
Machetli: Simplifying Input Files for Debugging

Lucas Galery Käser, Clemens Büchner, Augusto B. Corrêa, Florian Pommerening, Gabriele Röger
University of Basel, Switzerland

lucas.galerykaeser@tuta.io
{clemens.buechner, augusto.blaascorrea, florian.pommerening, gabriele.roeger}@unibas.ch

Abstract

Debugging can be a painful task, especially when bugs only
occur for large input files. We present Machetli, a tool to help
with debugging in such situations. It takes a large input file
and cuts away parts of it, while still provoking the bug. The
resulting file is much smaller than the original, making the
bug easier to find and fix. In our experience, Machetli was
able to reduce planning tasks with thousands of actions to
trivial tasks that could even be solved by hand. Machetli is an
open-source project and it can be extended to other use cases
such as debugging SAT solvers or LATEX compilation bugs.

Introduction
Most planning researchers have been through the follow-
ing scenario: they implement an algorithm, run local tests
in small tasks obtaining the expected results, and as soon as
they try their algorithm in the largest tasks available, some-
thing goes wrong. It can be either some bug in the source
code, some unexpected output, or something completely un-
known. Sometimes, it almost feels to be a rule of thumb that
if an unexpected behavior has to happen, it will happen with
the largest possible task.

To make the debugging process less frustrating, we in-
troduce a new tool called Machetli. Roughly speaking, Ma-
chetli receives as input a planner P , a task Π, and a descrip-
tion of the unexpected behavior triggered when P tries to
solve Π. Machetli then does a local search on the space of
planning tasks, aiming at finding the minimal task where the
unexpected behavior still occurs. This process is done by
pruning actions, predicates, and/or objects of the task and
then checking if the unexpected behavior is still present.

In our demo, we show how to use Machetli and which
use cases are already implemented in the tool. Machetli is
a set of Python libraries that can be installed through pip
(Python Software Foundation 2022). The open-source code
is available online, together with its documentation and a
Jupyter notebook tutorial.1 Our demo video is also publicly
available.2

1The available material can be found on the following page:
https://github.com/aibasel/machetli. Machetli is distributed under
GNU General Public License v3.0.

2https://ai.dmi.unibas.ch/videos/machetli-icaps2022demo.mp4

Overview of the Tool
Machetli was originally designed for debugging planners
by simplifying tasks that trigger some unexpected behavior.
Currently, Machetli can handle task descriptions in PDDL
(Haslum et al. 2019) and SAS+ (Bäckström and Nebel 1995;
Helmert 2009). It transforms the input by removing actions,
predicates, and/or objects. Then, a local search transforms
the original task, keeps instances where the behavior per-
sists, and repeats this process until no more transformations
are found to reproduce the behavior. At this point, Machetli
returns the last task where the bug still occurred.

The straightforward way to use Machetli is to run the
given algorithm with the input and check for a specific be-
havior, such as a particular output message or system call.
Although these might be the most frequent use cases, Ma-
chetli allows the user to specify the behavior using Python
code, which makes the tool more powerful. For example,
we successfully used Machetli with two different planners
where one had a correct behavior and the other an unex-
pected behavior. Machetli then used the difference in their
behavior to find a smaller task where this still happened, so
we could debug the problematic planner.

In principle, Machetli works with arbitrary algorithms and
inputs. Its procedure consists of three main ingredients: a lo-
cal search, a set of transformations called successor gener-
ators, and an evaluator to determine whether the (un-) ex-
pected behavior occurs for a given input.

Local Search
Machetli’s search procedure is already outlined above. In
its heart, it is inspired by the idea of hill-climbing search.
However, our implementation uses no quantitative metric
of quality between neighboring instances. Instead, we use
two concepts to drive our search towards the objectives that
(i) the input shrinks over time and (ii) the intended behav-
ior persists. The first objective is achieved by the design of
the successor generators. The second objective is achieved
by discarding those successors that do not reproduce the ex-
pected behavior. We discuss these objectives in the next two
subsections. Figure 1 illustrates the overall procedure. It is
important to note that although it is not guaranteed that the
runtime decreases for smaller inputs, this tends to happen in
practice.



Figure 1: Sketch of a Machetli search: a BLOCKSWORLD
task triggers some bug in a planner and Machetli removes
blocks to generate similar, smaller instances where the bug
persists.

Successor Generators
An important part of the search is how to explore the neigh-
borhood of the current search state. Each state corresponds
to an input file for the evaluator procedure (see next sub-
section). Our idea of a successor of this state is a smaller in-
put file. To achieve this, successor generators usually remove
parts of the input such that the syntax of the input language
is not corrupted.

So far, we have implemented successor generators for
PDDL and SAS+ planning tasks, as described above. The
three generators currently implemented for PDDL are: (i) re-
moval of an action schema, where an action schema is sim-
ply removed from the PDDL task; (ii) removal of objects,
where an object is removed from the task. In case this ob-
ject is a domain constant occurring in a (partially) ground
action, the atom where it occurs is also removed from the
action; (iii) removal of predicates, where a predicate symbol
and all its occurrences are removed. For this specific gen-
erator, the user can choose to replace the removed atoms
with > or ⊥. Since operators are grounded in SAS+, this
allows for more complex transformations. Our implementa-
tion includes merging two operators, and removing operator
preconditions or effects. It is also possible to use multiple
successor generators at once. In our experience, combining
different successor generators produces better results than
using them in isolation.

The user can extend the set of available successor gener-
ators even beyond planning applications. The choice of suc-
cessor generators must of course fit the format of the input.

Evaluator
An evaluator is a procedure that takes any input (in our case
a planning task formalized in PDDL or SAS+) and returns
true or false. The evaluator can run any subroutines, call ex-
ternal programs (e.g., a planner), read and process their out-
put, etc. It can be tailored to whatever use case comes to
mind. Its return value reflects whether the given input trig-
gers the behavior of interest to the user. We share some ex-
amples in the next section. During the search, the evaluator
is called for every successor. The first successor for which
the evaluation returns true is chosen as starting point for the
next iteration.

Use Cases
We conclude with some success stories of Machetli. They
are all based on the Fast Downward planner (Helmert 2006).
However, Machetli is not restricted to Fast Downward and
can trivially handle other classical planners.

Although Machetli does not guarantee a minimal result,
our experiments show that it reduces the size of the tasks
significantly.

Segmentation Fault
One of our first use cases of Machetli was to debug a seg-
mentation fault happening during the constraint generation
phase of the state-equation heuristics (Bonet 2013). Starting
from an SAS+ SOKOBAN task with 1536 actions and 184
variables where the segmentation fault bug was occurring,
Machetli found a smaller task with only 2 actions and 2 vari-
ables in around 2 minutes where the same bug occurred. To
check that the cause of the segmentation fault in the new task
was the same as in the original one, we ran both tasks with
GDB (GNU Project Debugger), where we could see that the
bug was still happening at the same part of the code.

Inadmissible h+

While implementing h+ as an operator-counting heuristic
(Imai and Fukunaga 2014), we found that said implementa-
tion is off by 1 for a single task out of over 1000 planning
tasks from the international planning competitions 1998–
2018. The investigation using Machetli reduced the number
of linear program (LP) variables from 68364 to 108 and the
number of LP constraints from 3772 to 46. As it turns out,
the source of the issue was an error tolerance in the LP solver
which only showed up in the presence of large action costs,
in our case the PARCPRINTER domain. Fixing this issue was
straightforward once it was understood.

This result was achieved by first transforming the PDDL
task and afterwards transforming the SAS+ task starting
from the PDDL result. As Machetli is not limited to debug-
ging planner behavior, taking one step further could include
implementing successor generators for the LP description
directly.

Wrongly Reported Unsolvability
A long-standing bug in the landmark code was only recently
understood thanks to Machetli. A task was reported unsolv-
able by LAMA (Richter and Westphal 2010) even though
solutions exist. This is due to incorrect landmark orderings
introduced based on axioms. This observation was only pos-
sible because Machetli’s output resulted in a landmark graph
with 8 nodes and 10 edges in contrast to 330 nodes and
12724 edges in the original problem. Machetli’s search fin-
ished in less than 10 minutes.

Acknowledgments
This research was supported by TAILOR, a project funded
by EU Horizon 2020 research and innovation programme
under grant agreement no. 952215. Machetli was initially
developed as part of Lucas Galery Käser’s Bachelor’s thesis.



References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence, 11(4): 625–
655.
Bonet, B. 2013. An Admissible Heuristic for SAS+ Plan-
ning Obtained from the State Equation. In Rossi, F., ed., Pro-
ceedings of the 23rd International Joint Conference on Arti-
ficial Intelligence (IJCAI 2013), 2268–2274. AAAI Press.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language, volume 13 of Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Helmert, M. 2009. Concise Finite-Domain Representations
for PDDL Planning Tasks. Artificial Intelligence, 173: 503–
535.
Imai, T.; and Fukunaga, A. 2014. A Practical, Integer-
Linear Programming Model for the Delete-Relaxation in
Cost-Optimal Planning. In Schaub, T.; Friedrich, G.; and
O’Sullivan, B., eds., Proceedings of the 21st European Con-
ference on Artificial Intelligence (ECAI 2014), 459–464.
IOS Press.
Python Software Foundation. 2022. Python Package Index -
PyPI. https://pypi.org/.
Richter, S.; and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research, 39: 127–177.


