
Interpreting Plans with Hierarchic Language Abstractions

Tomas Trescak
Western Sydney Univeristy

School of Computer Data and Mathematical Sciences
Locked Bag 1797

Penrith NSW 2751, Australia
t.trescak@westernsydney.edu.au

Abstract

Explainable planning systems facilitate understanding of sys-
tem decisions and challenge them through investigatory di-
alogue, with social, selective and contrastive explanations.
When aiming at end-user explanations systems often require
capturing and communicating the complexities of the prob-
lem domain from various perspectives. But, the existing ap-
proaches are limited by generating explanations using a lan-
guage consisting only of domain actions and variables, hin-
dering expressivity. Our approach1 defines higher-level hi-
erarchic abstractions composed of domain actions and vari-
ables, facilitating the interpretation of plan actions from var-
ious perspectives. Using abstractions, we can map the end
users’ domain knowledge, language and interests onto the
plan problem domain. Moreover, the organising hierarchy
of interpretations facilitates systematic decomposition from
high-level perspectives to individual actions or activities.

Introduction
Explainable AI Planning (XAIP) systems are maturing, with
a substantial body of work focusing on delivering robust
planning systems that use explanations to help users under-
stand and challenge system decisions. The explanations that
systems generate differ based on the approach and target au-
dience (Zhang et al. 2017). A planning algorithm designer
is more interested in the low-level performance of the algo-
rithm, where explanations relate to debugging activities of
the programming world. Here, every instruction of the plan-
ning algorithm is essential and often, it is an algorithm itself
that provides textual or even visual explanations of its inner
workings (Magnaguagno et al. 2017).

The situation is different for end-users of planning sys-
tems. They are not interested in the inner working of plan-
ning algorithms but rather try to comprehend why a pro-
posed planning scenario is their best option and what would
happen if the system would consider a different alternative
(Chakraborti, Sreedharan, and Kambhampati 2020). The
planning system adjusts the constraints based on user input
and then generates a new outcome and communicates fur-
ther explanations (Fox, Long, and Magazzeni 2017). This

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://youtu.be/Ut7uDlgJY8k

process can occur on the model level (Chakraborti, Sreed-
haran, and Kambhampati 2020), constraining the model and
analysing the outcome, or even on the plan level, explor-
ing the generated plans and potentially adapting and reusing
them in similar scenarios (Hammond 2012).

This paper presents the HLAM - Hierarchic Language
Abstraction Model, an end-user system delivering model-
based and partially plan-based explanations. We assume that
end-users of planning systems play different roles and have
various levels and domains of knowledge. For example, con-
sidering a logistics planning scenario, an end-user of the
planning system can be a dispatcher, driver, or client. To
accommodate various end-user explanations, we propose to
use language abstractions (i.e. interpretations) that facilitate
plan understanding and deliver the possibility for more ex-
pressive explanations in natural language.

Hierarchic Language Abstraction Model
(HLAM)

We have implemented the HLAM as a Java library2, cur-
rently used with PDDL4J3 library. We have also developed
a Javascript library4 with a web application5 demonstrat-
ing capabilities of our model. This application automatically
generates a graphical representation of hierarchic abstrac-
tions, allowing you to drill down to the details of your plan.

Figure 2 depicts the web interface of the HLAM inter-
preter. On the left, you specify the plan you wish to process.
You can also preload one of the example scenarios from
well-known planning domains. You create (or preload) the
interpretation model in the JSON format in the centre of the
screen. You can see the generated HLAM model displayed
as the hierarchic tree view on the right. You can collapse or
expand each of the abstractions. While we create the output
of our model in a tree structure, it is essential to note that the
model is intrinsically defined as an oriented graph, able to
capture complex dependencies between abstractions.

The graph-like structure of our model is clear from the
definition of the HLAM model, where abstraction concepts
(i.e. views) are defined all on one level, using references to

2https://github.com/tomitrescak/pddl4j
3https://github.com/pellierd/pddl4j
4https://github.com/tomitrescak/hlam
5https://hlam.trescak.co



1 {
2 "id": "PackageDelivery",
3 "description": "Package Tracking",
4 "views": [{
5 "start": "load-plane ?id p ?pf",
6 "goal": "unload-plane !id p ?pt",
7 "strategy": "final",
8 "child": "PackageTrip !id !pf !pt"
9 }]

10 },
11 {
12 "id": "PackageTrip !id !f !t",
13 "description": "Package delivery ’!

id’ from ’!f’ to ’!t’",
14 "views": [{
15 "start": "load-plane !id ?p ?pf",
16 "goal": "unload-plane !id !p ?pt",
17 "strategy": "first",
18 "child":"PlaneTrip !id !p !pf !pt"
19 }]
20 },
21 {
22 "id": "PlaneTrip !id !p !f !t",
23 "description": "Plane ’!p’

delivery from ’!f’ to ’!t’",
24 "plan": {
25 "sequence": [
26 "load-plane !id !p !f",
27 "fly-plane !p f t",
28 "unload-plane !id !p !t"
29 ]
30 }
31 }

Figure 1: JSON representation of the model for the logistics
domain

Figure 2: User interface of the HLAM processor at http://
hlam.trescak.co

child concepts rather than in a tree. Figure 1 lists an excerpt
from the JSON representation of the model for the logistics
domain:

Please note the main parts of the HLAM model.

The PackageDelivery and PackageTrip repre-
sent hierarchic abstractions (i.e. have child abstractions
PlaneTrip) of the HLAM hierarchy, and PlaneTrip
extract and interpret sub-plans. The PackageDelivery
has no parameters but extracts individual package journeys
from the plan. Please note that we used the ”final goal” strat-
egy, selecting the last possible unload-plane line, de-
tecting the last destination. The selected sub-plan for each
extracted package journey, along with the list of bound vari-
ables, is passed to the PackageTrip abstraction. This ab-
straction uses the ”first goal” selection strategy, extracting
individual legs of the package journey. It has three parame-
ters:

1. !id - packageId
2. !f - source (from) destination of the package
3. !t - target (to) destination of the package

As we explain in the tutorial video6, the abstraction binds
and passes values of parameters to their child abstractions.
In this case, the PackageDelivery binds the ?id and
?pf value when detecting the the start line load-plane
?id p ?pf. Detection of goal line unload-plane !id
p ?pt is using the bound value of package !id and binding
a ?pt value. Values of id, pf and pt are then used to create
the PackageTrip !id !pf !pt abstraction.

Similarly, in the PackageTrip we consider the start
line to be load-plane !id ?p ?pf, using the bound
value of package !id and binding two new values: the plane
p, and a source destination of the plane delivery pf. The
goal, is the first matching line with unload-plane !id
!p ?pt, where package !id and plane !p are bound (i.e.
must be the same as in the start line), and we bind a new
value ?pt, representing the target destination of this plane
trip.

The model then calls the PlaneTrip child abstraction,
with the bound value of !id coming from the parent node,
and newly bound values !p, !pf, !pt. The PlaneTrip
represents a target sub-plan selection, which selects individ-
ual plan lines. An interesting fact of this example is, that we
are able to extract all individual plane trips with our package
on board, starting with loading the package on board with
load !id !p !f, considering all plane !p trips (note
the use of unbound values for from f and to t destinations),
until our package !p is unloaded from the aeroplane.

Extending HLAM
Our model considers classical planning systems but other-
wise is model and domain-independent. The model’s design
allows extending its functionality to consider more complex
scenarios. We are currently working on an extension that
brings LIME-like(Ribeiro, Singh, and Guestrin 2016) ap-
proach to planning systems explanations. This extension will
consider multiple plans, performing a probabilistic analysis
of outcomes. This will permit the system to report conclu-
sions such as ”if you consider action A instead of B, with
80% probability it will yield to C and 90% probability it
will yield to D”.

6https://youtu.be/Ut7uDlgJY8k



References
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The Emerging Landscape of Explainable AI Planning and
Decision Making. arXiv.
Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
Planning. arXiv.
Hammond, K. J. 2012. Case-based planning: Viewing plan-
ning as a memory task. Elsevier.
Magnaguagno, M.; Pereira, R. F.; Móre, M. D.; and
Meneguzzi, F. 2017. WEB PLANNER: A Tool to Develop
Classical Planning Domains and Visualize Heuristic State-
Space Search. In ICAPS Workshop on User Interfaces and
Scheduling and Planning.
Ribeiro, M. T.; Singh, S.; and Guestrin, C. 2016. ”Why
Should I Trust You?”: Explaining the Predictions of Any
Classifier. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, KDD ’16, 1135–1144. New York, NY, USA: Asso-
ciation for Computing Machinery. ISBN 9781450342322.
Zhang, Y.; Sreedharan, S.; Kulkarni, A.; Chakraborti, T.;
Zhuo, H. H.; and Kambhampati, S. 2017. Plan explica-
bility and predictability for robot task planning. In 2017
IEEE International Conference on Robotics and Automation
(ICRA), 1313–1320.


