
Defending Against Adversarial Attacks on Policies Through Density Estimation

Alberto Villanueva1, Marcos Villacañas1, Rubén Majadas1, Javier Garcı́a2, Fernando Fernández1

1 Departamento de Informática, Universidad Carlos III de Madrid
2 Departamento de Electrónica y Computación, Universidad de Santiago de Compostela

alvillan@inf.uc3m.es, mvillaca@pa.uc3m.es, rmajadas@pa.uc3m.es, franciscojavier.garcia.polo@usc.es,
ffernand@inf.uc3m.es

Abstract

In recent years, reinforcement learning (RL) and, in particu-
lar, its “deep” variant, has been applied to tasks in the real
world gradually. RL has shown unprecedented popularity,
such as autonomous driving, robot control, solving complex
video games. It was a matter of time before deep RL burst
into finance and trading as well. Financial markets are simply
too complex for non learning-based algorithms, as the state
and action spaces are continuously expanding every second.
With RL, however, we can learn autonomously complex trad-
ing strategies that can maximize profits in spite of the highly
stochastic and non-stationary nature of financial markets. But
if the field of finance and trading is benefiting from the power
of deep RL algorithms, it has also inherited its vulnerabil-
ities. Deep RL algorithms are well-known to be inherently
vulnerable to manipulation by intentionally perturbed obser-
vations, rewards or actions, leading to unintended and poten-
tially harmful results. This is particularly relevant in a finan-
cial context, where exploiting these vulnerabilities provides
adversaries with the means to lead a company to millionaire
losses. For this reason, in this paper we investigate a two-step
defense mechanism not only able to detect these adversarial
attacks, but also to recover from them. We show that our ap-
proach manages to achieve a nearly perfect defense in simple
domains, and is proficient against several state-of-the-art at-
tacking strategies.

Introduction
There has been an upward trend in recent years to use rein-
forcement learning (RL) in financial markets (Fischer 2018)
and, as RL policies get applied to real world environments, a
focus has to be placed on ensuring these policies are resilient
against malign actors trying to interfere with the system. A
perfect example of this is High Frequency Trading (HFT), a
trading strategy which uses high speed algorithms in order
to benefit from arbitrage opportunities. This way of operat-
ing constantly scans the Limit Order Book status, seeking to
find mismatches of any size. As a result, hundreds of trades
are closed every second placing value on, not only mo-
mentum, but also reliability. Recently, RL has gained pop-
ularity among policy training methods for HFT strategies
(Briola et al. 2021). Thus, the motivation of this research
is clear. Fighting adversarial attacks would help to prevent

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

millionaire loses in this field. Recent advancements in ad-
versarial machine learning have shown that agents based
in neural networks are particularly sensitive to malignantly
crafted small perturbations (Szegedy et al. 2014). These at-
tacks have usually been applied to supervised learning tasks.
However, they have also shown to be proficient when tack-
ling RL policies (Kos and Song 2017).

In our work, we propose a two-step based defense sys-
tem. First, we use experience tuple density estimation to
identify when a new state has been perturbed. By using a
non-supervised method, we avoid modeling specific attack-
ing patterns, which aids in generalizing against any possi-
ble attack. Then, if a perturbation is detected in the state,
the original state is recovered by using a k-nearest-neighbor
approach on the experience tuple space. In contrast to pre-
vious defense methods, our approach avoids the use of neu-
ral networks, as defense systems based on neural networks
have also shown to be sensitive to malignantly crafted per-
turbations (Carlini and Wagner 2017a). We show that our ap-
proach manages to achieve a nearly perfect defense in sim-
ple domains, and is proficient against several state-of-the-art
attacking strategies.

Background
In this section, the concepts of RL and adversarial machine
learning are reviewed.

Reinforcement Learning
RL environments are typically formalized by means of a
Markov Decision Process (MDP) (Sutton and Barto 2018),
which is a mathematical model of sequential decisions and
a dynamic optimization method. It is represented by a tuple
< S,A, T,R > where S is the set of possible states, A is the
set of possible actions available from each state, T : S x A x S’
→ [0,1] is the transition function where T(s,a,s’) represents
the probability of getting to state s’ from state s when action
a is performed, and R : A × S → ℜ is the reward function
which maps a state s and an action a into a reward R(s,a); r
is used hereinafter to represent the stochastic reward result
obtained from a distribution with mean R(s,a).

In a Markov decision-making process, the transition prob-
ability and reward only depend on the current state and the
action chosen. As a result, the objective is learning a policy
π for every state to maximize the return of J(π):



J(π) =

K∑
k=0

γkrk (1)

where γ affects how much future is considered from step k
(discount factor, with 0 ≤ γ ≤ 1) and rk corresponds to
reward received in step k. At this point, the value-function,
which estimates the sum of rewards given a policy π, can be
solved using Bellman’s equation.

In Deep Q-Learning (Mnih, Kavukcuoglu, and Davi
2013), neural networks are used to estimate the action-value
function, and the value over which the loss function takes
place for the learning process, corresponds to the squared
Bellman error, that is, the difference between the expected
value and the predicted value.

Es,a[(r + γmax
a′

Q(s′, a′)−Q(s, a))2] (2)

Along to this, the learning takes place in a batch fashion,
where instead of learning over one experience tuple at a
time, the agent holds a memory of the last N experience
tuples and, at every learning step, a sample is taken over
the experience tuples in memory. These agents built using
Neural Network take the name of Deep Q Networks (DQN)
(Mnih, Kavukcuoglu, and Davi 2013).

Adversarial Machine Learning
In adversarial machine learning, adversarial examples are
maliciously generated such that the machine learning model
fails its task. Particularly, models based on neural networks
have been shown to be specially vulnerable to such attacks.

These attacks can be classified as poisoning attacks,
where adversarial examples are injected into the training
phase, and exploratory attacks, where the adversarial exam-
ples are injected into the testing phase (Sethi and Kantardzic
2018). Furthermore, the previous classification can be en-
riched by taking into consideration a complementary per-
spective of the offensive strategy. Depending on whether the
adversary has access to the model parameters, architecture
or training data, or not, attacks are considered to be white-
box or black-box, respectively. Even though having total
knowledge to model’s internal data for white-box attacks is
game-changing capability, it is not common under real sce-
narios circumstances. From a realistic point of view, trying
to exploit the model’s vulnerabilities based on input/output
pairs exclusively, as it is on black-box attacks, is closer to
a down-to-earth approach. On adversarial machine learning
tasks, the only thing that needs to be defined is how to create
the adversarial example, however in adversarial RL, also it
has to be decided when to create an adversarial example.

Adversarial example crafting Crafting an adversarial ex-
ample xδ for a model f from a given input x can be de-
scribed as the optimization problem described in Equation
3, where l and lδ are the labels of x and xδ respectively and
∥·∥ denotes the p-norm distance. Here the perturbation can
be defined as η = xδ − x and the optimization problem can
be described as finding the lowest perturbation η that man-
ages to make the model f make a mistake when evaluating

an instance x. In the area of classification, making a mistake
would be equivalent to predicting the wrong label for x, and
in the area of regression to predicting a value as far away as
possible from the real value.

min
∥∥xδ − x

∥∥
p

s.t. f(xδ) = lδ

f(x) = l (3)

l ̸= lδ

x ∈ [0, 1]

Adversarial attacks on policies Regarding RL in particu-
lar, with the intention of contemplating different approaches,
the spotlight has been put on three recently proposed strate-
gies which have been chosen to be tested against detection
and recovery techniques presented hereunder.
• Uniform attack: this adversarial behavior consists on

perturbing each state the agent observes, that is to say,
attacking at every time step adding some noise (Huang
et al. 2017). The perturbation injected can be created us-
ing FGSM (Szegedy et al. 2014) where the cost func-
tion needed to calculate the gradients J(θ, x, y) is the
cross-entropy loss between y, which is the weighting over
the possible actions, and the distribution that places all
weight on the highest weighted action in y. (Huang et al.
2017). On the subject of our work, in order to approxi-
mate better to a real-life situation, it has been decided to
not attack continually.

• VF attack: this attack injects a perturbation when the
value function is greater than some threshold β. The rea-
soning is to perturb the agent on some crucial moments
when it is close to reaching a reward. This can be seen
as described in Equation 4. (Kos and Song 2017). Just
like in uniform attack, to craft the adversarial examples,
FGSM can be used (Szegedy et al. 2014).

max
a∈A

Q(st, a) > β (4)

• Strategically-Timed attack: in this strategy, a perturba-
tion is only incorporated to a normal state when there is
a strong preference for an action over another one. Con-
sequently, this attack inflicts more harm at the time the
trained agent would strive to take a key action (Lin et al.
2019). The attack trigger is also set using a beta param-
eter, thus only when the difference between the highest
and lowest Q values1 exceeds beta, the attack will take
place as can be seen in Equation 5. In addition, to avoid
attacking excessively, a second parameter controls the
maximum amount of times the agent can suffer an at-
tack (Lin et al. 2019). To craft adversarial examples, it
looks for an observation that can change the most pre-
ferred action to the least preferred one by using the Car-
lini & Wagner attack (Carlini and Wagner 2016).

max
a∈A

Q(st, a)−min
a∈A

Q(st, a) > β (5)
1In the original work the difference between the preference to

take an action is used. For policy gradient algorithms that is the
probability to take an action and for value based methods it is the
softmax function of the Q values



VF and Strategically-Timed attacks are white-box attacks,
hence access to agent’s Q values is required, while uniform
attack is a black-box attack. However, it has been shown
that, although less effective, an adversarial example can be
transferred from one agent to another which could make
white-box attacks work in a black-box environment (Huang
et al. 2017).

Related work
To countermeasure these adversarial attacks, several de-
fensive strategies have been proposed which can be di-
vided into two distinct groups, proactive and reactive (Yuan
et al. 2019). Proactive strategies protect the model from be-
ing affected from adversarial attacks before the model has
been attacked. These include techniques such as adversar-
ial training (Wu, Bamman, and Russell 2017; Dong et al.
2017; Goodfellow, Shlens, and Szegedy 2015; Tramèr et al.
2020; Huang et al. 2016), classifier robustifying (Bradshaw,
de G. Matthews, and Ghahramani 2017; Abbasi and Gagné
2017), and network destilation (Papernot et al. 2016). Inside
reactive strategies, two main types are discussed, adversarial
detecting, in which the objective is to identify in test which
of the given instances are adversarial, and input reconstruc-
tion, in which the objective is to reconstruct an adversarial
example to the original example without the added noise so
that the model can work normally with the clean example.

A plethora of different approaches have been taken to de-
tect these adversarial attacks in the testing stage. A binary
classifier sub-network can be trained with adversarial exam-
ples to distinguish them from the clean ones (Metzen et al.
2017; Gong, Wang, and Ku 2017) and another way is to add
an additional output class to the networks output that corre-
sponds to adversarial inputs (Grosse et al. 2017). Safety-net
(Lu, Issaranon, and Forsyth 2017) uses an RDF-SVM that
utilizes discrete codes computed from late stage ReLUs to
detect adversarial examples, however similarly to the pre-
vious methods, it also requires to be trained with adversar-
ial examples, which means that it has to model the attacker
which is unlikely to generalize well to other processes to
generate adversarial examples (Meng and Chen 2017).

Mag-Net (Meng and Chen 2017) uses an ensemble of 2
detectors, one is an autoencoder trained on the original clean
dataset that predicts whether it is an adversarial example or
not based on the reconstruction error, where an error higher
than a threshold indicates an adversarial example. This per-
forms well when the error is high enough but for smaller
errors a second detector was added that measures the diver-
gence between the logit of the input example and that of the
autoencoded example, where a high divergence indicates an
adversarial example, and finally, to ensemble them an ad-
versarial attack is reported if any of the two detectors detect
one.

Principal component analysis (PCA) whitening can be
used on the input examples, and since adversarial ones have
different coefficients for low-ranked principal components,
a detector can be created from it (Hendrycks and Gimpel
2017). Furthermore, the authors say that a combination of
detectors might be a better way to try to deal with adversar-
ial detection.

A detector can also be built using a logistic regressor us-
ing as inputs the kernel density of the input example, calcu-
lated using the training set on the feature space of the last
hidden layer, and the Bayesian uncertainty estimate of the
network for said example (Feinman et al. 2017).

However, Carlini & Wagner (2017a) showed that most of
these defenses are not as effective as previously analyzed,
as they are still susceptible to their previous attack (Carlini
and Wagner 2016) when the loss function is changed. Fur-
thermore, they offer some guidelines on how to better ap-
proach detection defenses; such as using strong attacks for
evaluation instead of single iteration ones, and that it should
be resistant against white-box attacks too and not only gray
or black box ones. They also showed the methods that per-
formed the worst were the ones using another neural net-
work for detection, because if an adversarial example can be
made to fool one network, there can also be one that fools
both (Carlini and Wagner 2017a,b).

Input reconstruction tries to transform the input data when
it has been detected as having been attacked such that
the output of the reconstructed input matches that of the
unattacked one. Autoencoders can be used to perform in-
put reconstruction (Meng and Chen 2017; Gu and Rigazio
2015) by learning from the training data. Another way is the
approach taken by pixel defend (Song et al. 2017) where the
training distribution probability of the novel example is es-
timated by using PixelCNN (van den Oord, Kalchbrenner,
and Kavukcuoglu 2016) and then, a new value is generated
for each pixel along each channel such that the probability
distribution estimated of the new example is maximized and
the difference between the original value and the new value
is smaller than some value ϵ moving it closer towards the
training dataset.

In the field of RL, on previous work on defensive mech-
anisms, the current state is predicted with the previous m
states and m actions with which the result is then used to
compare the states Q values with the received state Q values,
where a high discrepancy indicates an adversarial attack has
been produced, since the objective of the adversarial attack
is to change the policy of the agent. Furthermore, an optimal
action can be suggested based on the Q values of the pre-
dicted state and thus reconstruct the policy for the state (Lin
et al. 2017).

Architecture - Proposal
The architecture for our defense system consists of two mod-
ules, the detection system, which detects if a state has been
attacked, and the recovery system, which once a state has
been detected as an attacked one, tries to recover the orig-
inal values from the state. Both systems work by inferring
knowledge over the experience tuple instead of just over the
state to take into account the sequential nature of RL tasks,
so after an action a is performed over the state s, the detec-
tion system analyzes the experience tuple < s, a, s′, r > to
detect if the next state s′ has been attacked or not.

To achieve this, both systems use experience tuples
in the form of τ = < s0, s1, ..., sn, a0, a1, ..., am,
s′0, s

′
1, ..., s

′
n, r >, where si is the i-th feature of the state,



and ai is the i-th feature of the action, where categorical ac-
tions or state features are one-hot encoded so that distance
measures can be used, that are extracted by observing the
agent’s regular behavior on the testing phase and storing its
experience tuples in the form of Γ = {τ0, τ1, ..., τn}. To
calculate similarity measures between any two experience
tuples, ℓ2 distance is used.

The overall process can be described as a number of steps
where first the agent is trained (i), then Γ is extracted (ii)
with which, a detection system (iii) and a recovery sys-
tem (iv) are trained. During execution, the systems works
as shown in Figure 1 where each new transition is given to
the detector which predicts if it belongs to the distribution of
Γ and, if it doesn’t, it is given to the recovery system, which
returns the reconstructed new state.

Figure 1: Defense Architecture Diagram

Detection System
When it comes to detecting an adversarial transition, our
method compares the new perceived transition against the
transitions in Γ, and if it deviates far enough from them, it is
classified as an adversarial transition. This task can be seen
as detecting outliers (adversarial examples) or estimating the
underlying density function (DF) of Γ and labeling as adver-
sarial transitions those with a low DF.

A number of different algorithms are used to estimate the
DF, none of which use a Neural Network as the one used in
pixel defense (Song et al. 2017) or in Visual Foresight (Lin
et al. 2017), since Carlini and Wagner (2017a) found that
defenses that used a Neural Network to defend from adver-
sarial attacks happened to be the ones who performed the
poorest as an attack could be designed to circumvent both
neural networks, the predictor and the defender:

• Kernel density with a Gaussian kernel is used to esti-
mate the underlying probability DF.

• DBSCAN (Ester et al. 1996) tries to identify the outliers
in a set of data, however, in our case we already know a
set of non-outlier data points, that being Γ, so instead we
only calculate whether the new transition is an outlier or
not in respect to Γ. Furthermore, instead of using a mini-
mum number of samples needed inside the given radius,
the number of samples inside the radius is used as the DF
value.

• KNN density estimation is used to estimate the underly-
ing DF, however, two different implementations of den-
sity estimation using KNN have been used:

– The distance to the k nearest neighbors is taken, and a
function is applied to them that returns a scalar such as
the sum, the mean or maximum (which would simply
be the distance to the k-th nearest neighbor).

– The density is built according to the formula
n(x,a)

NV (B(x,a)) where B(x, a) is the hypersphere centered
in x with radius a, V (·) represents a volume, N is the
number of samples and n(x, a) is the number of points
within B(x, a) (Zhao and Lai 2020). From now on,
this one will be referred to as Hyper-KNN.

• Gaussian Mixture (Dempster, Laird, and Rubin 1977)
estimates the underlying DF by fitting a mixture of Gaus-
sian distributions to Γ and later using them to find the
mixture probability.

• K-Means (Hartigan 1975) can be seen as a simplified
version of Gaussian mixture, where the covariance ma-
trix is fixed to being a scalar matrix, and the scalar con-
trols the size of the cluster. The density metric used here
is the inverse of the distance to the nearest centroid, as
a higher number should correspond to a higher density.
Furthermore, from this base DF two different approaches
are taken:

– No further changes are applied, and the DF depends
solely on the distance to the nearest centroid. From
now on this will be referred to as k-means global.

– The DF is normalized with the distance to the furthest
training sample assigned to the cluster the DF is based
on. This makes it so that the DF takes into account
contextual information from the cluster it is using, as
it now depends on the size of the cluster.From now on
this will be referred to as k-means local.

• One class SVM according to Schölkopf (Schölkopf et al.
2000) is used to establish a binary detection system. If the
new transition falls between the origin and the calculated
hyperplane, the sample is considered to be an adversarial
transition.

Apart from one class SVM, every other method estimates
a DF, but that is not enough to distinguish between adver-
sarial and normal transitions, thus, a threshold has to be se-
lected after which the transition is classified as adversarial.
For that, the lowest DF value predicted from all transitions in
Γ is used; that way, any new experience tuples with a lower
DF than any in Γ is classified as an adversarial one. By se-
lecting the decision threshold solely on normal experience
tuples, it avoids the need to model any type of attacks, which
ensures that it can not overfit the detection for that given at-
tack.

Recovery System
The recovery system tries to increase the DF of the experi-
ence tuple that has been identified as an adversarial one, to
do so, we once again step away from methods that use Neu-
ral Networks such as in Pixel Defense (Song et al. 2017)
or visual foresight (Lin et al. 2017) for the same reasons as
the ones described in the detection system, and so we pro-
pose a method that is independent of the detection system



and the learning agent, that repairs the next state by using
the next state of the k nearest transitions in Γ, and weighting
them by the distance to the original transition, where a k of 1
means that it takes the entire next state of the nearest neigh-
bor. However, since the next state could be too corrupted
due to adversarial injection, the recovery system calculated
the distances in Γ′, a subspace of Γ that does not include the
next state. In order for the distances to have an actual mean-
ing, the transition vector features have to be normalized, and
discrete features have to be one-hot encoded if the set con-
taining of all the possible values of the feature is not totally
ordered.

ŝ′ =

k∑
i

wis
′
i (6)

wi =
∥τ ′ − τ ′i∥2

k∑
j

∥∥τ ′ − τ ′j
∥∥
2

Evaluation
This section evaluates the performance of the proposed de-
fense in four different well-known domains from the Ope-
nAI gym library: Acrobot, Cart pole, Mountain car and Taxi.
But before presenting the results, the experimental setting is
introduced.

Experimental setting
The proposed domains have been previously solved us-
ing tabular Q-Learning with an ϵ-greedy exploration-
exploitation strategy. The agents are discretized along each
dimension within the state limits in a number of bins2, and
are trained during H episodes with a limit of K steps per
episode with the learning rate (α), and discount rate (γ) de-
scribed in Table 2. Each of the training process will generate
a policy π which will then be attacked and defended with the
proposed system.

After the agents are trained, Γ is extracted (the algorithm
Ball Tree (Dolatshah, Hadian, and Minaei-Bidgoli 2015) is
used for efficient spacial indexing in the detector and recov-
ery systems) from each agent by running them 500 episodes.

However, if a single adversarial example bypasses the de-
fense system, it could throw off the trained policy off of the
optimal path, which, if it is the only path the defense system
has seen, would make it seem like every subsequent transi-
tion is adversarial (as it could be vastly different from what
it has seen before). It is for this reason that instead of using
the learned policy in a fully greedy way, an ϵ-greedy policy
is used (ϵ = 0.1) to prevent the transition sample from over-
fitting to the optimal path from the learned policy. That way,
it accounts for slight deviations from the optimal path.

2These bin sizes are used to take into account the entire pos-
sible state space, however a lot of bins in Acrobot, Cart Pole and
Mountain Car are empty as the states they describe are either un-
reachable, or so unlikely they are never visited. The number of bins
where the learning actually takes place in is 14.3K, 13.7K and 7k
for Acrobot, Cart Pole and Mountain Car respectively

For the adversarial perturbations, noise is generated at
each dimension with a random value between 0 and δ√

d
,

where d is the number of dimensions and δ is as shown in Ta-
ble 1 for Acrobot, Cart Pole and Mountain Car, and then, the
noise is added to the state normalized across the dimension
limits such that ∥ η ∥2≤ δ. In the case of the Taxi environ-
ment, as the state space is discrete, the position of the agent
is changed by 1 in the y or x coordinate. Only the position of
the agent is attacked, as the other values, the passenger po-
sition and destination position, are given in the form of the
index of a list that contain a set of possible positions, hence,
a change of 1 in the index corresponds to a change of more
than one in the actual positions, e.g. a change from 0 to 1 in
the passenger position dimension (p) changes the position it
is referring to, from (0,0) to (0, 4).

For the attacking strategies, three have been used; Uni-
form, Value Function and Strategically Timed attacks as de-
scribed previously, whose parameters have been fine-tuned
to achieve a compromise between the noise they inject and
the damage they create, and are shown in Table 1.

Environment δ
Uniform VF ST

Frequency β β max
Acrobot 0.10 0.5 -27 1.300 150

Cart Pole 0.10 0.5 40 0.800 50
Mountain

Car 0.14 0.5 -15 1.300 50

Taxi 1.00 0.5 19 10.185 12

Table 1: Attack parameters

Results
Foremost, in Table 3 we showcase the average performance
obtained by each agent across 200 episodes, how each attack
affects the performance, and how much total perturbation (δ)
it injects into an episode to achieve that loss in performance.
The total perturbation injected is calculated by summing the
ℓ2 distance from the original state to the attacked state for
each step in the episode. Here it can be seen how in the Cart
Pole and Mountain Car environments, VF-attack and ST-
attack achieve an equal or superior performance than Uni-
form attack while injecting much less perturbation. In the
Taxi and Acrobot environments, ST-attack achieves a better
performance with a similar or lower perturbation, but VF-
attack achieves a higher performance at the cost of a lot more
total perturbation. This is because with VF-attack, the states
closer to the reward are attacked which prevents the agent
from finishing the episode, and it enters a loop where it is
constantly attacking the agent as the agent is always near the
end of the episode but never really ending except if it per-
forms the adequate action by pure chance, which explains
the high variance.

Then Γ is normalized in one of two different ways, either
using min max feature scaling normalization or z-score nor-
malization. Afterwards, the detectors are trained using the
parameters shown in Table 4. They are then evaluated by
running the agent against each attack during 100 episodes



Domain State Bins α γ ϵ H K

Acrobot

θ1 ∈ [−π, π]
θ2 ∈ [−π, π]
ωθ1 ∈ [−4π, 4π]
ωθ2 ∈ [−9π, 9π]

20
20
20
20

0.1 0.99 0.5 20000 500

Cart Pole

p ∈ [−4.8, 4.8]
v ∈ [−4, 4]
ϕ ∈ [−0.418, 0.418]
κ ∈ [−4, 4]

10
50
50
50

0.1 0.99 0.3 20000 200

Mountain Car p ∈ [−1.2, 0.6]
v ∈ [−0.007, 0.007]

100
100 0.1 0.99 0.3 300000 200

Taxi

y ∈ {0, 1, 2, 3, 4}
x ∈ {0, 1, 2, 3, 4}
p ∈ {0, 1, 2, 3, 4}
d ∈ {0, 1, 2, 3}

5
5
5
4

0.1 0.99 0.3 20000 200

Table 2: Train parameters for the victim policies

No attack Uniform VF ST

Acrobot -140.96 ± 34.00 -171.13 ± 40.53
δ = 109.14 ± 28.07

-178.21 ± 52.59
δ = 131.28 ± 65.07

-180.20 ± 42.65
δ = 64.28 ± 18.43

Cart Pole 200.00 ± 0.00 116.74 ± 53.98
δ = 43.49 ± 19.13

50.77 ± 22.24
δ = 20.40 ± 11.79

52.80 ± 41.76
δ = 22.32 ± 9.47

Mountain Car -98.98 ± 7.60 -149.87 ± 21.64
δ = 13.35 ± 2.40

-188.70 ± 23.42
δ = 9.27 ± 2.02

-154.43 ± 26.57
δ = 5.71 ± 2.39

Taxi 7.80 ± 2.56 -2.28 ± 9.92
δ = 9.95 ± 4.74

-51.40 ± 90.47
δ = 54.36 ± 82.50

-11.12 ± 14.88
δ = 9.80 ± 3.09

Table 3: Trained policy with and without attacks, and the total perturbation (δ) injected into an episode measured by ℓ2 distance

where at each time step, if the state is detected as being an
adversarial one, the original state is restored. This is done to
decouple the results from the detector and the recovery sys-
tems and see how each of them behave independent of the
other. The balanced accuracy is shown in Table 5 highlight-
ing results of over 90% accuracy.

Detector Parameters
Kernel Density h: Scott’s Rule

DBSCAN ϵ: Scott’s Rule
KNN-Hyper a: Scott’s Rule

KNN k: 3, 5, 10, 15, 20, 30, 40, 50, 75, 100
f: sum, mean, max

Gaussian Mixture k: 256, 512, 1024, 2048
K-means Global k: 256, 512, 1024, 2048, 4096
K-means Local k: 256, 512, 1024, 2048, 4096
One Class SVM ν: 0.01, 0.05, 0.1, 0.5

Table 4: Detector parameters, where values separated by
commas mean that all of those were tried and the best was
selected

As can be seen in Table 5, the type of normalization has a
strong impact on the performance of the detectors based on
the environment; for every environment except for Cart Pole,
z-score normalization has higher results for almost every de-
tector, but in Cart Pole, min max normalization performs

significantly better, having almost every detector a perfect
detection score. The main reason for this can be that in a
normal execution of Cart Pole with a perfect policy, every
state it visits is really similar as it tries to keep the cart to
the center of the screen and the pole as vertical as possible;
this means that by doing min max normalization, if a sin-
gle new state has a value lower than 0 or greater than 1 it
is a strong indication of an adversarial attack. In contrast, in
other environments, the states are a lot more varied, hence,
a z-score normalization helps distinguish the most common
states than the more uncommon. Furthermore, three detec-
tors shine above others; DBSCAN, KNN-Hyper and Gaus-
sian Mixture having a performance of above 90% in the best
normalization method for every environment, however, this
is while having a perfect recovery, so the performance also
has to be analyzed with the recovery system.

To this end, the full defense system is now tested the same
way as the detection system. Thereforere, now, when a new
perceived transition is classified as an adversarial one, it is
given to the recovery system which then returns the recov-
ered new state. This recovery system is tried with multiple
values for k; 1, 3, 5, 10, 15, 20, 40 and 50, and the best result
is reported, although the method is not very sensitive to the
different k values. Then the final reward achieved by the de-
fense system (rD) is measured against the reward obtained
by the unaltered victim policy (r), using as a baseline the
attacked reward (rA), both of which can be seen in Table 1.
In order to not just take into account the mean but also the



Acrobot Cart Pole Mountain Car Taxi
normalization min max z-score min max z-score min max z-score min max z-score

UniformAttack
Kernel Density 0.50 0.53 1.00 0.83 0.50 0.51 0.51 0.51

DBSCAN 0.65 0.97 1.00 0.63 0.63 1.00 0.99 1.00
KNN-Hyper 0.65 0.98 1.00 0.64 0.62 1.00 0.99 1.00

KNN 0.50 0.50 1.00 0.98 1.00 1.00 0.52 0.50
Gaussian Mixture 1.00 1.00 1.00 0.67 1.00 1.00 1.00 1.00

k-means global 0.50 0.60 1.00 0.91 1.00 1.00 - 1.00
k-means local 0.51 0.60 0.82 0.84 0.78 0.76 - 0.93

SVM 0.53 0.58 1.00 0.78 0.56 0.62 0.56 0.56
VF-Attack

Kernel Density 0.50 0.75 0.50 0.50 0.51 0.53 0.61 0.53
DBSCAN 0.77 0.98 1.00 0.50 0.68 1.00 0.99 1.00

KNN-Hyper 0.77 0.98 1.00 0.50 0.68 1.00 0.99 1.00
KNN 0.50 0.52 1.00 0.71 1.00 1.00 0.64 0.50

Gaussian Mixture 1.00 1.00 1.00 0.52 1.00 1.00 0.99 1.00
k-means global 0.50 0.68 1.00 0.58 1.00 1.00 - 1.00
k-means local 0.50 0.52 0.61 0.58 0.72 0.72 - 1.00

SVM 0.91 0.89 1.00 0.50 0.77 0.78 0.72 0.69
ST-Attack

Kernel Density 0.50 0.56 1.00 0.87 0.50 0.51 0.60 0.54
DBSCAN 0.63 0.99 1.00 0.67 0.66 1.00 1.00 1.00

KNN-Hyper 0.64 0.98 1.00 0.65 0.65 1.00 1.00 1.00
KNN 0.50 0.50 1.00 0.97 1.00 1.00 0.63 0.50

Gaussian Mixture 1.00 1.00 1.00 0.72 1.00 1.00 1.00 1.00
k-means global 0.50 0.59 1.00 0.90 1.00 1.00 - 1.00
k-means local 0.51 0.54 0.84 0.81 0.84 0.85 - 0.93

SVM 0.56 0.67 0.99 0.78 0.50 0.61 0.63 0.61

Table 5: Total balanced accuracy (using the transitions of 100 episodes) for the best parameter of each detector, using either
min max feature scaling, or z-score normalization

variance of the rewards, Welch’s t-test is used to compare
both rD and rA to r, and finally this can be used to measure
how the defense system affected the relative performance in
a scale from 0 to 1 with the formula tD−tA

−tA
where tD is the

t-score of rd and r, and tA is the t-score of rA and r. The
values can of course fall below 0 or raise above 1, where
below 0 means the defense system creates a performance
worse than the attack it is defending against, and above 1 a
performance greater than the unaltered victim policy. These
results can be seen in Table 6 where a performance over 90%
is highlighted.

From these results, several conclusions can be drawn.
Foremost, it can be seen that once again a distinction can
be seen between different types of normalization depending
on the environment, and said distinction corresponds to the
one described before (min max normalization working bet-
ter for Cart Pole and z-score normalization for the rest). Fur-
thermore, it can also be seen how Gaussian mixture’s perfor-
mance drops significantly (specially in Cart Pole) compared
to its performance in the detection tests, as with a perfect re-
covery it was achieving some of the highest results across
all environments. This indicates that it was overfitting to
the unaltered policy transitions, and as soon as the recov-
ery introduced a slight error, the model did not recognize
it as being valid. This could be because of a high number

of clusters compared to the number of significantly different
transitions, and lowering said number could lead to a better
generalization.

In the Acrobot environment, a big difference can be seen
from the different attacks, as with VF-attack results even
better than the ones with the unaltered policy are obtained,
however the detection accuracy was on par with the other
attacks. The reason for the big difference in the reward, is
because in Acrobot when the arm is near then top of the
screen (which is when VF performs attacks) the arm already
has velocity and a perfect recovery is not needed to finish
the episode. On the other attacks, DBSCAN achieves the
best results with a 62% and 74% recovered relative reward
in uniform and ST attacks respectively.

In the Cart Pole environment, the performance is fully re-
covered in uniform and ST attacks, however, unlike in Ac-
robot, the defense does not manage to recover the perfor-
mance against VF-attack. The reason for this is because,
since VF-attack attacks performs multiple attacks in a row,
the recovered state error starts accumulating until the detec-
tor starts failing. This was not that big of an issue in Acrobot
because these repeated attacks happen towards the end of
the episode, however, in Cart Pole the states at the begin-
ning of the episode and at the end can have an equally high
VF value, and so this carried error can start very early in the



Acrobot Cart Pole Mountain Car Taxi
normalization min max z-score min max z-score min max z-score min max z-score

UniformAttack
Kernel Density -1.33 -0.90 1.00 -1.05 0.03 0.16 -0.13 0.15

DBSCAN -1.08 0.62 0.96 -2.86 0.14 1.01 -0.60 0.64
KNN-Hyper -1.47 0.47 0.96 -2.59 0.12 0.99 -0.30 0.64

KNN -1.11 -0.41 1.00 -0.41 1.01 1.00 0.13 0.20
Gaussian Mixture -0.43 0.34 -1.71 -2.35 1.05 1.01 -0.25 0.74
k-means global -1.25 -0.54 1.00 -0.66 1.04 1.03 - 0.71
k-means local -0.95 -0.11 0.15 -0.89 0.52 0.52 - 0.87

SVM -1.02 -0.65 1.00 -1.90 0.07 0.16 0.39 0.17
VF-Attack

Kernel Density -1.38 1.37 -0.04 -0.15 0.02 0.18 0.16 0.75
DBSCAN -0.69 1.04 -0.11 -0.16 0.70 0.97 0.38 0.88

KNN-Hyper -0.71 1.01 -0.12 -0.21 0.71 0.95 0.44 0.74
KNN -1.00 1.48 -0.02 -0.16 1.02 1.01 0.78 0.39

Gaussian Mixture -0.24 1.35 -0.07 -0.07 1.04 1.01 0.35 1.04
k-means global -1.22 1.51 -0.02 -0.17 1.02 1.01 - 0.82
k-means local -1.20 1.47 0.12 0.09 0.58 0.75 - 1.04

SVM -0.22 1.35 -0.06 -0.22 0.38 0.82 0.97 0.96
ST-Attack

Kernel Density -0.81 0.04 1.00 -0.11 0.14 0.08 0.12 0.22
DBSCAN -0.76 0.74 1.00 -0.68 0.50 1.00 0.19 0.93

KNN-Hyper -0.78 0.53 0.99 -0.72 0.47 1.00 0.17 0.88
KNN -0.71 0.35 1.00 -0.09 1.03 1.04 0.17 0.22

Gaussian Mixture -0.13 0.58 -0.29 -0.49 1.03 1.04 0.23 0.95
k-means global -0.58 0.27 1.00 -0.05 1.03 1.02 - 0.88
k-means local -0.73 0.37 0.62 0.07 0.63 0.63 - 1.01

SVM -0.47 0.17 1.00 -0.24 0.48 0.47 0.60 0.59

Table 6: Relative recovered performance obtained by the defense using the best parameters

episode.
Finally, in the Mountain Car and Taxi environments mul-

tiple detectors achieve a performance comparable with that
of the unaltered policy, but DBSCAN and Gaussian Mixture
particularly show better results than other defenses across
both domains.

Conclusion
In this work, a two-step defense system against adversar-
ial attacks in RL is created; (i) a density estimation based
approach to detect adversarial examples and (ii) a KNN ap-
proach to recover the original states. Different methods to
estimate the density are used to show the viability of using
density estimation on experience tuples to detect adversar-
ial examples. None of the methods used relies on the use of
neural networks, which also helps against attacks that could
target the detecting network alongside the victim policy. It
is also shown that choosing the detection threshold solely
on the observed experience tuples of the victim agent is
enough to successfully detect adversaries, avoiding the need
to model any particular attack which prevents overfitting into
any particular attack and helps to generalize. Furthermore,
it is also shown how the normalization method impacts the
system and how the nature of an environment affects which
normalization is best to use.

The defense system is benchmarked against three state-of-
the-art attacks across four well-known environments, man-
aging to recover most of the lost performance for most at-
tacks and environments, albeit it suffers from the carried
recovery error in consecutive attacks that start early on an
episode. A recovery system with a lower error would fix
these problems and achieve a better performance.

Acknowledgments
This research was funded in part by JPMorgan Chase & Co.
Any views or opinions expressed herein are solely those of
the authors listed, and may differ from the views and opin-
ions expressed by JPMorgan Chase & Co. or its affiliates.
This material is not a product of the Research Department
of J.P. Morgan Securities LLC. This material should not be
construed as an individual recommendation for any particu-
lar client and is not intended as a recommendation of partic-
ular securities, financial instruments or strategies for a par-
ticular client. This material does not constitute a solicitation
or offer in any jurisdiction.

References
Abbasi, M.; and Gagné, C. 2017. Robustness to Ad-
versarial Examples through an Ensemble of Specialists.
arXiv:1702.06856.



Bradshaw, J.; de G. Matthews, A. G.; and Ghahramani,
Z. 2017. Adversarial Examples, Uncertainty, and Transfer
Testing Robustness in Gaussian Process Hybrid Deep Net-
works. arXiv:1707.02476.
Briola, A.; Turiel, J.; Marcaccioli, R.; and Aste, T. 2021.
Deep Reinforcement Learning for Active High Frequency
Trading.
Carlini, N.; and Wagner, D. A. 2016. Towards Evaluating the
Robustness of Neural Networks. CoRR, abs/1608.04644.
Carlini, N.; and Wagner, D. A. 2017a. Adversarial Examples
Are Not Easily Detected: Bypassing Ten Detection Meth-
ods. CoRR, abs/1705.07263.
Carlini, N.; and Wagner, D. A. 2017b. MagNet and ”Effi-
cient Defenses Against Adversarial Attacks” are Not Robust
to Adversarial Examples. CoRR, abs/1711.08478.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum Likelihood from Incomplete Data via the EM Algo-
rithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1): 1–38.
Dolatshah, M.; Hadian, A.; and Minaei-Bidgoli, B. 2015.
Ball*-tree: Efficient spatial indexing for constrained nearest-
neighbor search in metric spaces. CoRR, abs/1511.00628.
Dong, Y.; Su, H.; Zhu, J.; and Bao, F. 2017. Towards Inter-
pretable Deep Neural Networks by Leveraging Adversarial
Examples. CoRR, abs/1708.05493.
Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.; et al. 1996.
A density-based algorithm for discovering clusters in large
spatial databases with noise. In kdd, volume 96, 226–231.
Feinman, R.; Curtin, R. R.; Shintre, S.; and Gardner,
A. B. 2017. Detecting Adversarial Samples from Artifacts.
arXiv:1703.00410.
Fischer, T. G. 2018. Reinforcement learning in financial
markets - a survey. Technical report.
Gong, Z.; Wang, W.; and Ku, W.-S. 2017. Adversarial and
Clean Data Are Not Twins. arXiv:1704.04960.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015.
Explaining and Harnessing Adversarial Examples.
arXiv:1412.6572.
Grosse, K.; Manoharan, P.; Papernot, N.; Backes, M.; and
McDaniel, P. 2017. On the (Statistical) Detection of Adver-
sarial Examples. arXiv:1702.06280.
Gu, S.; and Rigazio, L. 2015. Towards Deep Neural
Network Architectures Robust to Adversarial Examples.
arXiv:1412.5068.
Hartigan, J. A. 1975. Clustering algorithms. John Wiley &
Sons, Inc.
Hendrycks, D.; and Gimpel, K. 2017. Early Methods for
Detecting Adversarial Images. arXiv:1608.00530.
Huang, R.; Xu, B.; Schuurmans, D.; and Szepesvari, C.
2016. Learning with a Strong Adversary. arXiv:1511.03034.
Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; and
Abbeel, P. 2017. Adversarial Attacks on Neural Network
Policies. arXiv:1702.02284.
Kos, J.; and Song, D. 2017. Delving into adversarial attacks
on deep policies. arXiv:1705.06452.

Lin, Y.-C.; Hong, Z.-W.; Liao, Y.-H.; Shih, M.-L.; Liu, M.-
Y.; and Sun, M. 2019. Tactics of Adversarial Attack on Deep
Reinforcement Learning Agents. arXiv:1703.06748.
Lin, Y.-C.; Liu, M.-Y.; Sun, M.; and Huang, J.-B. 2017. De-
tecting Adversarial Attacks on Neural Network Policies with
Visual Foresight. arXiv:1710.00814.
Lu, J.; Issaranon, T.; and Forsyth, D. 2017. SafetyNet:
Detecting and Rejecting Adversarial Examples Robustly.
arXiv:1704.00103.
Meng, D.; and Chen, H. 2017. MagNet: A Two-Pronged
Defense against Adversarial Examples. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, 135–147. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450349468.
Metzen, J. H.; Genewein, T.; Fischer, V.; and Bischoff,
B. 2017. On Detecting Adversarial Perturbations.
arXiv:1702.04267.
Mnih, V.; Kavukcuoglu, K.; and Davi. 2013. Playing Atari
with Deep Reinforcement Learning. arXiv:1312.5602.
Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; and Swami, A.
2016. Distillation as a Defense to Adversarial Perturbations
Against Deep Neural Networks. In 2016 IEEE Symposium
on Security and Privacy (SP), 582–597.
Schölkopf, B.; Williamson, R. C.; Smola, A.; Shawe-Taylor,
J.; and Platt, J. 2000. Support Vector Method for Nov-
elty Detection. In Solla, S.; Leen, T.; and Müller, K., eds.,
Advances in Neural Information Processing Systems, vol-
ume 12. MIT Press.
Sethi, T. S.; and Kantardzic, M. 2018. Data driven ex-
ploratory attacks on black box classifiers in adversarial do-
mains. Neurocomputing, 289: 129–143.
Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; and Kushman, N.
2017. PixelDefend: Leveraging Generative Models to Un-
derstand and Defend against Adversarial Examples. CoRR,
abs/1710.10766.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2014. Intriguing proper-
ties of neural networks. arXiv:1312.6199.
Tramèr, F.; Kurakin, A.; Papernot, N.; Goodfellow, I.;
Boneh, D.; and McDaniel, P. 2020. Ensemble Adversarial
Training: Attacks and Defenses. arXiv:1705.07204.
van den Oord, A.; Kalchbrenner, N.; and Kavukcuoglu,
K. 2016. Pixel Recurrent Neural Networks. CoRR,
abs/1601.06759.
Wu, Y.; Bamman, D.; and Russell, S. 2017. Adversar-
ial training for relation extraction. In Proceedings of the
2017 Conference on Empirical Methods in Natural Lan-
guage Processing, 1778–1783.
Yuan, X.; He, P.; Zhu, Q.; and Li, X. 2019. Adversarial ex-
amples: Attacks and defenses for deep learning. IEEE trans-
actions on neural networks and learning systems, 30(9):
2805–2824.
Zhao, P.; and Lai, L. 2020. Analysis of KNN Density Esti-
mation. arXiv:2010.00438.


