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Abstract
Representing real-world planning problems is a major open
subject. Standard planning modeling languages are fully
declarative, making it challenging to use them for express-
ing complex mathematical functions, that are often required
for describing the effects of actions. Recent approaches turn
to external sources of information, such as simulators or
black-box modules, to overcome such modeling limitations.
This paper proposes a novel approach to represent and solve
planning problems, by starting with partial declarative ac-
tion models and incrementally refining them during planning
by invoking domain-specific external modules. Since these
might be computationally expensive, we provide the planner
the ability to trade-off modeling uncertainty against computa-
tion time, to meet target plan accuracy. Results that were ob-
tained for planning with dynamic estimation of action costs
are sketched, and planned work, together with open chal-
lenges, are further detailed.

Introduction
AI planning is a mature research field that has undergone
major developments over the years. While its roots built
on purely symbolic and highly abstract problem formula-
tion (Fikes and Nilsson 1971), it has gradually evolved to
support richer declarative representations by using more de-
tail, which is evident, e.g., in the various PDDL versions in-
troduced (McDermott et al. 1998), cf. (Fox and Long 2003).
In addition, current planning technology, that is tailored
to solve problems expressed in terms of standard formula-
tions (such as PDDL), is based on solid theory, sophisti-
cated search algorithms (Lipovetzky and Geffner 2017), ef-
ficient domain-independent heuristics (see the description of
many heuristics in the book (Ghallab, Nau, and Traverso
2016)) and data-dependent planner portfolios (Gerevini,
Saetti, and Vallati 2014), where much of this work has been
translated to optimized open-source software implementa-
tions (Helmert 2006). However, it is widely accepted that
the adoption of AI planning technology outside the research
community is not very common, which stands in sharp con-
trast to its maturity.

We believe that simplistic modeling is one of the key
factors that inhibit widespread use. In particular, we claim
that many real-world planning problems cannot be ad-
equately represented solely using current modeling lan-
guages, and therefore they are not applicable to existing

domain-independent planning technology. This argument
has been raised before at various times and contexts (Mc-
Cluskey 2003; Boddy 2003; Rintanen 2015), yet the solu-
tion that was consistently suggested—to make modeling lan-
guages more expressive—seems unlikely to be sufficient on
its own. This is because the effects of some actions may only
be described using complex mathematical functions, or even
only known in black-box form. Hence, it is our belief that as
long as exclusively fully declarative models are used, there
will still be planning problems out of reach.

A recent trend advocates coupling of external sources of
information to the planner, in order to overcome modeling
limitations. Presently, there are two major lines of research
taking this approach: planning with simulators (Francès
et al. 2017), and domain-specific attempts—notably within
the framework of Task and Motion Planning (a recent review
is provided in (Garrett et al. 2021)). While these may well
be appropriate for some applications, they do not offer a full
solution to the gap in problem modeling. Indeed, the first re-
lies on simulators that are not always available, and further-
more, it sacrifices much mathematical structure—inherent in
declarative action models—rendering many known heuris-
tics inapplicable, while the second is, as mentioned, domain-
specific, and thus does not offer a high level of generality.

Motivated by the gap suggested, and the opportunity it
presents, we focus our efforts on the following question.

Research Question How can we leverage state-of-the-
art domain-independent planning technology to tackle real-
world problems that cannot be adequately represented using
purely declarative models?

Breaking the Barrier between Problem
Modeling and Planning

Our proposal is to postpone part of the modeling to the plan-
ning phase, and to utilize external sources of information for
model completion ad hoc. Since calling external modules
during planning can be computationally expensive (similar
to using heuristic functions), it is advantageous to provide
the planner with the ability to make educated choices, to
balance computation time against allowed uncertainty. Thus,
our vision is to start with a partial declarative model, and to
incrementally refine it during planning only where it appears
necessary for finding a plan that meets a target accuracy.



While this idea is fairly high-level, we offer one concrete
implementation based on the following specifications:

• Keep problem structure symbolic and abstract, by using
declarative action models that initially only specify struc-
tural preconditions and effects (e.g. via predicates).

• Acquire numeric model parameters online, by letting the
planner call domain-specific external modules (i.e., esti-
mators) that provide information about their values.

• Define an acceptable accuracy for the sought-after plan,
and allow the planner to control the model uncertainty,
so it can trade-off accuracy vs. computation time.

Consequences The immediate implication of the sug-
gested approach is an enhanced ability to represent and solve
planning problems, as clearly every declarative representa-
tion (that so far was constructed prior to planning) can be
completed incrementally by the planner, given appropriate
external modules. The price paid is increased planning time,
due to additional computational effort spent on refining the
model. This trade-off is typical for problem generalization,
as it entails solving a harder problem. The main challenge
that arises is thus to develop computationally efficient plan-
ners, able to balance resource allocation between search ef-
fort and model refinement effort.

We believe that this suggestion provides several appealing
properties. First, any kind of estimator can be used, so there
are no restrictions on the type of data being processed dur-
ing planning, nor on the mathematical operations it utilizes,
and in particular it can be black-box. Second, state-of-the-art
domain-independent planning techniques retain relevance,
as the only difference in the problem formulation is the need
to dynamically acquire numeric model parameters. Namely,
exiting heuristics can still get the information they need to
work, where the sole modification is that they take as in-
puts estimations of—instead of exact—numeric parameters.
More broadly, current domain-independent planners need to
be extended, rather than replaced, in order to be applicable.
Lastly, model uncertainty can be systematically controlled to
meet target plan accuracy, while offering significant poten-
tial savings on redundant modeling time. This might seem
somewhat unusual, as modeling time is not typically a fac-
tor considered from the planning perspective, yet richer rep-
resentations of planning problems could become prohibitive
if fully compiled prior to planning. Indeed, consider the im-
plications on the time required to construct a model, in case
an estimator is applied for every ground action prior to plan-
ning. This is similar to applying numerous heuristics prior
to the planning phase, which is clearly a waste of resources.

PhD Research Goals We have set two goals for the PhD
period that follow our proposal into concrete setups. The first
is to develop a framework that supports dynamic estimation
of action costs, and the second is to develop an analogous
framework for dynamic estimation of action effect probabil-
ities. Achieving these goals require appropriate problem for-
mulations, algorithms, software implementation and finally
empirical validation. We highlight that the first line of work
falls into the category of deterministic planning, where the
second belongs to probabilistic planning. Hence, the expec-

tation is that pursuing each goal will require a different tool-
set, yet the similarities can help carry lessons learned from
one line of work to the other.

Lastly, we wish to clarify a distinction between our
intended setup for probabilistic planning, and standard
Markov Decision Process (MDP) with unknown probabil-
ities. While the latter is typically approached via Reinforce-
ment Learning, so that an agent seeks to find a policy by
trial and error (and in particular, by acting), our setup fo-
cuses on pure planning, where probabilities can be gradually
estimated by calling appropriate estimators.

Research Status
We first briefly describe some of our achievements so far,
and then continue to detail what is planned next. We note
that most of the research that was carried out relates to cost
estimation, where probability estimation is largely left for
future work. In addition, since the results obtained for the
latter have not yet passed external inspection, we do not
present them here.

Dynamic Action Cost Estimation
Our framework employs the basic assumption that every
ground action can potentially have multiple cost estima-
tors, with varying degrees of accuracy and different running
times. In particular we assume that once called, each esti-
mator returns lower and upper bounds for the true action
cost. Note that this does not prevent knowledge of exact
costs (where the bounds are simply equal), nor the usage
of bound priors, that can be specified in the initial problem
model (these can be thought of as estimators that have fast
O(1) run time). It is worth mentioning that an anytime al-
gorithm that serves as a cost estimator can in fact represent
different estimators, where each of them is just an invocation
of the same one but provided different running times.

Relying on this assumption, we then define a deterministic
planning problem where the goal of the planner is to find a
plan that meets a target sub-optimality multiplier as fast as
possible. I.e., it aims to efficiently find a plan πϵ that satisfies

c(πϵ) ≤ c∗ × ϵ,

with c∗ being the optimal cost and ϵ ≥ 1. We proved that an
algorithm which utilizes lower and upper bounds of costs,
instead of exact values, can solve this problem by relying
on the ratio of the accumulated bounds for the action costs
composing the plan.

This lead to the development of ASEC (which stands for
A∗ with Synchronous Estimations of Costs) that implements
this idea. ASEC serves as our principal algorithm for solving
such problem instances, and we have been able to prove that
it is sound, and incomplete in general, but is complete un-
der special circumstances. Next, we developed a post-search
procedure and an iterative framework, which both build on
ASEC to obtain improved results. We further showed that
applying a particular strategy for using ASEC within the it-
erative framework renders the resulting algorithm complete.

We implemented ASEC and its extensions by modifying
and extending Fast Downward, and then empirically tested



its performance on problems generated from planning com-
petition benchmarks, which were added synthetic estima-
tors. Our findings provide strong empirical evidence that
ASEC outperforms alternatives w.r.t. run time, while typi-
cally meeting the target bound. These results, along with de-
tailed analysis and another variant of ASEC, are summarized
in a paper that is currently under submission process.

Planned Work We have three more objectives that we
plan to pursue: 1. In the near future we intend to test var-
ious strategies for using ASEC within the iterative frame-
work, since we have reason to believe that applying a data-
dependent approach could yield run time improvements (at
least in some cases). 2. The empirical results we obtained
suggest that supporting a cache mechanism (for the esti-
mated values) could provide considerable savings. Further-
more, it appears to make it simpler to develop an asyn-
chronous version for ASEC, which might be more efficient.
Hence, we plan to put it to test. 3. Lastly, we are considering
to make stronger assumptions by adding meta-information
about the estimators (such as expected run time), so that the
planner could make more educated choices.

Challenges and Future Work
We suggest several interesting possibilities for future re-
search. First, our work is clearly just the first offspring, and
there may exist better algorithms to be discovered that solve
the problems we suggested. Second, model uncertainty can
be quantified using various statistical measures, leading to
divergent problem setups, e.g., utilizing the Probably Ap-
proximately Correct (PAC) framework, or using standard de-
viations for setting a target bound on the plan cost. Third,
a considerable challenge that arises from our proposed re-
search is to connect actual external computational modules
to the planner. Namely, in order to test the suggested ideas
on real-world examples, one has to embark on a significant
software development project, as each domain has its own
relevant estimators and their unique APIs. This also makes
it harder to compare different algorithms, as synthetic data
(generated by synthetic estimators) might fail to reveal prac-
tical pain points. On the other hand, we believe this also
presents an opportunity to increase the exposure of existing
planning tools outside the research community.
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