári 2006) in the planning
processes to determine the next action to add to the main
system. It uses forward decomposition (Ghallab, Nau, and
Traverso 2004, 238). We use the H0 heuristic (Ghallab, Nau,
and Traverso 2004, 201) to estimate the distance to the target
in the playouts.

Proceedings of the 5th Workshop on Hierarchical Planning

75

Algorithm 1: The algorithm in the main system. The main
plan is stored in the sequence m.

Pl = {(PSP , G,⊥,⊥, 1)}
w = initP
m = ()
repeat

for pp = (Hp, Gp, Pp, Sp, lp) ∈ Pl do
t = getNextTask(w, pp)
if t = ⊥ then

continue or backtrack if pp failed
end if
if t ∈ Tp then
w = σ(w, t), m = (m1, . . . ,m|m|, t)
w = update hierarchical state(w)
if finished(pp) then
Pl = Pl \ {pp}
unsuspend(Pp)

end if
else
pnew = ((t), eff t, pp,⊥, lp + 1)
Pl = Pl ∪ {pnew}
suspend(pp)

end if
end for

until isGoal(w,G)

4.3 Theoretical Properties
The algorithm is sound because it only performs valid ac-
tions in the domain. Otherwise, it will backtrack. The algo-
rithm finds a solution if the problem does not allow infinite
decompositions of abstract tasks. In this case, the algorithm
is also complete since the search space is finite. It should
be noted that an HTN planning algorithm can be made com-
plete on more unrestricted domains by performing additional
checks (Nau et al. 2001).

5 Urban Simulation Domain

City
(Layer 1)

Quarter
(Layer 2)

Block of
Buildings
(Layer 3)

Available Tasks:
Create City
Move Carriers
Move Wares
Move Builders

Available Tasks:
Create Quarter
Move Carriers
Move Wares
Move Builders

Available Tasks:
Create Buildering
Move Carrier
Move Wares
Move Builder

Figure 2: Hierarchical structure in the urban simulation do-
main.

Our planning algorithm is used for planning in an ur-
ban simulation. The rules for the simulation are declared in
HDDL (Höller et al. 2020). Units and buildings are placed
on a grid. Units can move on the grid. Buildings can be built

at specific positions and cannot move. Each unit and build-
ing has unique capabilities. The builder unit can construct
buildings. Roads are special buildings. The carrier unit can
move goods between buildings. The main building can cre-
ate new builder or carrier units. The woodcutter building can
cut down trees and create wood. We tested an environment
with a grid size of 64× 64.

The domain contains separable abstract tasks for perform-
ing certain actions at different layers of the hierarchical
world state. For example, creating a city, creating a neigh-
borhood, or moving a building unit (see Figure 2). The
source code of the domain is available on the Internet (Staud
2022).

6 Results
We measure how many states our algorithm (Separable Hi-
erarchical Task Network Algorithm, SHTN for short) needs
to solve multiple given goals in our urban simulation domain
when using separable abstract tasks and compare it with to
Forward Decomposition (Ghallab, Nau, and Traverso 2004,
238) Monte Carlo tree search (FDMCTS). This algorithm
differs from ours only in that separable abstract tasks are de-
composed like normal abstract tasks and thus no additional
planning processes are generated. There is only the main
planning instance and the hierarchical world state rules (see
Section 3) are not applied.

The results can be seen in Table 1. For both of the Monte
Carlo algorithms, we used a fixed number of iterations in
each call to getNextTask(w, pp). In the playouts, we ex-
plored the search space in the playouts until all normal ab-
stract tasks were randomly decomposed. Our algorithm then
requires much fewer states because it does not need to ex-
plore the decomposition of separable abstract tasks. In ad-
dition, we measured the size of the horizon of the different
planning instances and compared it to the size of the original
planning problem. These results can be found in Table 2.

Goal SHTN FDMCTS
Create City 6925 6542100

Create Carrier 10716 8060040
Builder Move 38441 33479127

Table 1: Performance comparisons: Total number of states
visited in the search space to reach the specified goal.

7 Conclusions
We have presented a novel HTN planning algorithm that is
capable of planning in an urban simulation. The proof-of-
concept shows that this approach is successful. And our tests
show that it can also solve larger and more problems, as it
performed very well in our experiments. Our next goal is
to use Deep Learning to better predict the actual effects of
separable abstract tasks. And then we want to find out how
well this algorithm can perform in an adversarial environ-
ment. An opposing player in this case can be, for example,
the crime rate, an enemy power in a war, or environmen-
tal influences can be modeled as opponents. These can be

Proceedings of the 5th Workshop on Hierarchical Planning

76

Primary Initial Atoms
Full Problem 120325

Primary Problem 338
Create City (Layer 2) 935

Create Quarter (Layer 3) 2803
Create Carriers (Layer 2) 936
Create Carriers (Layer 3) 2804
Move Builders (Layer 2) 1353
Move Builders (Layer 3) 4567

Table 2: Size of the horizons of various planning processes
created by separable abstract tasks. The primary problem is
the amount of atoms in the primary planning process. The
full problem contains all the atoms of the problem without a
horizon. The size of each horizons is on average 100 times
smaller than the original planning problem.

floods, fires, or heavy rains. By modeling these as adver-
saries rather than random effects, the algorithm is forced to
consider these effects in every part of the urban environment.

References
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Planning
Heuristics Based on Task Decomposition Graphs. In SoCS
2014, 35–43. AAAI Press.
Edelkamp, S.; and Hoffmann, J. 2004. PDDL 2.2: The Lan-
guage for the Classical Part of IPC-4. In Int. Planning Com-
petition.
Formichella, Lucien. 2020. Fourteen Groundbreak-
ing Movies That Took Special Effects to New Lev-
els. https://www.insider.com/most-groundbreaking-cgi-
movies-ever-created-2020-1. Accessed: 2022-02-16.
Freiknecht, J.; and Effelsberg, W. 2017. A Survey on the
Procedural Generation of Virtual Worlds. Multimodal Tech-
nologies and Interaction, 1(4): 27.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Elsevier.
Glockner, Cyrill. 2018. Simulators: The Key Training
Environment for Applied Deep Reinforcement Learn-
ing. https://towardsdatascience.com/simulators-the-key-
training-environment-for-applied-deep-reinforcement-
learning-9a54353f494f. Accessed: 2022-02-16.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proc. of the AAAI Conference on AI, volume 34, 9883–9891.
Kelly, G.; and McCabe, H. 2006. A Survey of Procedural
Techniques for City Generation. ITB Journal, 14(3): 342–
351.
Kelly, G.; and McCabe, H. 2007. Citygen: An Interactive
System for Procedural City Generation. In 5th Int. Conf. on
Game Design and Technology, 8–16.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In ECML, 282–293. Springer.
Korf, R. E. 1987. Planning as Search: A Quantitative Ap-
proach. AI 87, 33(1): 65–88.

Lechner, T.; Watson, B.; and Wilensky, U. 2003. Procedural
City Modeling. In 1st Midwestern Graphics Conf.
Nau, D.; Munoz-Avila, H.; Cao, Y.; Lotem, A.; and Mitchell,
S. 2001. Total-Order Planning with Partially Ordered Sub-
tasks. In IJCAI, volume 1, 425–430.
Parish, Y. I.; and Müller, P. 2001. Procedural Modeling of
Cities. In Proc. of SIGGRAPH-01, 301–308.
Rozenberg, G.; and Salomaa, A. 1980. The Mathematical
Theory of L-Systems. Academic Press.
Staud, M. 2022. Urban Simulation HDDL Domain. https://
www.staudsoft.com/urbansimulation.html. Accessed: 2022-
05-29.
Sun, J.; Yu, X.; Baciu, G.; and Green, M. 2002. Template-
Based Generation of Road Networks for Virtual City Mod-
eling. In Proc. of VRST-01, 33–40.
Togelius, J.; Champandard, A. J.; Lanzi, P. L.; Mateas, M.;
Paiva, A.; Preuss, M.; and Stanley, K. O. 2013. Proce-
dural Content Generation: Goals, Challenges and Action-
able Steps. In Artificial and Computational Intelligence
in Games, 61–75. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.
Van Der Linden, R.; Lopes, R.; and Bidarra, R. 2013. Proce-
dural Generation of Dungeons. IEEE Transactions on Com-
putational Intelligence and AI in Games, 6(1): 78–89.

Proceedings of the 5th Workshop on Hierarchical Planning

77

Towards Hierarchical Task Network Planning as Constraint Satisfaction Problem

Tobias Schwartz, Michael Sioutis, Diedrich Wolter
University of Bamberg

An der Weberei 5
Bamberg

{tobias.schwartz, michail.sioutis, diedrich.wolter}@uni-bamberg.de

Abstract
In recent years, propositional logic encodings for HTN plan-
ning have seen many improvements and resulted in compet-
itive planners. Modeling all kinds of features and constraints
imposed by the task hierarchy, however, is very challenging
in propositional logic, and has recently led to including pre-
processing steps before creating the SAT formulas. Instead of
using propositional logic, classical planning problems have
previously been encoded as constraint satisfaction problems
(CSPs), which are more expressive. Indeed, CSPs allow a
more natural and convenient way of representing all con-
straints of the task hierarchy, yet only little work on using
constraint solving methods in HTN planning exist. Hence, in
this paper, we outline first ideas for encoding an HTN plan-
ning problem into a single CSP. Our motivation lies in obtain-
ing constraint networks for HTN planning that we can solve
with state-of-the-art solvers.

Introduction
Many real-world tasks deal with some form of constraints.
As such, constraint satisfaction techniques have proven suc-
cessful as an underlying framework for solving problems of
various domains. Constraints, in this context, can express a
large bandwidth of problem features, from simple ordering
relations to modeling complex numerical resource alloca-
tions. Despite its success in many fields, constraint satisfac-
tion methods have been applied only sparsely in the field of
AI planning, especially in hierarchical task network (HTN)
planning. Instead, recently, HTN planning problems have
often been encoded as a sequence of propositional satisfi-
ability (SAT) problems (Behnke, Höller, and Biundo 2018,
2019a; Schreiber et al. 2019; Schreiber 2021). Since HTN
planning is generally undecidable, one cannot simply com-
pile the problem into propositional logic, but rather fix the
number of possible actions and then employ SAT techniques
to verify whether there exists a plan of a particular length.
This process may be repeated for a series of compilations of
increasing length (Bercher, Alford, and Höller 2019).

Compared to a SAT compilation, formulating a planning
problem as a constraint satisfaction problem (CSP) can be
characterized as more natural or convenient (Nareyek et al.
2005). This is mostly attributed to the fact that CSPs sup-
port higher-level constraints that are able to directly repre-
sent domain-specific knowledge. In SAT, for example, quan-
titative information in the form of discrete numbers may be

captured in a propositional formula by using a variable for
each value of the discrete domain, but doing so will result in
loosing the natural ordering information of the numbers.

As noted by Barták and Toropila (2008), early constraint
models for planning had their origins in SAT and thus were
only using Boolean variables and constraints in form of
logical formulas. Then, they proposed multiple constraint
models for classical planning that rely on more sophisti-
cated constraint structures, clearly improving on their log-
ical counterparts in terms of both stronger constraint propa-
gation and faster runtime.

In contrast to classical planning, HTN planning imposes
additional structural constraints of task hierarchies that must
be satisfied. Those additional constraints increasingly mo-
tivate the use of constraint programming. Unfortunately,
early reports of ongoing work in this direction (Surynek and
Barták 2005) have apparently not been followed through.
Stock et al. (2015) provide the only successful application
of CSPs for solving HTN planning problems, known to us.
They, however, rely on a more complex architecture with
multiple constraint networks used independently of one an-
other, each handling a different form of knowledge (e.g.,
causal, temporal, spatial), called meta-CSP (Mansouri and
Pecora 2016).

Instead, in this paper, we outline first ideas for encoding
HTN planning as one single CSP. Our motivation lies in ob-
taining constraint networks for HTN planning that we can
solve with state-of-the-art off-the-shelf solvers, and not re-
lying on tailored solution to this problem.

Preliminaries
We start by briefly presenting some frameworks that are rel-
evant to our work and we will be referring to in this paper.

Qualitative Constraint Satisfaction Problems
In the following, we focus on qualitative constraint satisfac-
tion problems (QCSPs), which are typically used to repre-
sent and reason about qualitative temporal (or spatial) in-
formation. They are defined analogously to classical CSPs
(Russell and Norvig 2020), but allow variables to be of infi-
nite domains. QCSPs are often tackled via the use of a qual-
itative constraint graph, called Qualitative Constraint Net-
work (QCN), which is defined as follows.

Proceedings of the 5th Workshop on Hierarchical Planning

78

Definition 1 (QCN). A QCN is a tuple (V,C) where:

• V = {v1, . . . , vn} is a non-empty finite set of variables,
each representing an entity of an infinite domain D;

• and C is a mapping C : V ×V → 2B such that C(v, v) =
{Id} for all v ∈ V and C(v, v′) = C(v′, v)−1 for all
v, v′ ∈ V .

LetN = (V,C) be a QCN, then a solution ofN is a map-
ping σ : V → D such that ∀v, v′ ∈ V , ∃b ∈ C(v, v′) such
that (σ(v), σ(v′)) ∈ b, and N is satisfiable (or consistent)
iff it admits a solution (Ligozat 2013; Dylla et al. 2017).

We assume our constraint language to be defined like
the well-known Interval Algebra (Allen 1983), which is a
first-order theory for representing and reasoning about tem-
poral information. For now, we make use of its equality
(eq), inequality (neq = {B \ eq}), and ordering constraints
({<,>}).

Hierarchical Task Network Planning
Hierarchical planning extends classical planning by intro-
ducing a task hierarchy. Instead of only using the notion
of applicable actions, it essentially differentiates between
primitive and compound tasks. Primitive tasks are hereby
comparable to the actions in classical planning. Compound
tasks describe a more abstract notion of a set of actions. This
grouping can impose additional restrictions that might not be
easily achievable using only preconditions and effects of ac-
tions. For example, an imposed ordering constraint can be
easily encoded in a compound task and drastically improve
efficiency of the planner. In fact, ordering tasks according to
a partial order can be seen as the motivation behind hierar-
chical task network (HTN) planning, perhaps the most basic
hierarchical formalism (Bercher, Alford, and Höller 2019).
In what follows, we briefly recall the definitions for lifted
HTN planning as recently defined in the hierarchical domain
definition language (HDDL) (Höller et al. 2020).

The basis for HTN planning is the so-called task network,
which essentially imposes a strict partial order on a finite set
of tasks. A set of variable constraints may constrain certain
task parameters to be (non-)equal to other task parameters
or constants, or to (not) be of a certain type. A task network
is called ground if all parameters are bound to constants.

An HTN planning domain D defines the sets of all primi-
tive tasks TP , compound tasks TC , and decomposition meth-
ods M . A method m ∈ M is a triple (c, tn, V C) of a com-
pound task name c ∈ TC , a task network tn ∈ TP ∪ TC and
some variable constraints V C over the parameters of c and
tn. An HTN planning problem P is a tuple (D, sI , tnI , g),
where D is the planning domain, sI ∈ S is the initial state,
tnI is the initial task network, and g optionally defines a goal
description.

Although a goal description can be defined, the objective
in HTN planning is not to achieve a certain state-based goal.
Instead, a solution to a given HTN planning problem is a
final task network tnS which is reachable from sI by only
applying methods and compound tasks. In the process, all
compound tasks need to be decomposed into primitive ac-
tions, such that tnS does not contain compound tasks any-
more. The enforced task hierarchy directly restricts the set

Listing 1: Action drive in HDDL
1 (:action drive
2 :parameters (?l1 ?l2 - location)
3 :precondition (and
4 (tAt ?l1)
5 (road ?l1 ?l2))
6 :effect (and
7 (not (tAt ?l1))
8 (tAt ?l2)))
9 ...)

of possible solutions to only those that can be obtained by
task decomposition (Bercher, Alford, and Höller 2019).

HTN Planning Constraint Model
Similar to Barták and Toropila (2008), we employ a multi-
valued representation of the planning problem. That is, in-
stead of grounding every single fact using enumeration, we
create state variables for different fragments of the world
state, where the domains of values represent exclusive op-
tions. For example, given a service robot, the robot may
only be at one particular location at any given time. In-
stead of now generating all combined facts of a robot be-
ing at a particular location, all potential locations represent
the domain for the state variable of the robots location. Us-
ing such a multi-valued representation instead of a purely
propositional, fact-based encoding, the number of variables
decreases, whereas the size of the domains increases. This is
generally recommended for constraint modeling, as opposed
to the other way around (many variables of small domains)
(Barták and Toropila 2008).

We follow the constraint model proposed by Ghallab,
Nau, and Traverso (2004), coined the straightforward model
by Barták and Toropila (2008). For now, we only consider
HTN features defined by the Hierarchical Domain Defini-
tion Language (HDDL) (Höller et al. 2020).

A CSP denoting the problem of finding a plan of length n,
consists of n+1 incrementally changing constraint networks
N , where the kth network N i

k represents the state sik after
performing k−1 planning operations and i incremental task
decompositions. Since the plan length n, i.e., the sequence
of primitive actions in the final plan, is generally unknown
in advance, we dynamically grow the list of constraint net-
works N whenever we perform a primitive action in state
sik which results in a new successor state sik+1. Describing
states as constraint networksN , is a variation in presentation
from Barták and Toropila (2008), as they describe states as
sets of v multi-valued variables.

In the following, we elaborate on the constraint network
design and point out how the features of HDDL can be ex-
pressed within this notation.

Variable representation: We model the variables in a
special constraint network, which ensures a mapping of each
state variable to exactly one object of the problem domain.
To illustrate this, consider the action drive from the trans-
port domain presented by Höller et al. (2020), given in List-
ing 1. The corresponding problem file further specifies the

Proceedings of the 5th Workshop on Hierarchical Planning

79

?l1

city-loc-0

city-loc-1

city-loc-2

eq, neq

eq, neq

eq, neq

neq

neq

neq

Figure 1: Grounding of location ?l1 as qualitative constraint
network N .

relevant location objects as city-loc-0, city-loc-1, or city-loc-
2. We can formulate a mapping from the location ?l1, given
as parameter, to a particular object specified by the prob-
lem, as a constraint network (Figure 1), where ?l1 is either
equal (eq) or not equal (neq) to any of the objects. By pre-
ferring eq over neq in the search, and ensuring that all ob-
jects are different (i.e., neq), we guarantee a mapping to at
most one of the objects. Indeed, once we commit to any one
of the equality relations, constraint propagation will force
all other relations to become neq, due to the neq constraint
between all of the objects. We can easily extend this formu-
lation with other variables from the same domain (such as
?l2), by adding them as new nodes to the network and cre-
ating the same eq, neq constraints to all of the objects. Note
that all such variables by default are independent in terms of
constraint propagation and thus mapping one variable to an
object does not influence the other variable mappings. Obvi-
ously, we can change this behavior by adding additional con-
straints (such as neq) between variables if desired. Further-
more, note that by default this constraint network approach
postpones all variable mappings without explicit constraints
until eventually the CSP solver is called. For example, imag-
ine that for action drive we could have multiple vehicles
available at ?l1 of which any particular one could be used to
drive to ?l2. If no direct constraints are imposed, initially we
only set the eq, neq constraints which postpone this decision
to the latest point in time.

Action representation: Action application works just like
in classical planning, where for a given state sik action vari-
able Asik acts as a logical constraint, leading from one con-
straint network N i

k to the next N i
k+1. Clearly, all required

preconditions of the action need to be satisfied in N i
k, then

after its execution all effects of the action hold in N i
k+1. We

follow the formulation by Barták and Toropila (2008) and
model this relation using logical implications, i.e. for any
action variable Asik in state sik we have,

Asik = a→ Pre(a)s
i
k ,∀a ∈ Dom(Asik),

Asik = a→ Eff(a)s
i
k+1 ,∀a ∈ Dom(Asik)

where Pre(a)s
i
k is a conjunction of equalities changing the

required relations within the constraint network to reflect the

?l1 city-loc-1

city-loc-0

?l2

?tAt

neq

eq neq

sik

?l1 city-loc-1

city-loc-0

?l2

?tAt

neq

neq eq

si+1
k

drive(?l1 ?l2)

Figure 2: Applying action drive (Listing 1) in state sik
(left) to derive at sik+1 (right).

preconditions of action a in state sik. Similarly, Eff(a)s
i
k+1

expresses the effects of a in the successor state sik+1. Barták
and Toropila (2008) additionally introduce constraints for
the frame axioms, i.e. constraints to ensure that any state
variable unaffected by the action remains unchanged. In our
representation this naturally holds as we consider state sik+1

as a copy of its predecessor sik and only change the variables
affected by the action. A final refinement, e.g., variable bind-
ing ?l1

eq−→ city-loc-0, which is not directly affected by the
action, can later not be changed through constraint propaga-
tion but would only lead to inconsistency.

Note that action a ∈ Dom(Asik) may only be one of many
choices possible in the given state sik. However, the effect of
the action and hence the successor state sik+1 depends on
which action was chosen. To this end, we employ the same
implication structure as outlined above, requiring the con-
straint solver to handle such instances. Figure 2 illustrates
this notion on a simple example of applying action drive.
Formulating this implication directly within the realms of
the constraint language can eliminate the need for extending
the state-of-the-art solvers that we have today for solving
qualitative constraint networks and is part of future work.

Abstract task representation: In HDDL, abstract tasks
are defined explicitly in the domain. They represent a form
of abstraction from the specific method used to fulfill a cer-
tain task, already defining the parameters and their respec-
tive input types. We can use this information to establish the
same eq, neq constraints to all variables of the domain in-
dicated by the type. We hereby convey the information that
each parameter should be linked to exactly one variable of
its domain, without making this link explicit yet.

Method representation: As described above, methods
are always linked to an abstract task. However, they may
define further parameters beyond the ones already stated in
the abstract task definition.

Generally, methods describe a fixed number of subtasks
that have to be fulfilled in order to complete the task. Some
HTN planning systems, in particular those employing SAT
compilation techniques (e.g., Behnke, Höller, and Biundo
(2018); Schreiber et al. (2019); Schreiber (2021)), rely on

Proceedings of the 5th Workshop on Hierarchical Planning

80

m-deliver −→

get-to ?lp

pick-up ?ld ?p

get-to ?ld

drop ?ld ?p

<

<

<

Figure 3: Applying method m-deliver to decompose task
deliver in state sik (left) to derive at si+1

k (right). For full
method and task descriptions, see Höller et al. (2020).

a totally ordered set of those subtasks. By contrast, HDDL
also supports partially ordered subtasks. Conveying the rel-
ative ordering of subtasks has been described as the main
difficulty for a SAT encoding (Behnke, Höller, and Biundo
2019a). Where Behnke, Höller, and Biundo (2019a) rely on
a preprocessing step, conducting reasoning on the order be-
fore creating the actual SAT formula, CSPs naturally allow
the representation of ordering constraints.

Where an action progresses the state one step from k to
k + 1 within a single layer of the decomposition tree, a task
decomposition introduces an incremental change along the
hierarchy of the decomposition tree, moving from layer i to
i+ 1. Given a task variable T sik in state sik, we then have,

T sik = m→ Dec(m)s
i+1
k ,∀m ∈ Dom(T sik)

where Dec(m) is the decomposition effect of the method
m, adding all subtasks to the constraint network N i+1

k . Any
ordering relation between those subtasks can simply be es-
tablished by introducing ordering constraints in the network.

Similarly to the incremental SAT encoding by Schreiber
et al. (2019), we must ensure that for finding a plan of
length n, the final increment of all constraint networks does
not contain any task or method variables.

Discussion and Related Work
Mali and Kambhampati (1998) were the first to propose a
propositional logic encoding for HTN planning problems.
However, these encodings were restricted to non-recursive
domains. Only in recent years, development of new SAT en-
codings overcame this restriction and resulted in competitive
performance. Initially, these encodings were only applica-
ble to the subset of totally-ordered HTN planning problems
(Behnke, Höller, and Biundo 2018; Schreiber et al. 2019).
By now, SAT encodings have been extended to partially-
ordered problems and used to find optimal plans with respect
to the plan length (Behnke, Höller, and Biundo 2019a,b).

As also summarized by Schreiber (2021), all these SAT
encodings operate similarly. Their encodings are iteratively
extended along the depth of the hierarchy, instead of the
length of a final plan (as done in classical planning). Addi-
tionally, they all require a prior grounding procedure. While
it has been shown that grounding often improves subsequent
search algorithms, on some planning domains, grounding

suffers from intrinsic scaling problems. Thus, Schreiber
(2021) developed a lifted SAT planner that omits grounding,
but instead is limited to totally-ordered problems.

A CSP encoding, as discussed in this paper, by design
avoids the need for grounding. Furthermore, additional con-
straints can essentially be modeled for free, which make this
approach quite comfortable in dealing with partially-ordered
HTN planning problems.

The advantages of a CSP encoding have previously been
explored by Stock et al. (2015). But in contrast to our work,
they rely on a sophisticated reasoning framework, called
meta-CSP (Mansouri and Pecora 2016), as underlying ar-
chitecture. This framework has the advantage that it allows
reasoning with knowledge of different forms (such as tem-
poral, spatial, causal, resources). It comes, however, with the
drawback that finding consistent solutions is generally slow,
since each form of knowledge is dealt with in a separate
constraint network and finding a consistent solution requires
all networks to be consistent at once. This requires special
solvers that allow interaction among each other. Instead, we
are motivated to find an encoding which uses only one sin-
gle constraint network architecture, such that we can employ
state-of-the-art solvers that we have today for solving quali-
tative constraint networks. This may be seen as an approach
in between a pure propositional logic encoding on one side
and a quite complex constraint-based encoding on the other
side. We argue that this allows us to combine the advantages
of both worlds.

For now, a few challenges remain that may impact the suc-
cess of the proposed CSP encoding. First, we assume that
dynamically creating new constraint networks both within
one hierarchy for primitive action application and following
the hierarchy for compound task decomposition is feasible
without computational blow-up. We here expect that state-
of-the-art qualitative constraint solvers can help to drasti-
cally reduce the state space as inconsistent configurations
can be pruned early, as done traditionally in CSP search.
Second, action variables are mapped to their respective do-
main indicated by the variable type. We currently do not
consider the case where the type of a variable may change
or is unavailable. Without type information a mapping to all
ground objects can be done, albeit inefficiently. While a vari-
able is not yet ground, changing its type is simple, as this just
changes the possible mappings and consequently disallows
all others (by use of neq constraints).

Conclusion and Future Work
In this paper, we have outlined first steps towards construct-
ing a constraint satisfaction problem (CSP) encoding for
HTN planning problems. CSPs have been used in classical
planning before and allow for a more natural representation
compared to an encoding in propositional logic (Nareyek
et al. 2005). Using such SAT encodings has recently led
to very successful results in HTN planning. Especially the
constraints imposed by the task hierarchy present in HTN
planning problems motivate the use of more sophisticated
constraint satisfaction techniques. To our surprise, only lit-
tle work has been conducted in this direction. In fact, Stock

Proceedings of the 5th Workshop on Hierarchical Planning

81

et al. (2015) provide the only approach we are aware of, us-
ing CSPs in the context of HTN planning. Their approach is
based on modeling the planning problem in a more complex
reasoning framework, called meta-CSP (Mansouri and Pec-
ora 2016), which allows them to represent different forms of
information in separate CSPs independently.

We avoid the overhead of combining multiple CSPs by
aiming to encode the HTN planning problem directly into
one single qualitative constraint network architecture. Our
encoding draws inspiration from recent SAT encodings for
expressing the task hierarchy in an incremental fashion and
restricting the depth of the decomposition tree instead of
the length of the plan (Schreiber 2021). Action encodings
follow the structure proposed previously for classical plan-
ning (Barták and Toropila 2008), using an implication con-
straint. We additionally introduce a novel binding mecha-
nism, based on preferring equality-relations over all others.
State-of-the-art solvers that we have today for solving qual-
itative constraint networks can be extended to handle those
implication constraints and follow the required preference
when solving the constraint problems.

Future work will be further refining our encoding, such
that state-of-the-art solvers can be applied directly without
the need of adaptations. We believe that the Interval Algebra
(Allen 1983) already allows us to model several challenges
of encoding HTN planning as CSP, as the relations defined
within this qualitative constraint language, such as during or
meets, intuitively describe properties present in HTN plan-
ning. Finally, we are interested in actually implementing our
encoding, verifying its correctness and comparing its perfor-
mance with current state-of-the-art HTN planners.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful feedback. This research is partially supported by
BMBF AI lab dependable intelligent systems.

References
Allen, J. F. 1983. Maintaining Knowledge about Temporal
Intervals. Commun. ACM, 26(11): 832–843.
Barták, R.; and Toropila, D. 2008. Reformulating Con-
straint Models for Classical Planning. In Proceedings of
the Twenty-First International Florida Artificial Intelligence
Research Society Conference, 525–530. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT -
Totally-Ordered Hierarchical Planning Through SAT. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 6110–6118. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019a. Bringing Or-
der to Chaos – A Compact Representation of Partial Order in
SAT-Based HTN Planning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, 7520–7529.
AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019b. Finding Opti-
mal Solutions in HTN Planning - A SAT-based Approach. In
Proceedings of the Twenty-Eighth International Joint Con-
ference on Artificial Intelligence, 5500–5508.

Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In Proceedings of the Twenty-Eighth Inter-
national Joint Conference on Artificial Intelligence, 6267–
6275.
Dylla, F.; Lee, J. H.; Mossakowski, T.; Schneider, T.; van
Delden, A.; van de Ven, J.; and Wolter, D. 2017. A Survey
of Qualitative Spatial and Temporal Calculi: Algebraic and
Computational Properties. ACM Comput. Surv., 50(1): 7:1–
7:39.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Auto-
mated Planning. Elsevier Science & Technology. ISBN
1558608567.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 9883–9891. AAAI Press.
Ligozat, G. 2013. Qualitative Spatial and Temporal Reason-
ing. ISTE Ltd and John Wiley & Sons, Inc. ISBN 978-1-
84821-252-7.
Mali, A. D.; and Kambhampati, S. 1998. Encoding HTN
Planning in Propositional Logic. In Proceedings of the
Fourth International Conference on Artificial Intelligence
Planning Systems (AIPS), 190–198. AAAI.
Mansouri, M.; and Pecora, F. 2016. A robot sets a table: a
case for hybrid reasoning with different types of knowledge.
J. Exp. Theor. Artif. Intell., 28(5): 801–821.
Nareyek, A.; Freuder, E. C.; Fourer, R.; Giunchiglia, E.;
Goldman, R. P.; Kautz, H. A.; Rintanen, J.; and Tate, A.
2005. Constraints and AI Planning. IEEE Intell. Syst., 20(2):
62–72.
Russell, S. J.; and Norvig, P. 2020. Artificial Intelligence
- A Modern Approach, Fourth Edition. Pearson Education.
ISBN 78-0-13-461099-3.
Schreiber, D. 2021. Lilotane: A Lifted SAT-based Approach
to Hierarchical Planning. Journal of Artificial Intelligence
Research, 70: 1117–1181.
Schreiber, D.; Pellier, D.; Fiorino, H.; and Balyo, T. 2019.
Tree-REX: SAT-Based Tree Exploration for Efficient and
High-Quality HTN Planning. In Proceedings of the Twenty-
Ninth International Conference on Automated Planning and
Scheduling, 382–390. AAAI Press.
Stock, S.; Mansouri, M.; Pecora, F.; and Hertzberg, J. 2015.
Online task merging with a hierarchical hybrid task planner
for mobile service robots. In Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems (IROS),
6459–6464. IEEE.
Surynek, P.; and Barták, R. 2005. Encoding HTN Planning
as a Dynamic CSP. In Principles and Practice of Con-
straint Programming - CP 2005, volume 3709 of LNCS, 868.
Springer.

Proceedings of the 5th Workshop on Hierarchical Planning

82

	Title Page
	Committees
	Preface
	Invited Talk
	List of Papers
	An Accurate HDDL Domain Learning Algorithm from Partial and Noisy Observations
	An Efficient HTN to STRIPS encoding for Concurrent Plans
	Chronicles for Representing Hierarchical Planning Problems with Time
	Exploiting Solution Order Graphs and Path Decomposition Trees for More Efficient HTN Plan Verification via SAT Solving
	Learning Decomposition Methods with Numeric Landmarks and Numeric Preconditions
	Learning Operational Models from Demonstrations: Parameterization and Model Quality Evaluation
	On the Efficient Inference of Preconditions and Effects of Compound Tasks in Partially Ordered HTN Planning Domains
	On Total-Order HTN Plan Verification with Method Preconditions – An Extension of the CYK Parsing Algorithm
	T-HTN: Timeline-Based HTN Planning for Multiple Robots
	Teaching an HTN Learner
	Urban Modeling via Hierarchical Task Network Planning
	Towards Hierarchical Task Network Planning as Constraint Satisfaction Problem

