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Abstract

The automatic generation of a set of plans rather than just one
is a relevant problem in Automated Planning, with a wide
range of applications, including applications to finance and
banking. Such sets can be computed through top-k planning,
which aims to find the best k plans that solve a planning
task. Existing approaches to solve the top-k planning problem
might generate plans that are not relevant for some practical
applications. In particular, plans might contain actions that
can be removed from the plan while maintaining its validity.
These unnecessary actions not only increase the cost of plans,
but might particularly reduce the utility of top-k planning. In
this work we propose an Automated Planning approach for
identifying and eliminating redundant actions from plans, and
show how to incorporate this method into top-k planning to
guarantee that the generated plans do not contain redundant
actions. We perform an empirical analysis to study the ex-
istence of redundant actions in plans in several benchmarks,
and analyze how top-k planning methods are affected when
forced to find plans without redundant actions.

Introduction
There exist many planning applications where it is neces-
sary to compute a set of plans rather than only one. This
is the case of tools where planning is supporting human
decision makers, who are typically keen on exploring dif-
ferent alternatives and scenarios. Having a diverse set of
plans (Srivastava et al. 2007; Roberts, Howe, and Ray 2014)
at hand when making these decisions is crucial in many fi-
nance applications, that include but are not limited to: goal
and plan recognition (Ramı́rez and Geffner 2009; Sohrabi,
Riabov, and Udrea 2016) to predict customer goals in order
to provide adequate services to them (Borrajo, Gopalakr-
ishnan, and Potluru 2020; Borrajo and Veloso 2020; Bor-
rajo, Veloso, and Shah 2020); planning approaches to predict
stock market movements (Mund, Vallati, and McCluskey
2020); or cybersecurity (Boddy et al. 2005; Pozanco et al.
2021), where experts are interested in understanding a set of
possible attacks to communication networks and protocols.

Top-k planning (Riabov, Sohrabi, and Udrea 2014; Katz
et al. 2018; Speck, Mattmüller, and Nebel 2020) is one of the
existing approaches to compute sets of plans, which aims to
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Figure 1: Two planning tasks of a navigation domain where
a robot has to sample a rock. The robot can move to adjacent
white tiles.

find the best k plans solving a planning task. In top-k plan-
ning, as in other Automated Planning problems, the qual-
ity of plans is measured using a cost function. However,
there are additional notions of quality that can be consid-
ered. Quality can be also defined from the point of view
of plan relevance or justified plans (Fink and Yang 1992).
From a domain independent perspective, relevant plans can
be understood as those that do not contain loops and or irrel-
evant/unnecessary actions (Fink and Yang 1992; Nebel, Di-
mopoulos, and Koehler 1997). From a domain specific point
of view more subtle notions of relevancy could be consid-
ered.

Current planners guided by powerful heuristics will prob-
ably not include (many) irrelevant actions in the output
plan, but this is not enough for top-k planning. Iterative ap-
proaches to top-k have shown promising results (Katz et al.
2018). However, resulting plans include more irrelevant in-
formation as more iterations are carried out, to the point that
truly alternative plans can not be easily distinguished from
those that were extended with unnecessary operators. This
may have an important negative impact in applications. For
instance, in goal and plan recognition, agents are usually
assumed to follow optimal or at least sub-optimal plans to
achieve their goals (Ramı́rez and Geffner 2010), but redun-
dant actions do not contribute to achieve the goals to such
task. Also, it is not useful to consider these plans in explain-
able AI, since they are of little interest for users.

As an illustrative example of the notion of plan relevance
consider the planning task depicted in Figure 1, where a



robot has to take a sample of the red rock situated on the
top. Here, the plans that represent the different routes the
agent can use to sample the red rock can be considered rele-
vant of justified. In contrast, any plan where the agent passes
through the same cell more than once would not be justi-
fied, since the actions that create the loop can be removed
from the plan and it still achieves the goal. Another plan that
would not be justified is one where the agent reaches the
goal state (samples the rock) and then executes additional
actions: these subsequent actions can be subtracted from the
plan, and generate equally valid plans. The same occurs in
plans where the robot samples also the grey rock, which is
not necessary to sample. Figure 1 shows two planning prob-
lems. For the one on the left there are many relevant plans,
while for the one on the right there is only one relevant plan.
It is not difficult to find additional examples in large-scale
real-world applications where the domain can include many
operators, static facts and objects, which might be irrelevant
for specific goals and initial situations. The number of pos-
sible non-relevant plans can be quite large, and these plans
are somehow artificial, since they do not represent actual
different alternatives to achieve the goals.

In this work, we focus on two ideas: (1) filtering unneces-
sary actions in a plan post-optimization step, in the same line
as some previous works (Nakhost and Müller 2010; Chrpa,
McCluskey, and Osborne 2012b,a; Balyo, Chrpa, and Ki-
lani 2014); specifically, we contribute with a compilation
that encodes the problem as an Automated Planning task, so
that in can be solved using an off-the-shelf automated plan-
ner; and (2) incorporating the notion of plan justification in
the context of top-k planning; specifically, we present an ap-
proach to find relevant/justified plans when using iterative
approaches to top-k planning. This work expands on top-k
and is closely related with the ideas of top-quality (Katz,
Sohrabi, and Udrea 2020) and diverse planning (Katz and
Sohrabi 2020), since these approaches also find plans that
should meet certain conditions.

The rest of the paper is organized as follows. Next section
introduces basic notions of classical planning, plan justifica-
tion and top-k planning. Then, we define a planning compi-
lation for plan justification. After that, we describe how to
integrate it with top-k planning. Next, we include an empiri-
cal evaluation on how the incorporation of plan justification
affects top-k planning. Finally, we discuss related work and
draw some conclusions.

Background
Classical Planning
A classical planning task (Fikes and Nilsson 1971) is defined
as a tuple Π = (F ,A, I,G), where F is a set of proposi-
tions; A is a set of actions; I ⊆ F is the initial situation,
encoding what propositions are true initially; and G ⊆ F is
a set of goal propositions. Every a ∈ A has preconditions,
denoted as pre(a) ⊆ F , added effects add(a) ⊆ F and
negative effects del(a) ⊆ F .

A planning task Π defines a state model which states
s ∈ S are subsets of F and are represented by the flu-
ents that are true in the corresponding state. In this model,

the initial state is si = I, and the goal states are those
sg that include the goals G ⊆ sg . The actions a ∈ A
that are applicable in a state s, denoted as A(s), are those
for which pre(a) ⊆ s. The transition function is γ, where
γ(s, a) = (s \ del(a)) ∪ add(a) represents the state s′ that
results from the application of the action a in state s.

A solution or valid plan for Π is an action sequence
π = ⟨a1, . . . , an⟩ that induces a state sequence Sπ =
⟨s0, . . . , sn⟩ such that s0 = I and, for each i such that
1 ≤ i ≤ n, ai is applicable in si−1 and si = γ(si−1, ai.
A plan π solves Π if and only if G ⊆ sn. We denote the set
of all the plans that solve a planning task Π as PΠ. Each ac-
tion a ∈ A is assumed to have a non-negative cost c(a), so
that the cost of a plan is c(π) =

∑
c(ai). A plan is optimal

if it has minimum cost.

Top-k planning
The objective of a top-k planning problem (Riabov, Sohrabi,
and Udrea 2014; Sohrabi, Riabov, and Udrea 2016) is to find
the k plans of lowest cost for a planning task.

Definition 1. A top-k planning problem is a tuple (Π, k),
where Π = (F ,A, I,G) and k ∈ N. The goal is to find a set
of plans Pk ⊆ PΠ such that:

• For each π ∈ Pk, if there exists a plan π′ with c(π′) <
c(π) then π′ ∈ P .

• |Pk| ≤ |PΠ|, where |Pk| < k implies Pk = PΠ.

Note that the plans in Pk are not required to meet any con-
dition other than being those with the k lowest costs. This
means that algorithms that solve the top-k planning problem
might find plans with actions or set of actions that are not rel-
evant/justified under certain settings. The conditions a plan
must meet to be relevant might be domain dependent and
depend on the semantics of the planning task. Nevertheless,
plan justification has been widely studied, with special in-
terest in finding redundant actions that can be removed from
the plan without affecting its validity. We want to introduce
this notion into top-k planning.

Katz et al. (2018) proposed an iterative approach to solve
the top-k planning problem. The main idea of their algorithm
is to find additional solutions to a planning task by reformu-
lating the original task. The reformulations forbid already
found plans, so that previous plans will not be valid solu-
tions, thus forcing the planner to find an alternate solution.
The best k plans are found by iteratively solving and refor-
mulating planning tasks. We are interested in this approach
because it is straightforward to extend, including additional
conditions the found plans must meet. When a solution is
found, it can then be checked to verify if it meets a certain
condition. If it does, this solution is counted as a valid plan,
and the iterative procedure continues as normal. If it does
not meet the condition, this solution is forbidden with the
reformulation as usual, but the number of found plans so far
is not increased.

Plan Justification
The notion of plan justification can be traced back to the
early 1990s (Fink and Yang 1992). In that work, Fink and



Yang define different types of plan justifications: backward
justification, well justification and perfect justification.

Given Π = (F ,A, I,G), a plan π = (a1, ..., an) and the
set of causal links between them, an action ai ∈ π is back-
ward justified if ∃p ∈ add(ai) such that p ∈ G or ⟨ai, aj , p⟩
is a causal link and aj is backward justified1. The triple
⟨ai, aj , p⟩ forms a causal link if ai adds p, p is a precon-
dition of aj , and p is neither added nor deleted by any action
between ai and aj (Celorrio et al. 2013). Then, ai is back-
ward justified if it is causally related to the goals. A plan π
is backward justified if all of its actions are backward justi-
fied. Well justified actions are those that can not be removed
from the plan without affecting the applicability of other ac-
tions. Perfectly-justified plans are those for which no subset
of actions can be removed from the plan without invalidating
plan. In this paper we also apply this idea.

AP compilations for Action Elimination
This section introduces some formal definitions used in the
rest of the paper, and explains the proposed AP compilations
to eliminate unnecessary actions from plans.

Formal Definitions
We use the notion of perfectly-justified introduced by Fink
and Yang. Thus, a plan is perfectly-justified if no actions
can be skipped or eliminated while maintaining the plans’
validity. We introduce it using the following definitions.

Definition 2 (Reduced Plan). Given a plan π =
⟨a1, . . . , an⟩ for Π and a strict subset of its actions Aπ ⊂ π,
Aπ ̸= ∅, the reduced plan π\Aπ

is the action sequence re-
sulting from eliminating the actions ai ∈ Aπ from π.

Definition 3 (Well-justified action set). A subset of plan
actions Aπ ⊆ π, Aπ ̸= ∅, is well justified if the correspond-
ing reduced plan π\Aπ

is not a valid plan for Π.

The previous definition just extends the notion of well-
justified actions to well-justified subsets of actions. 2

Now, we consider a plan π to be perfectly-justified if all
of its subsets of actions are well justified, i.e. all the plans
reduced by those subsets are invalid, so that there is no way
of reducing the plan while maintaining its validity.

Definition 4 (Perfectly-justified plan). A plan π is
perfectly-justified iff all non-empty strict subsets of its ac-
tions, Aπ ⊂ π, are well-justified.

Then, if there is at least a subset of actions which is not
well-justified, the plan is not perfectly-justified. In that case
will say the actions in that subset are unnecessary.

Given Π and a plan π, the task of finding the small-
est perfectly-justified plan by eliminating actions from π
is called Minimal Length Reduction (MLR) (Balyo, Chrpa,
and Kilani 2014). Balyo, Chrpa, and Kilani also define the
Minimal Reduction (MR) task. The aim of this task is to find
a plan with the smallest possible cost by eliminating actions

1Causal links were called initially establishments (Fink and
Yang 1992).

2This notion is also defined by Balyo, Chrpa, and Kilani [2014]
as plan reductions.

from π. In this paper we are particularly interested in MLR.
Both tasks have been shown to be NP-complete (Fink and
Yang 1992; Nakhost and Müller 2010). In the following sec-
tion we propose a compilation of the MLR problem into an
AP one so that it can be solved with an off-the-shelf planner.

Perfect Justification as Planning
The idea is to define a classical planning task that, given
a planning task and a solution plan, can identify and elimi-
nate sets of unnecessary actions from plans. The compilation
consists of encoding the planning task in a way that allows
to include any action occurring in the original plan after the
last action that was previously included. We achieve this by
creating an order relation between the actions in π. More
formally, given the planning task Π and a solution plan π we
define Πorder = (F ′,A′, I ′,G) as follows:

• F ′ = F ∪ Flast ∪ Forder ∪ Fplanact, where:

– Flast = {lasti | 0 ≤ i ≤ n} facts represent the last
position considered. There is a position (order in the
sequence) for every action in the original plan plus an
additional zero position,

– Forder = {orderi,j | 0 ≤ i ≤ n, i < j ≤ n} are static
facts to encode that position i is before position j, and

– Fplanact = {planact ai | 1 ≤ i ≤ n} are static facts
to represent the action a appears in the plan π at posi-
tion i.

• A′ = {ai,j | a ∈ A, 0 ≤ i ≤ n, i < j ≤ n}, where there
is an ai,j action for every action a in the original task and
combination of positions i, j, defined as follows:

pre(aij) = pre(a) ∪
{lasti, orderi,j , planact aj}

add(aij) = add(a) ∪ {lastj}
del(aij) = del(a) ∪ {lasti}

• I ′ = I ∪ {last0} ∪ {orderi,j | 0 ≤ i, j < n, i < j} ∪
{planact ai | ai ∈ π}.

Actions ai,j in A′ will only be applicable if there is an
occurrence of action a ∈ A in the original plan π at posi-
tion j. For that, facts of type planact ai are included in I ′,
representing the plan π. There is one of such facts per plan
action, indicating π contains an occurrence action a ∈ A at
position i. The lasti fact represent the position of the last in-
cluded action. Thus, the preconditions of ai,j actions check
that the action being included at position j, occurs in the
original plan before the last included action with position i.
The new initial state I ′ sets the relation order between the
actions in π, where there is a fact order0,j for every position
j in the plan, which allows the application of any action of
the plan.

When Πorder is solved, the resulting plan will only con-
tain the actions in the original plan that are necessary with-
out altering the order. The plan that solves Πorder can be
easily compiled-back to be a plan of the original task, just
by removing the action parameters representing orders. The
correspondence between the actions of both plans is one-to-
one.



Definition 5. Let π′ be a valid plan of Πorder. Then, the
compiled-back plan for Π is π′′ = {a | a ∈ π ∧ aij ∈ π′}.

This means that every aij action is replaced by its original
action a.

Proposition 1. The plan π′′ obtained from any valid plan π′

for Πorder is a valid plan for Π.

Proof sketch. A plan π that induces the state sequence Sπ =
⟨s0, . . . , sn⟩ is valid if all of its actions are applicable in the
state they are applied and G ⊆ sn. Since the goals of both Π
and Πorder are the same, if π′ is valid for Πorder, then it will
also achieve all the goals in Π by definition. Since pre(a) ⊂
pre(ai,j) for every ai,j ∈ A′, if ai,j is applicable in a state,
then the corresponding action a ∈ A is also applicable in
that state. We know that π′ is valid, so, starting from I all of
its actions are applicable. Since I ⊂ I ′, all actions in π′′ are
in turn applicable starting from I. The goals are met and all
actions are applicable, so π′′ is a valid plan for Π.

Theoretical Properties
This section shows the type of plans that are obtained from
solving the compiled planning tasks. In particular, we show
that the set of valid plans for the compilations is the set of
valid reduced plans of the original task.

Let PΠ be the set of valid plans for a planning task Π.
Two planning tasks Π, Π′ are equivalent if they have the
same sets of valid plans, PΠ = PΠ′ . For two plans π−, π we
say that π− is a subset of π, π− ⊂ π if π− can be generated
from eliminating actions from π. Since the compilation only
allows for the execution of actions in the original plan or for
their (implicit or explicit) elimination, the set of valid plans
for Πorder contain exactly all the valid plans that can be gen-
erated from eliminating subsets of actions from the original
task if their corresponding transformations as defined in 5
are considered. More formally:

Proposition 2. Let Π be a planning task and π =
⟨a1, ..., an⟩ a valid plan for Π. Let Porder be the set of
compiled-back valid plans for Πorder. Then Porder =
{π− ⊆ π |π− ∈ PΠ}.
Proof sketch. We have to show that (i) any plan in Porder is
in {π− ⊆ π |π− ∈ PΠ}, and that (ii) any plan in {π− ⊆
π |π− ∈ PΠ} is in Porder:
(i) Let π′ = ⟨b1, ..., bm⟩ ∈ Porder be any compiled-back
valid plan for Πorder. Since all aij belonging to Πorder have
in their precondition planact aj , only actions in π can be in
π′. It is trivial to show that only one lasti proposition is true
in each state. In I only last0 is true. Because of Πorder en-
coding, any ai for which pre(ai) ⊆ I is applicable initially.
Any of these actions delete last0 and add lasti. An action aj
is now applicable only if i < j. Continuing this process until
lastn is true it is easy to see that π′ can only have actions
in π respecting their order, where some of them might be
skipped. By Proposition 1, π′ ∈ PΠ. Therefore, it is proven
that (∀π′, π′ ∈ Porder =⇒ π′ ⊆ π ∧ π′ ∈ PΠ).
(ii) Let π = ⟨b1, ..., bm⟩ ∈ {π− ⊂ π |π− ∈ PΠ}. Follow-
ing similar reasoning we can prove that (∀π, π ∈ {π− ⊆
π |π− ∈ PΠ} =⇒ π ∈ Porder). This is omitted for space
reasons. Therefore Porder = {π− ⊆ π |π− ∈ PΠ}.

The branching factor for solving Πorder can be as high

as |π| = n, and (
n−1∑
i=1

i) order propositions must be cre-

ated. This might become an issue when the length of plans is
particularly long. We have another compilation introducing
additional skip actions that allow to omit single actions, in
which the order relation is defined only for consecutive ac-
tions. In this way the branching factor is reduced to exactly
2 in each step: either the current action or the skip action can
be applied. In this paper we only consider Πorder. But, we
have observed that the impact of using skip actions instead
is not significant in our specific experiments.

Top-k Relevant Plans
This section introduces the top-k relevant planning problem.
The idea is simple: given a characteristic/condition we are
interested on, finding the best k plans that meet that condi-
tion. We denote the set of all plans that solve a planning task
and meet a condition ω as PΠ

ω ⊆ PΠ. More formally:

Definition 6 (Top-k relevant planning problem). A top-
k relevant planning problem is a tuple ⟨Π, k, ω⟩, where
Π = (F ,A, I,G) is a planning task, k ∈ N and ω : PΠ 7→
{true, false}. The goal is to find a set of plans Pk ⊆ PΠ

ω

such that:

• For each π ∈ Pk, if there exists a plan π′ such that
c(π′) < c(π) ∧ ω(π′) then π′ ∈ Pk.

• |Pk| ≤ |PΠ
ω|, where |Pk| < k implies Pk = PΠ

ω .

This means that we want to find the k plans of least cost
that meet a condition ω. In this work we are particularly in-
terested in plans that are perfectly justified. To do so, we ex-
tend Katz et al. (2018) iterative top-k planning approach as
the Algorithm 1 shows. Initially Pk (solution set) is empty.
Then, as long as k relevant plans have not been found, we
repeat the following procedure. Get the next plan using an
iterative top-k planning approach. If the problem is unsolv-
able, we return the found plans so far. Otherwise, we check
if the plan π meets the condition ω. If it does, it is added to
Pk. Finally, a new planning task is defined following the iter-
ative top-k planning procedure to forbid plans. We leave out
the details of the reformulation of the planning task since
we are using exactly the same approach proposed by Katz
et al. (2018).

An open identified issue with this approach is determin-
ing when to stop. In many instances, the number of plans that
meet a condition might be lower than the number of desired
plans k. When the plans must be perfectly justified, an ex-
ample of this is easy to imagine. For the planning problem
shown on the right of Figure 1 there is only one perfectly
justified plan. Any other plan, including plans with loops,
contains sets of actions that can be eliminated from the plan
to get equally valid plans. Since there is an infinite number
of plans (with loops) that solve the problem, the described
approach would continue trying to find plans to reach k in-
definitely. After finding the first relevant plan, a new (loopy
or with unnecessary actions) plan will be found on each it-
eration. It will not be perfectly justified, and therefore it will
not be added to the solution set. Then, if k > 1, the process



will continue indefinitely, unless it is explicitly stopped us-
ing time or memory limits or memory is exhausted. A possi-
ble solution would be to incorporate the relevance check into
the search process. Specifically, it can be performed when
checking the goal condition so that the search can continue
when the plan is not relevant. However, it is not trivial to
do this without losing completeness (i.e. guarantee that all
existing relevant plans can be found), because the fact that
a plan is relevant not only depends on the state but also on
the path. Then, determining whether or not there are more
relevant plans remains a subject of future work. In this work
we consider a time bound. But, if the top-k planning system
could provide guarantees on loop-less paths completeness
would be ensured.

Algorithm 1: IterativeRelevantTopK(⟨Π, k, ω⟩)
Pk ← ∅, π ← ∅
while |Pk| < k ∧ ¬timeout do
π ← get next plan(Π)
if π = ∅ then

return Pk

end if
if ω(π) then
Pk ← Pk ∪ {π}

end if
Π← forbid(Π, π)

end while
return Pk

Evaluation
Evaluation Setting
For this particular work, we wish to analyse the number
of perfectly justified plans found when solving the top-
k and top-k relevant planning problems. We perform this
analysis over 300 planning tasks from 15 different do-
mains that are widely used in plan and goal recognition re-
search (Ramı́rez and Geffner 2009; Sohrabi, Riabov, and
Udrea 2016; Pereira, Oren, and Meneguzzi 2020). We se-
lected this benchmark3 and not the standard International
Planning Competition (IPC) benchmark for two main rea-
sons. Firstly, IPC tasks are usually difficult to solve opti-
mally, and thus computing large sets of plans using an itera-
tive approach might be too time consuming. Secondly, these
are domains and problems were used also in other settings
as diverse planning (Roberts, Howe, and Ray 2014).

We modify Katz et al. (2018) software to find relevant
plans in an iterative manner, following Algorithm 1. Since
we are interested in perfectly justified plans, the condition to
meet, ω, will be perfect justification for all the experiments
reported. We use our implementation of the Πorder compi-
lation to check if found plans are perfectly justified. To do
this, we set it to solve the MLR (Minimal Length Reduction)
problem. This implementation takes as input a planning task

3The set of planning tasks we used will be made publicly avail-
able.

Figure 2: Violin plot of the distribution of the number of
plans and relevant plans found in the kitchen domain.

(in PDDL) and a plan, and generates the Πorder task (also
in PDDL). If the number of actions in the solution of this
task is the same as in the original plan, then the plan did not
have unnecessary actions. We use the Fast-Downward (FD)
planning system (Helmert 2006) to solve the Πorder tasks,
configured to find an optimal solution using A* as a search
algorithm and the hmax heuristic (Bonet and Geffner 2001).

The experiments were run on Intel(R) Xeon(R) CPU
X3470 @ 2.93GHz machines. We used a time limit of 15
minutes and a memory limit of 14GB to solve each top-k
and top-k relevant problem. For each instance of each do-
main, we solve both the top-k and top-k relevant planning
problems for k ∈ [1, 5, 10, 50, 100, 500, 1000]. We did not
conduct experiments with larger values of k since most tasks
run out of memory or time.

Results
Table 1 shows a summary of the results for the top-k rele-
vant planning problem. For each domain and value of k we
report two values: the mean number and standard deviation
of plans found before reaching k or the time limit (column
Plans), and the average number and standard deviation of
those plans that where relevant (column R-Plans). Remem-
ber that in this particular setting we consider a plan to be
relevant if it is perfectly justified.

When the number of R-Plans is smaller than k, this indi-
cates that on average we were not able to find the desired
amount of relevant plans. This happens often in some do-
mains as blocks-world, campus, depots, grid and sokoban.
In general, the ratio of Plans to R-Plans decreases as k in-
creases. Currently we can not know if there are enough ad-
ditional relevant plans to reach k. As explained previously,
this is a subject of further research. But we can make some
analysis considering specific domain characteristics. For in-
stance, in blocks-world, many actions involving blocks that
are not in the goals are not relevant and in general there are
few relevant plans. This is reflected on the number of Plans
vs. R-Plans for blocks-world.



k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
Domain Plans Rel-Plans Plans Rel-Plans Plans Rel-Plans Plans Rel-Plans Plans Rel-Plans Plans Rel-Plans
blocks 44.1± 65.09 4.95± 0.22 158.9± 125.41 8.55± 2.14 255.45± 82.27 22.2± 14.97 261.55± 69.82 22.9± 16.57 261.55± 69.82 22.9± 16.57 261.55± 69.82 22.9± 16.57
campus 8.2± 6.57 5.0± 0.0 13.2± 6.57 10.0± 0.0 120.5± 56.7 50.0± 0.0 261.15± 88.26 97.35± 8.16 445.9± 52.34 220.85± 72.27 445.9± 52.34 220.85± 72.27
depots 9.05± 18.11 5.0± 0.0 25.3± 52.57 9.9± 0.45 83.05± 71.18 44.5± 13.52 125.55± 53.73 87.0± 31.79 457.0± 94.55 417.25± 179.42 839.35± 296.94 797.25± 379.85

driverlog 5.0± 0.0 5.0± 0.0 10.9± 2.47 10.0± 0.0 100.65± 100.78 45.95± 9.78 149.95± 87.45 85.15± 29.1 434.2± 109.3 343.05± 201.86 696.25± 332.56 600.1± 434.46
dwr 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 67.6± 54.17 46.8± 9.85 112.6± 38.78 91.8± 25.24 440.35± 99.52 370.4± 182.27 721.05± 320.51 651.1± 409.12
ferry 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 55.0± 11.23 50.0± 0.0 117.8± 29.94 99.0± 3.64 420.6± 155.36 341.6± 165.52 565.8± 310.21 471.8± 342.68
grid 47.9± 63.38 4.55± 0.83 69.45± 64.73 7.7± 2.94 104.15± 53.6 14.45± 13.78 107.3± 51.12 15.95± 18.22 107.3± 51.12 15.95± 18.22 107.3± 51.12 15.95± 18.22

intruder 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0 500.0± 0.0 500.0± 0.0 1000.0± 0.0 1000.0± 0.0
kitchen 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 406.15± 269.05 38.8± 8.79 423.65± 244.68 56.3± 32.99 563.65± 52.84 196.3± 228.66 738.65± 198.02 371.3± 473.33
logistics 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0 500.0± 0.0 500.0± 0.0 1000.0± 0.0 1000.0± 0.0
miconic 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 100.0± 0.0 100.0± 0.0 395.1± 139.83 383.2± 124.99 558.5± 370.72 518.8± 308.3

rover 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 112.25± 54.78 99.7± 1.34 499.05± 47.3 475.2± 91.95 914.15± 174.57 859.6± 266.66
satellite 5.4± 0.82 5.0± 0.0 11.2± 4.02 10.0± 0.0 63.5± 35.14 50.0± 0.0 127.0± 59.89 99.3± 3.13 524.05± 169.89 327.95± 115.18 558.85± 202.5 361.55± 197.39
sokoban 17.8± 20.11 5.0± 0.0 47.95± 43.0 9.45± 1.23 92.55± 45.05 23.4± 15.3 95.45± 42.66 26.3± 21.15 95.45± 42.66 26.3± 21.15 95.45± 42.66 26.3± 21.15

zenotravel 5.0± 0.0 5.0± 0.0 10.0± 0.0 10.0± 0.0 50.0± 0.0 50.0± 0.0 109.3± 28.77 99.0± 4.47 444.85± 130.84 396.55± 132.22 716.85± 477.12 602.75± 342.55

Table 1: Results for top-k relevant plans. ω is perfect justification. Plans column shows the mean number of plans found. R-Plans
shows the mean number of relevant plans found.

k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
Domain TOP-K TOP-K-R TOP-K TOP-K-R TOP-K TOP-K-R TOP-K TOP-K-R TOP-K TOP-K-R TOP-K TOP-K-R
blocks 0.61± 0.21 61.79± 197.31 1.28± 0.45 403.32± 407.96 13.01± 6.0 848.78± 194.22 71.33± 47.74 892.13± 2.83 892.67± 4.58 892.13± 2.83 892.67± 4.58 892.13± 2.83
campus 0.6± 0.1 3.42± 3.01 1.06± 0.17 5.32± 2.82 7.03± 3.05 73.14± 47.69 23.96± 7.16 305.19± 248.23 856.96± 77.69 885.98± 2.37 893.99± 1.86 885.98± 2.37
depots 4.46± 4.77 11.42± 24.09 4.54± 4.7 57.11± 197.6 7.04± 6.08 156.38± 318.39 19.93± 29.91 167.9± 313.52 183.9± 363.04 290.95± 307.78 227.08± 393.18 429.71± 274.82

driverlog 0.32± 0.22 1.46± 0.28 0.43± 0.29 3.14± 1.58 3.96± 7.23 188.14± 356.62 17.23± 35.84 239.66± 381.36 352.7± 431.0 453.29± 398.78 446.25± 457.37 543.48± 348.29
dwr 1.65± 1.74 4.46± 3.56 1.66± 1.74 6.83± 5.06 2.7± 3.2 113.46± 265.99 10.0± 25.22 135.88± 259.73 358.41± 447.01 547.2± 304.83 358.45± 446.98 718.61± 237.36
ferry 0.25± 0.04 1.6± 0.18 0.26± 0.04 2.72± 0.31 4.11± 9.19 26.6± 45.9 39.61± 79.46 165.11± 296.76 499.92± 399.58 609.16± 344.1 691.51± 355.47 738.12± 247.45
grid 2.17± 2.98 277.25± 412.79 7.07± 11.28 459.18± 438.24 203.9± 247.39 815.92± 200.78 609.08± 324.62 880.73± 23.99 883.33± 11.98 880.73± 23.99 883.33± 11.98 880.73± 23.99

intruder 0.2± 0.02 1.47± 0.06 0.19± 0.02 2.52± 0.11 0.2± 0.02 10.92± 0.48 0.21± 0.02 21.44± 0.96 0.25± 0.01 105.21± 4.82 0.28± 0.01 209.76± 9.63
kitchen 0.22± 0.04 1.44± 0.25 0.31± 0.12 2.78± 0.36 1.47± 1.02 579.35± 426.1 5.01± 3.58 583.86± 419.8 291.94± 228.38 619.15± 370.45 579.58± 436.1 663.62± 308.28
logistics 0.22± 0.02 1.55± 0.04 0.21± 0.02 2.63± 0.06 0.22± 0.02 11.36± 0.24 0.23± 0.02 22.3± 0.47 0.29± 0.03 109.28± 2.28 0.33± 0.03 218.01± 4.63
miconic 0.27± 0.06 1.47± 0.1 0.42± 0.23 2.85± 0.49 4.32± 4.62 16.91± 6.6 23.14± 28.47 48.37± 32.12 579.04± 391.23 642.95± 330.82 700.86± 334.11 771.58± 228.86

rover 0.42± 0.48 1.74± 0.53 0.42± 0.48 2.86± 0.57 0.43± 0.48 11.76± 1.05 0.58± 0.81 66.12± 192.94 48.66± 199.57 190.02± 236.65 223.99± 397.08 391.2± 288.52
satellite 0.28± 0.14 1.47± 0.31 0.38± 0.21 2.83± 1.49 3.18± 2.55 22.86± 30.06 12.89± 16.98 84.58± 188.72 571.24± 328.02 817.98± 204.97 846.09± 198.99 848.75± 153.6
sokoban 6.99± 10.57 55.75± 115.06 19.87± 29.48 297.85± 374.79 310.81± 312.7 811.89± 177.28 635.6± 297.76 883.9± 10.72 882.85± 13.61 883.9± 10.72 882.85± 13.61 883.9± 10.72

zenotravel 0.61± 0.58 1.76± 0.67 0.73± 0.78 2.86± 1.02 4.2± 6.19 15.09± 7.91 15.18± 24.28 80.94± 192.4 379.63± 384.06 505.01± 378.75 614.63± 412.74 687.66± 308.04

Table 2: Time results for the top-k and top-k relevant problems.

k = 5 k = 10 k = 50 k = 100 k = 500 k = 1000
Domain K K-R K K-R K K-R K K-R K K-R K K-R
blocks 0 1 0 7 0 19 0 20 20 20 20 20
campus 0 0 0 0 0 0 0 2 13 20 20 20
depots 0 0 0 1 0 3 0 3 4 4 5 5

driverlog 0 0 0 0 0 4 0 5 7 9 10 10
dwr 0 0 0 0 0 2 0 2 8 8 8 12
ferry 0 0 0 0 0 0 0 2 9 12 15 16
grid 0 6 0 10 2 18 10 20 20 20 20 20

intruder 0 0 0 0 0 0 0 0 0 0 0 0
kitchen 0 0 0 0 0 13 0 13 0 13 13 13
logistics 0 0 0 0 0 0 0 0 0 0 0 0
miconic 0 0 0 0 0 0 0 0 11 12 15 16

rover 0 0 0 0 0 0 0 1 1 2 5 5
satellite 0 0 0 0 0 0 0 1 9 18 19 19
sokoban 0 0 0 5 3 17 10 20 20 20 20 20

zenotravel 0 0 0 0 0 0 0 1 6 9 13 14

Table 3: Number of timeouts recorded for the top-k and top-
k relevant planning problems

There are several domains for which a really large amount
of plans must be found to find a small amount of rele-
vant plans, and in most cases the desired number k is never
achieved. In contrast, there are domains like logistics where
all found plans are relevant. This occurs because a single
plan for logistics can be used to derive additional plans by
reducing it to a partial order plan. Each plan derived from
the first (optimal) plan is perfectly justified because this is
an unit-cost domain. Even more, in all our instances the all
the desired (k) plans are derived from the first plan found.
Figure 2 shows the distribution of the number of plans and
relevant plans in the kitchen domain. This is one of the do-
mains where the number of non-relevant plans is especially
high. The width of the shadows shows that more data points
share that value. The upper and lower horizontal lines rep-
resent the maximum an minimum values of the results re-

spectively. The vertical lines correspond to the medians. The
median of the first is 50 while for the second is 10. It is
straightforward to verify that the presence of relevant plans
considerably decreases as larger k values are required. As
expected, irrelevant information in plans grows as more iter-
ations are carried out.

Table 2 shows the required time (in seconds) to solve the
top-k (TOP-K) and top-k relevant (TOP-K-R) problems for
different values of k. As expected, the time spent on verify-
ing that the found plans are relevant is high, given that guar-
anteeing a plan does not contain redundant actions is NP-
complete (Fink and Yang 1992; Nakhost and Müller 2010).
There are domains, as blocks-world, grid and kitchen, where
most of the found plans are not relevant, and therefore this
time can be better justified than for other domains, like lo-
gistic, where all found plans are relevant. This can motivate
further investigation on how to determine if the extra time
needed to solve the top-k relevant problem is worth it de-
pending on domain/problem characteristics.

Table 3 shows the number of timeouts for each domain
and for top-k (K) and top-k relevant (K-R). As expected, the
number of timeouts for the relevant variant greatly exceeds
the one for the regular top-k. Note that with the current ap-
proach if there are not k relevant plans our approach always
stops due to the time limit.

Related Work
There exists several approaches to top-k planning (Ri-
abov, Sohrabi, and Udrea 2014; Katz et al. 2018; Speck,
Mattmüller, and Nebel 2020), but so far all of them are con-
cerned with the problem of finding the best k plans for a
planning task, and not much has been studied the semantics
and utility of these plans. Closer works to the idea intro-



duced in this paper are those about diverse planning (Srivas-
tava et al. 2007; Roberts, Howe, and Ray 2014; Katz and
Sohrabi 2020), where resulting plans are required to be dif-
ferent and similarity metrics are defined between plans. We
consider the notion of plan relevance that applies only to sin-
gle plans and can be considered as complementary to plan
diversity. In applications of top-k planning one might want
to generate plans that are at the same time diverse and rele-
vant.

In this work, the condition for plan relevance is based on
perfectly justified plans. Specifically we filter those plans
that are not perfectly justified in a post-optimization step.
There are some other works on plan post-optimization.
Fink and Yang [1992] formalized different notions of plan
justifications and provided complexity results for them.
Specifically, they defined greedily justified actions as those
that make the plan invalid when they are removed from
it, and perfectly-justified plans as those with no redun-
dant actions. Nakhost and Müller [2010] proposed Action
Elimination, an algorithm based on greedy justification,
and an additional technique based on plan neighborhood
graph search. There are methods based on identifying re-
dundant actions and non-optimal sub-plans by analyzing
action dependencies, independencies (Chrpa, McCluskey,
and Osborne 2012b), by checking pairs of inverse actions
(Chrpa, McCluskey, and Osborne 2012a), and SAT-based
approaches (Balyo, Chrpa, and Kilani 2014; Muise, Beck,
and McIlraith 2016). The work in this paper is closely re-
lated to all these works with the difference that we ap-
proach the problem using Automated Planning. However,
our method could be replaced by any other.4

There are also techniques that remove irrelevant infor-
mation at preprocessing. For instance, Nebel, Dimopoulos,
and Koehler 1997 proposed heuristics for selecting rele-
vant information based on minimizing the number of initial
facts by computing a fact generation tree going backwards
from the goals; and a recent approach (Silver et al. 2020)
learns convolutional graph neural networks to predict sub-
sets of objects that are sufficient for solving the planning
task. Approaching the problem at preprocessing has the ad-
ditional advantage that it can make easier the planning pro-
cess. This is specially interesting when the number of ob-
jects is very large. In this case, most modern heuristic plan-
ners that ground the actions over objects during preprocess-
ing scale poorly. This is also one of the motivations for re-
cent research on lifted planning (Corrêa et al. 2020), abstrac-
tions that simplify the problem (Fuentetaja and de la Rosa
2016) and some approaches based on generalized planning,
as the aforementioned work of Silver et al.. We believe that
studying techniques that can be applied in preprocessing or
even during search in the context of top-k relevant planning
would be an interesting research direction.

4We have some results comparing it to the Max-SAT approach
of Balyo, Chrpa, and Kilani (2014), showing both very similar
performance times.

Conclusions and Future Work
In this work we proposed the idea of top-k relevant plans as
plans that meet some extra condition in the context of top-k
planning. Specifically, we consider plans that are perfectly
justified (i.e. they do not contain subsets of actions that can
be removed while maintaining plan validity). We have in-
corporated this notion into a top-k planner as a filtering step
which is applied every time a new plan is found. The filtering
process is posed as an Automated Planning task. In partic-
ular, given a plan we show how to create planning tasks to
solve Minimal Length Reduction (MLR) problem. We have
performed experiments in a variety of domains. Many prob-
lems have few relevant plans or the number of plans found
in order to find the desired relevant plans is high.

Regarding the proposed approach, determining whether
there exist additional relevant plans to those already found is
an interesting line of future work. We also plan to consider
our work in conjunction to additional techniques that can
be applied to filter irrelevant information in a preprocessing
step or during search. Additionally, we wish to consider dif-
ferent definitions of relevance. Finally, we want to study the
impact of plan relevance in applications of top-k planning as
goal recognition.
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