PFPT: a Personal Finance Planning Tool by means of Heuristic Search and
Automated Planning

Alberto Pozanco, Kassiani Papasotiriou, Daniel Borrajo*
J.P. Morgan AI Research
{alberto.pozancolancho, kassiani.papasotiriou, daniel.borrajo} @jpmorgan.com

Abstract

A crucial component to an individual’s financial well-
being is staying proactive in terms of the personal fi-
nances. Seeking such advice helps individuals or house-
holds to plan, save, and spend monetary resources over
time, while taking into account various financial risks
and future life events. Receiving such advice at the in-
dividual level usually happens by consulting a personal
finance advisor which can be very expensive. In this pa-
per we present PFPT, a Personal Finance Planning Tool
that can use different search approaches to propose ac-
tionable plans to end users in order to achieve their fi-
nancial goals. We evaluate PFPT in different problems
using two different approaches: domain-independent
automated planning and domain-dependent heuristic
search. Results show that while automated planning
struggle to generate good plans in this domain, our sug-
gested heuristics are able to scale on generating realistic
financial plans.

Introduction

Setting financial goals and planning ahead plays a signifi-
cant role in ensuring financial health for an individual or a
household. Personal finance planning activities include man-
aging monetary resources through expenditure, investments,
and savings, while considering various life events, risks and
goals. The benefits of financial planning have been studied
and quantified using economic well-being indicators in both
empirical (Peng et al. 2007; Farinella, Bland, and Franco
2017; Warschauer and Sciglimpaglia 2012) and theoretical
settings (Hanna and Lindamood 2010).

The most common way of seeking financial advice is
by consulting a personal finance professional who can help
clients make decisions about investments, budgeting or other
courses of action to achieve their goals. Such services are of-
ten very expensive and thus inaccessible to a lot of people.
Alternatives to speaking to an advisor include personal fi-
nance assessment tools and questionnaires which offer semi-
personalized advice to users based on their input. However,
these tools fail to recommend actionable points of advice on
a more personal and detailed level.

“On leave from Universidad Carlos III de Madrid
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We present in this paper PFPT, a Personal Finance Plan-
ning Tool, which offers financial advice at the individual
level. It allows users to define both long-term and short-
term financial goals and recommends actions to successfully
achieve them based on their financial habits. We model this
problem from a search perspective by defining states, actions
and goals and apply domain-independent automated plan-
ning and domain-dependent heuristic search to recommend
plans that maximize the likelihood of being executed based
on the individual financial habits. To the best of our knowl-
edge this is the first financial tool that applies planning and
search techniques for personal finance management.

Previous technical methods of financial planning include
expert systems which try to mimic the knowledge and ex-
perience of a human experts. The systems collect detailed
user information regarding an individual’s financial state
and consists of a rules base to produce possible solutions
to a goal (Kindle et al. 1989; Phillips, Nielson, and Brown
1992). More recent approaches used rule-based approaches
based on different metrics and definitions on financial well-
being (Althnian 2021). The main weakness of these ap-
proaches is that they do not provide flexible and detailed
solutions and do not take into account the feasibility of the
recommended plans. Other methods use Deep Reinforce-
ment Learning techniques that often address a subset of fi-
nancial goals, such as portfolio management (Irlam 2018;
2020).

The rest of the paper is organized as follows. In the next
section we provide some background on numerical plan-
ning. Then, we define the problem solved by PFPT: find-
ing a plan to go from an initial finance state to a goal fi-
nance state by maximizing the likelihood of the employed
actions. After that, we introduce two different approaches
to solve the PFPT problem: domain-independent automated
planning and domain-dependent heuristic search, where we
define a set of heuristics to guide the search. Later, we eval-
uate both approaches, focusing on analyzing the behavior of
the different heuristics. Finally, we draw our main conclu-
sions and outline future work.

Background

We use the standard classical STRIPS definition of a plan-
ning task, augmented with numeric variables (Fox and Long
2003). Formally:

Definition 1. A numeric planning task is a tuple 11 =
(F, A, I,G), where F is a set of boolean and numeric vari-
ables, A is a set of actions, I C F is the initial state and
G C Fis a set of goals.

We denote with S the set of all states of the planning task
II. A (full) state s € S is a valuation of all the variables in F';
a boolean value for all the boolean variables and a numeric
value for the numeric ones.

Each action a € A is defined in terms of its precon-
ditions (pre(a)) and effects (eff(a)). Effects can set to true
the value of a boolean variable (add effects, add(a)), set to
false the value of a boolean variable (del effects, del(a)),
and change the value of a numeric variable (numeric ef-
fects, num(a)). Action execution is defined as a function
~v : S,A — &’; that is, it defines the state that results
of applying an action in a given state. It is usually defined
as v(s,a) = (s\del(a))Uadd(a) if pre(a)C s when only
boolean variables are considered. When using numeric vari-
ables, ~y should also change the values of the numeric vari-
ables (if any) in num(a), according to what the action speci-
fies; increasing or decreasing the value of a numeric variable
or assigning a new value to a numeric variable. If the precon-
ditions do not hold in s, the state does not change.

The solution of a planning task is called a plan, and it
is a sequence of instantiated actions that allows the system
to transit from the initial state I to a state s where goals
are true. Therefore, a plan 7 = (aj,as,...a,) solves a
planning task II (valid plan) iff Va; € m,a; € A, and
G CH(...v(v(I,a1),a2) ...),a,). In case the cost is rele-
vant, each action can have an associated cost, ¢(a;), Va; € A
and the cost of the plan is defined as the sum of the costs of
its actions: c(7) = >, ¢(a;), Va; € 7. A plan with minimal
cost is called optimal.

PFPT Problem Definition

We aim to find realistic financial plans that allow users to go
from their current financial state to their goal financial state.
We define a financial state as follows:

Definition 2. A financial state is a tuple s =
(t,Inc, DExp, FExp, B), where:

e t € Nis a time step

* Inc € R is the income per time step

* DExp € R are the discretionary expenses per time step
* FExp € R are the fixed expenses per time step

* B= (B + Inc — DExp — FExp) is the account balance,
where B is the account balance of s’s parent at t — 1.

The initial financial state is fully specified, while the goal
financial state is usually partially specified. For example, the
goal state could specify that the balance at a given time step
should be higher than a given quantity.

At each time step, some actions can be applied in order
to change the financial state into another one. We define
two types of actions: income increases and discretionary
expenses decreases. We assume the fixed expenses can-
not be changed, or will be very unlikely changed. Actions
might produce changes in the financial state. For example,

an income increase of 20% in state s; will result in a new
state at the next time step sy with income Inc(s41) =
1.2 x Inc(s;). Besides these effects over the financial state,
each action has associated a likelihood score, which is a real
number between 0 and 1 that reflects how feasible or prob-
able is that a user executes the action. This likelihood score
can be given by users or inferred from their financial habits.
For example, increasing the income by 0% will have a higher
likelihood score than increasing the income by 20%, since
the former is an easier or more feasible action than the lat-
ter. Table 1 summarizes a potential set of actions along with
their effects to the financial state and their likelihood score.
We will use this set of actions as an example in the rest of
the paper.

Income increase and discretionary expenses decrease ac-
tions can be combined to generate joint actions. Assuming
the actions described in Table 1, we would have 9 possible
joint actions that can be applied at each time step, i.e., [In-
crease Inc 10%, Decrease DExp 0%], [Increase Inc 20%,
Decrease DExp 10%], etc. A plan 7 solves this problem op-
timally if it achieves the financial goal state by maximizing
the likelihood product of its actions. Formally:

max H likelihood(a) (1)

acm

We face two obstacles when trying to use search algorithms
to (optimally) solve the problem as defined in Expression 1:
(1) plan optimality is defined as a product, while search al-
gorithms ordering functions are typically additive; and (2)
plan optimality is defined as a maximization task (maximize
likelihood), while most search algorithms aims to minimize
a given function. To overcome the first problem, we compute
the logarithm of each action’s likelihood score so we can
sum them. To overcome the second problem, we transform
the maximization task into a minimization task by subtract-
ing the logarithm of the likelihood score from one. By per-
forming these two transformations, now we have the follow-
ing additive cost function that search algorithms can mini-
mize:

c(a) =1 — log(likelihood(a)) (2)

Given a plan 7 and its cost ¢(7), we can compute back its
likelihood score by applying the following operation:

likelihood(7) = exp(—(c(m) — |7|)) 3)

In the next sections we describe two different
search-based approaches to solve this problem: domain-
independent automated planning and domain-dependent
heuristic search.

Automated Planning Approach

The first approach uses automated planning models and
planners to generate solutions. The domain is composed of
actions that model the actions described in Table 1. As an ex-
ample, the action that increases the income, would be mod-
eled as shown in Figure 1.

At each time step, we only allow the execution of one ac-
tion of each kind: modify income or modify expenses. This

Action Effect Likelihood
Increase Income by 0% - 1.0
Increase Income by 10% Inc(s¢+1) = 1.1 x Inc(sy) 0.8
Increase Income by 20% Inc(sty1) = 1.2 x Inc(s) 0.6
Decrease Discretionary Expenses by 0% - 1
Decrease Discretionary Expenses by 10% | DExp(s:+1) = 0.9 x DExp(s¢) 0.9
Decrease Discretionary Expenses by 20% | DExp(s;+1) = 0.8 x DExp(s;) 0.8

Table 1: Actions’ summary.

(raction increase-income
:parameters (?p - percentage
?t - time-step)
:preconditions
(and (current-time ?t)
(not (done—-income ?t)))
ceffects
(and (increase (total-cost)
likelihood ?p))
income ?t)
* (income ?t)
(percentage ?p)))
(increase (balance ?t)
(income ?t))
(done—income ?t)))

(increase

Figure 1: Model of the action that increases the income by
20%.

action is the only one defined to modify income and sum-
marizes all possible increase operations over income. The
parameters of the action are a time step and a percentage of
increase. Since we do not need complex temporal reason-
ing, we consider discrete temporal problems, so we model
time explicitly as a sequence of time steps. Percentages are
also represented as discrete amounts and are defined in the
problem description. In the case of the percentages defined
in Table 1, we would define three objects of type percentage
in the problem for the income (0, 10 and 20) and another
three for modifying the expenses (also 0, 10 and 20). The
reason to separate income percentages from expenses per-
centages is that we need also to define their corresponding
likelihoods (predicate likelihood) which have different val-
ues. For instance, the likelihood of increasing income in a
20% is 0.6, while the likelihood of decreasing the expenses
ina20% is 0.8.

The preconditions of the actions are that we are at a given
time step and that we did not update yet the income at that
time step. The expected effects are that the income will in-
crease based on the percentage, the balance is increased with
the new income, and the total cost is updated. We use as
cost the one defined in Equation 2. Apart from the increase-
income and decrease-expenses, the domain also includes a
move-time action that progresses time.

The problem description contains objects related to the set
of time steps and the percentages. If the user sets as goal to
have a balance x at time step 7', the problem will be automat-
ically generated with all the time steps between 0 and 7'. The

initial state defines the initial income, balance, and expenses,
as well as the likelihoods of each percentage, the initial total
cost of 0, the initial time step of 0 and the needed next pred-
icates to connect in sequence all the time steps. The goal
description is compiled from the user goals, as for instance,
the balance being greater than a given value at a given time
step.

The plans are sequences of actions that achieve the goals
from the initial state. They are comprised of a joint action
(income, expenses) at each time step, plus a move-time ac-
tion to progress to the next time step. As an example, a plan
would be:

(increase—-income t0 p-inc-0)
(decrease—-expenses t0 p-exp-20)
(move—-time t0 t1l)
(increase—income tl p-inc-10)
(decrease—-expenses tl p-exp-0)

that would not increase income and decrease expenses in
a 20% in the first time step, and increase income in a 10%
and not modify expenses in the second time step.

The main drawback of using planning for solving this task
is that it is a numerical planning task. First, there are very
few planners that can handle this kind of domain complexity.
Second, to the best of our knowledge, there is no planner
that can perform optimal numerical planning. Thus, we have
defined a search-based solution that allows us to compute
optimal solutions for this task which is presented in the next
section.

Heuristic Search Approach

We use the most popular algorithm for optimal search,
A*(Hart, Nilsson, and Raphael 1968), to solve this prob-
lem in a domain-dependent fashion. A* uses a function
f(s) = g(s) + h(s) to order the nodes in the open list. The
solutions returned by A* are guaranteed to be optimal if the
heuristic A is admissible, i.e., it does not over-estimate the
cost of reaching the goal from any state.

The cost of reaching a state s, g(s), is computed using
Equation 2. In order to estimate the cost of reaching the goal
from s, h(s), we propose the following domain-dependent
heuristics.

Minimum Cost Action

The first heuristic, which we called Min, consists on choos-
ing the cost of the cheapest joint action ¢(a) i, and mul-
tiply it by the number of remaining time steps: h(s) =
(@) min X (t(G)—1(s)). In our case, the cheapest joint action

is to do nothing, i.e., increase the salary by 0% and decrease
the discretionary expenses by 0%.

Lemma 1. Min is admissible.

Proof. By construction, at each time step, there is no
cheaper joint action than ¢(a),q,. The result of multiply-
ing the minimum cost by the (¢£(G) — ¢(s)) will necessarily
be less than or equal ~*. Therefore, Min is admissible. [

Greedy

The next heuristic we propose consists on solving a relax-
ation of the problem where only the same action can be ap-
plied at every time step. In other words, the number of poten-
tial plans is limited to the number of joint actions considered.
The procedure that computes the heuristic is outlined in Al-
gorithm 1. The algorithm receives as input the current (s)

Algorithm 1 Greedy Heuristic
Require: s, G, A, Admissible
Ensure: GH
1: GH + o0
2: remainingTimeSteps < ¢(G) — t(s)
3: sortedActions <— SORTBYCOST(A)
4: for a € sortedActions do

5: s’ + EXECUTE(remainingTimeSteps, a, s)
6: if G C s’ then

7: if Admissible = True then

8: GH « c¢(a)

9: else
10: GH <« ¢(a) x remainingTimeSteps
11: return GH

12: return GH

and goal (G) state, the available actions (A), and a parame-
ter that indicates whether we are interested in the heuristic to
be admissible or not. The algorithm first computes the num-
ber of remaining time steps from s (line 2). If the goal state
does not specify any time step, this is set to a high number.
Then, the actions in A are sorted according to their cost as
per Equation 1. Next, the algorithm iterates over the sorted
list of actions, executing the given action a from s for the
number of remaining steps, yielding a state s’. If the goal is
satisfied in &', the algorithm finishes and returns the heuristic
estimate. This heuristic value will depend on the admissibil-
ity parameter. If we are interested in an admissible heuristic
(GH,), Algorithm 1 will return the cost of executing that
action, ¢(a).

Lemma 2. GH,, is admissible.

Proof. Suppose GH,, returns ¢(a) and c(a) > h*. It means
that there is a solution that only uses actions with a cost less
than c(a). If it would be using actions whose cost would
be greater than ¢(a), then ¢(a) would be less than h*, so the
assumption would be false. And, if there would be a solution
using only a subset of less costly actions, it would had been
found before a, since they are studied from less costly to
more costly. Thus, ¢(a) is less than h*, and it is admissible.

O

If we want a more informative but inadmissible heuristic
(GH;), Algorithm 1 returns the cost of executing that action
multiplied by the number of remaining steps.

Lemma 3. GH; is inadmissible.

Proof. The heuristic value returned by GH; considers exe-
cuting the cheapest possible action a that reaches the goal
(ensured by the actions’ sorting in line 3 and the loop in
line 4) in all the remaining time steps. However, reaching
the goal state could only require executing a in a subset of
the remaining time steps together with some lower cost ac-
tions in the other steps. Thus, GH; could return greater val-
ues than A* for some state/goal combinations, so it is inad-
missible. O

If after iterating over all the possible actions the goal can-
not be achieved, Algorithm 1 will return oo, meaning that
the goal is not reachable from a.

Heuristics Behavior Example

Let us exemplify how the heuristics work and their accuracy
by computing them at the initial state (h(I)) of the following
PFPT problem:

I =(t=0,Inc =5,DExp = 2,FExp = 2, B = 10)
G=(t=4,B=17)

The optimal solution to this problem has a cost of 8.43
(h*(I)). The minimum cost action heuristic Min returns the
cost of the cheapest action multiplied by the number of re-
maining time steps. The cheapest joint action is to Increase
Inc 0% and Decrease DExp 20%, and has an associated cost
of 2. After multiplying it by the 4 remaining time steps, Min
will return a cost of 8, which is a lower bound on h*(I).
The greedy algorithm returns that [Increase Inc 0%, De-
crease DExp 20%] is the cheapest joint action that can be
subsequently executed from I in the remaining time steps to
achieve the goal. This joint action has an associated cost of
2.22. Therefore, GH, will return that cost, which is a lower
bound on h*(I), while GH; will return 2.22 x 4 = 8.88,
which is an upper bound on h*(I).

Evaluation

We randomly generate PFPT problems of increasing diffi-
culty by increasing the time horizon at which the goal bal-
ance has to be achieved. To generate hard problems, we (1)
set the goal balance to be twice the initial balance; and (2)
make the expenses per time step (sum of DExp and FExp) to
be a random ratio between 0.9 and 1 of the income per time
step, thus rendering problems where little savings are gen-
erated if the initial financial state remains unchanged. We
solve these problems with the previously described heuris-
tics: Min, GH,, and GH;, plus Blind, which we will use as
a baseline to compare heuristics’ search performance. All
the heuristics have been implemented in Python 3.6, as well
as the search algorithm, which is a vanilla implementation
of A*. Heuristic search experiments were run in Intel(R)
Xeon(R) CPU E3-1585L v5 @ 3.00GHz machines with
64GB of RAM. We also tried to solve the PDDL version

of these problems using LPG (Gerevini, Saetti, and Serina
2004), a stochastic planner for numerical planning. Since
the planner is stochastic, we ran the planner five times on
each problem. Automated planning experiments were run in
an Apple M1 Pro machine with 16GB of RAM.!

Automated Planning vs Heuristic Search

For the first set of experiments, we generated 10 random
problems with the time horizon ¢ set to 4. LPG is only able
to solve 4 out of the 10 problems, reporting that no solu-
tion could be found for the other 6. The reason LPG failed
to solve the problems was not due to time nor memory con-
straints. The execution time in the solved problems is always
below 2 seconds, but the solutions returned are suboptimal.
Given that the machine where LPG was run is different than
the machine where the rest of code was run, the time can-
not be compared directly. Instance #9 is the problem where
LPG gets the closest to the optimal, returning a plan with
cost 8.80, while the optimal cost is 8.32. On the other hand,
instance #8 is where LPG obtain the worst results, returning
a plan with cost 10.19 in one of the executions, while the op-
timal cost is again 8.32. Cost differences might look small,
but they translate into large likelihood score differences. In
instance #8, the optimal plan has a likelihood score of 0.73,
while the plan returned by LPG has a likelihood score of
0.11, meaning it would be a very unrealistic plan to propose
to an end user.

Heuristic Plan Cost Expanded Generated Search Time (s)

Blind 8.80 1698.8 14350.0 56.5
Min 8.80 53203 10310.1 60.1
GH, 8.80 344.7 2931.2 1.6
GH; 8.81 11.3 91.2 0.0

Table 2: Heuristics comparison in random problems with
t = 4. Numbers represent average across 10 problems. Best
values are shown in bold.

Table 2 summarizes the results of the different heuristics
in the same set of problems. In this case, all the heuristics are
able to solve all the problems. As expected, the three admis-
sible heuristics return the optimal plan in all the problems
(average plan cost of 8.80), while GH; returns a slightly sub-
optimal solution in one of the problems, thus increasing the
average plan cost to 8.81. In terms of search efficiency, Min
is not able to outperform Blind in this problem setting. The
distribution of f values of both searches is shown in Fig-
ure 2. As we can see, Min generates search spaces where
many states have the same f value of 8, generating a large
plateau at the beginning of the open list. This occurs because
many states have the same f even if they are still far from
reaching the goal due to the heuristic value being a constant
function of the remaining time steps, which translates into
more expanded nodes. On the other hand, Blind generates
more diverse f values, with most of the nodes having f val-
ues between 11 and 12, therefore being able to better dis-
criminate between the states that are closer to the goal time

! As the following results show, the fact that we are using differ-
ent machines is not relevant in this comparison.

8000 -

@
S
3
S

4000 4

Number of nodes

2000 4

10.0 10.5 11.0 115
Fvalues

6000

5000 1

4000

3000 1

Number of nodes

2000 A

1000 4

10.0 10.5
F values

Figure 2: Open list f values distribution at the end of the
search when using Blind (upper histogram) and Min (lower
histogram) heuristics.

horizon. This behavior could not be substantially improved
even when considering different tie-breaking rules.

GH,, reduces the search effort by an order of magnitude,
returning optimal solutions in less than two seconds on av-
erage. The inadmissible greedy heuristic GH; achieve the
best results in terms of search efficiency, expanding only
around 11 states to reach the goal. This represents a 0.6%
of the states that a Blind search needs to expand, meaning
this heuristic is really informative. GH; also yields faster
searches that reach the goal in less than a second.

Heuristics Scalability and Optimality

As we have seen, we cannot rely on LPG to solve this kind of
problems. The behavior of the Blind, Min, and GH,, heuris-
tics also quickly deteriorates as we increase t. For example,
Blind and Min are not able to find a solution for any of the 10
problems with ¢ > 5 in less than 1800s, while GH, cannot
find solutions within that time limit in most problems with
t > 6. Hence, we evaluated the scalability and performance
of GH; in harder problems with longer time horizons. The
scalability of GH; is shown in Figure 3, where we use vi-
olinplots to show the search time distribution when solving
problems with ¢ = 4, 6, 8, and 10. As we can see, solving
time grows exponentially with the time horizon. However,
GH; is able to generate fast searches that can find the solu-
tion in less than a second in many of the problems. We are
not solving problems with larger time horizons because our
vanilla implementation of A* is not able to scale in some of

102 -/ .

10! § -

10° 4

1074

Search time (s)

1072 4

1073 e

t=8 t=10

Figure 3: Search time (log scale) needed to find a solution
by GH; in problems of increasing difficulty, i.e., longer time
horizons.

11.5 4
Heuristic

— GHa f\
11.0 | GHLI [\

Plan Cost
=
e
[=]

o
n

o
=]

_

S S e s e L B
01 23 45 6 7 8 9101112131415 16 17 18 19
Problem Instance

e
n

Figure 4: Plan cost as returned by GH,, and GH; in problems
of increasing difficulty, i.e., longer time horizon.

the bigger instances. However, our suggested greedy heuris-
tics would be likely able to scale provided a better imple-
mentation of A*, which we leave as future work.

Finally, we also wanted to better understand GH;’s op-
timality loss in relation to the optimal solution. Figures 4
and 5 show the plan cost and likelihood respectively as re-
turned by GH,, and GH; in problems with ¢ = 4 and ¢ = 5,
where GH, can compute the optimal plan within the time
bound. As we can see in Figure 4, the optimality gap is
really small (less than 1% on average), meaning that both
heuristics achieve plans with very similar costs. GH; is able
to compute the optimal plan in 11 out of the 20 problems.
We see the biggest optimality gap in a problem with ¢ = 5
(problem instance #10), where there is a 0.93% optimality
gap. When we translate the costs of this problem back into
likelihood scores (see Figure 5), we get that the optimal plan
likelihood is 0.27, while the likelihood of the plan returned
by GH; is 0.24. On average, GH,, returned plans with an

1.0
Heuristic

—— GH_a |

GH_i \

0.8 q

AN

— T
012 3 456 7 8 910111213 1415161718 19
Problem Instance

Plan Likelihood
o
o

o
»

0.24

0.0

Figure 5: Plan likelihood as returned by GH, and GH; in
problems of increasing difficulty, i.e., longer time horizon.

optimal likelihood score of 0.54, while GH; returned plans
with a likelihood score of 0.52.

Conclusions and Future Work

We have proposed PFPT, a personal finance planning tool
that offers financial advice at the individual level. The sug-
gested financial plans achieve users’ financial goals by max-
imizing the likelihood of being executed based on their fi-
nancial habits. We model this problem from a search per-
spective and propose two different approaches to solve
it: domain-independent automated planning and domain-
dependent heuristic search. We evaluated both approaches
in a set of financial problems with increasing complexity.
Results showed that, as expected, while automated planning
struggles to generate good plans in this domain, our sug-
gested heuristics are able to scale on generating realistic fi-
nancial plans.

Currently, our set of actions is limited to income increases
and discretionary expenses decreases. We are exploring how
to enrich the action space to include actions such as invest in
different financial products that might yield different interest
rates. We would also like to have the ability to impose arbi-
trary constraints to the generated plans. For example, users
might want to see plans that do not suggest any income in-
crease. Finally, we are currently assuming constant likeli-
hood scores. In future work we would like to consider con-
ditional likelihood scores, where the likelihood of executing
one action depends on the previous actions.

Acknowledgements

This paper was prepared for informational purposes by the
Artificial Intelligence Research group of JPMorgan Chase
& Co. and its affiliates (“JP Morgan”), and is not a prod-
uct of the Research Department of JP Morgan. JP Morgan
makes no representation and warranty whatsoever and dis-
claims all liability, for the completeness, accuracy or relia-
bility of the information contained herein. This document is
not intended as investment research or investment advice, or
a recommendation, offer or solicitation for the purchase or

sale of any security, financial instrument, financial product
or service, or to be used in any way for evaluating the merits
of participating in any transaction, and shall not constitute a
solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would
be unlawful.

References

Althnian, A. 2021. Design of a rule-based personal finance
management system based on financial well-being. Interna-
tional Journal of Advanced Computer Science and Applica-
tions 12(1).

Farinella, J.; Bland, J.; and Franco, J. 2017. The impact of
financial education on financial literacy and spending habits.
International Journal of Business, Accounting, & Finance
11(1).

Fox, M., and Long, D. 2003. PddI2. 1: An extension to
pddl for expressing temporal planning domains. Journal of
artificial intelligence research 20:61-124.

Gerevini, A.; Saetti, A.; and Serina, I. 2004. Planning with
numerical expressions in Ipg. In Proceedings of the 16th
European Conference on Artificial Intelligence, 667-671.

Hanna, S. D., and Lindamood, S. 2010. Quantifying the
economic benefits of personal financial planning. Financial
Services Review 19(2).

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. /[EEE
Transactions on Systems Science and Cybernetics 4(2):100—
107.

Irlam, G. 2018. Financial planning via deep reinforcement
learning ai. Available at SSRN 3201703.

Irlam, G. 2020. Multi scenario financial planning via deep
reinforcement learning ai. Available at SSRN 3516480.

Kindle, K. W.; Cann, R. S.; Craig, M. R.; and Martin, T. J.
1989. Pfps-personal financial planning system. In JAAIL

Peng, T.-C. M.; Bartholomae, S.; Fox, J. J.; and Cravener, G.
2007. The impact of personal finance education delivered
in high school and college courses. Journal of family and
economic issues 28(2):265-284.

Phillips, M. E.; Nielson, N. L.; and Brown, C. E. 1992. An
evaluation of expert systems. Journal of Financial Counsel-
ing and Planning 3(1).

Warschauer, T., and Sciglimpaglia, D. 2012. The economic
benefits of personal financial planning: An emperical analy-
sis. Financial Services Review 21(3).

