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Abstract

The vast diversity of internal designs of taskable black-box AI
systems and their nuanced zones of safe functionality make it
difficult for a layperson to use them without unintended side
effects. The focus of my dissertation is to develop algorithms
and requirements of interpretability that would enable a user
to assess and understand the limits of an AI system’s safe
operability. We develop a personalized AI assessment mod-
ule that lets an AI system execute instruction sequences in
simulators and answer the queries about its execution of se-
quences of actions. Our results show that such a primitive
query-response capability is sufficient to efficiently derive a
user-interpretable model of the system’s capabilities in fully
observable, and deterministic settings.

1 Introduction
The growing deployment of AI systems presents a perva-
sive problem of ensuring the safety and reliability of these
systems. The problem is exacerbated because most of these
AI systems are neither designed by their users nor are their
users skilled enough to understand their internal working,
i.e., the AI system is a black-box for them. Hence such sys-
tems may be used by non-experts who may not understand
how they work or what they can and cannot do. Ongoing
research on the topic focuses on the significant problem of
answering such a user’s questions about the system’s behav-
ior (Chakraborti et al. 2017a; Dhurandhar et al. 2018; An-
jomshoae et al. 2019). However, most non-experts hesitate
to ask questions about new AI tools (Mou and Xu 2017)
and often do not know which questions to ask for assess-
ing the safe limits and capabilities of an AI system. This
problem is aggravated in situations where an AI system can
carry out planning or sequential decision making. Lack of
understanding about the limits of an imperfect system can
result in unproductive usage or, in the worst-case, serious
accidents (Randazzo 2018). This, in turn, limits the adop-
tion and productivity of the AI systems.

My dissertation work aims to create general algorithms
and methods for interpretability which when used with a
black-box AI system, can help generate a description of its
capabilities by interrogating it. Consider a situation where
a logistics company buys new delivery robots. The person
managing these robots is unsure whether the robots correctly
understand a task, or if they can even execute it safely. If the
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Figure 1: The personalized AI assessment module uses the
user’s preferred vocabulary, queries the AI system, and de-
livers an interpretable model of the AI system’s capabilities.

manager was dealing with a delivery person, it might ask
them questions such as “do you think it would be alright
to bring refrigerated items in a regular bag?” If the answer
is “yes”, it might be a cause for concern. Answers to such
questions can help the manager develop an understanding of
the robot’s frame of knowledge, or “model” while placing a
minimal introspective requirement on the robot.

I will next explain the focus of my dissertation (Sec. 2),
followed by a short discussion on related work (Sec. 3), and
will finally discuss some preliminary results (Sec. 4).

2 Focus of My Dissertation
In my dissertation, I plan to develop a personalized AI-
assessment module (AAM), shown in Fig. 1, which can de-
rive the model of capabilities of a black-box AI system in
terms of an user-interpretable vocabulary. AAM takes as in-
put using as input (i) the agent (ii) a compatible simulator
using which the agent can simulate its primitive action se-
quences; and (iii) the user’s concept vocabulary, which may
be insufficient to express the simulator’s state representa-
tion. Such assumptions on the agent are common. In fact,
use of third-party simulators for development and testing is
the bedrock of most of the research on taskable AI systems
today (including game playing AI, autonomous cars, and
factory robots). Providing simulator access for assessment
is reasonable as it would allow AI developers to retain free-
dom and proprietary controls on internal software while sup-
porting calls for assessment and regulation using approaches
like ours. AAM then queries the AI system and receives its
responses. At the end of the querying process, AAM returns
a user-interpretable model of the AI system’s capabilities.
This approach’s advantage is that the AI system need not
know the user vocabulary or the modeling language.



Most simulator-based and analytical-model-based AI sys-
tems can easily answer the kind of questions discussed ear-
lier. However, identifying the high-level capabilites of the AI
system and generating the right set of questions to ask the AI
system to efficiently learn a model of system’s capabilities
is a challenging problem. The focus of this new direction of
research is on solving this problem. In context of this work,
“actions” refer to the core functionality of the agent, denot-
ing the agent’s decision choices, or primitive actions that the
agent could execute (e.g., a keystrokes in a video game). In
contrast, “capabilities” refer to the high-level behaviors that
the AI system can perform using its AI algorithms for be-
havior synthesis, including planning and learning (e.g., nav-
igating to a room, opening a door, etc.). Thus, actions refer
to the set of choices that a tabular-rasa agent may possess,
while capabilities are a result of its agent function (Russell
1997) and can change as a result of algorithmic updates even
as the agent uses the same actions.

Additionally, this proposed method, when used with any
AI system, would also help make them compliant with Level
II assistive AI – systems that make it easy for users to learn
how to use them safely (Srivastava 2021).

2.1 Generating Interrogation Policies
I aim to create an interrogation policy that will generate the
queries for the AI system, and use the AI system’s answers
to estimate its model in the user-interpretable vocabulary. I
plan to generate these queries by reducing the query gener-
ation to a planning problem and then use an interrogation
algorithm to iteratively generate new queries actively, based
on responses to previous queries.

2.2 Inferring the Action Model
Given the predicates and actions, there is an exponential
number of PDDL (McDermott et al. 1998) models possi-
ble. To avoid this combinatorial explosion, I plan to use a
top-down process that eliminates large classes of models,
inconsistent with the AI system, by computing queries that
discriminate between pairs of abstract models. When an ab-
stract model’s answer to a query differs from that of the AI
system, we can eliminate the entire set of possible models
that are refinements of this abstract model.

I plan to start research on this front with simplistic queries
in deterministic fully observable environments and expand
the scope to more general settings. I plan to first extend this
to settings where the model of an AI system adapts itself
to work with the user in a better way, or due to some other
reason. This will avoid relearning the complete model from
scratch, and will learn the AI system’s model much faster. In
the future, this mechanism can be extended to more general
forms of queries. Similar to active learning, information the-
oretic metrics can also be utilized to ascertain which queries
will be better at any given time in the querying process.

2.3 Discovering the Capabilities and Learning
their Descriptions

As mentioned earlier, I want the assessment module to dis-
cover the high-level capabilities of the AI system that can

plan (using search or a policy), and not just the action model
of an AI system. I plan to collect a set of state observations
capturing the behavior of the AI system in form of the state
transitions. I would then discover the high-level capabilities
of the AI system’s behavior using those state transitions, and
then learn the description of these capabilities similar to the
learning of action model discussed earlier. I plan to extend
this to settings where either the capabilities are stochastic
even though the low level transition system is deterministic,
or the low level transition itself is stochastic, thereby result-
ing in capabilities that are stochastic.

3 Related Work
Learning action models Several action model learning
approaches (Gil 1994; Yang, Wu, and Jiang 2007; Cresswell,
McCluskey, and West 2009; Zhuo and Kambhampati 2013;
Aineto, Celorrio, and Onaindia 2019) have focused on learn-
ing the AI system’s model using passively observed data.
Jiménez et al. (2012) and Arora et al. (2018) present a com-
prehensive review of such approaches. These approaches do
not feature any interventions, hence are susceptible to learn-
ing buggy models. Unlike these approaches, our approach
queries the AI system and is guaranteed to converge to the
true model while presenting a running estimate of the accu-
racy of the derived model; hence, it can be used in settings
where the AI system’s model changes due to learning or a
software update.

Differential assessment Bryce, Benton, and Boldt (2016)
address the problem of learning the updated mental model of
a user using particle filtering given prior knowledge about
the user’s mental model. However, they make a strong as-
sumption that the user knows enough to point out errors
in the learned model if needed. Model reconciliation litera-
ture (Chakraborti et al. 2017b; Sreedharan et al. 2019; Sreed-
haran, Chakraborti, and Kambhampati 2021) deals with in-
ferring the differences between the user and the agent mod-
els and removing them using explanations. These methods
consider white-box known models whereas our approach
works with black-box AI systems.

Learning high-level models Given a set of options encod-
ing skills as input, Konidaris, Kaelbling, and Lozano-Perez
(2018) and James, Rosman, and Konidaris (2020) propose
methods for learning high-level propositional models of op-
tions representing various “skills.” They assume access to
predefined options and learn the high-level symbols that de-
scribe those options at the high-level. While they use options
or skills as inputs to learn models defining when those skills
will be useful in terms of auto-generated symbols (for which
explanatory semantics could be derived in a post-hoc fash-
ion), our approach uses user-provided interpretable concepts
as a priori inputs to learn AI system capabilities: high-level
actions as well as their interpretable descriptions in terms of
the input vocabulary.

4 Preliminary Results
We developed three preliminary versions of the personalized
AI assessment module, each focusing on one specific sub-
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Figure 2: Performance comparison of AIA and FAMA in
terms of model accuracy and time taken per query.

problem of the overall larger goal.

Learning the Action Model The first preliminary version
of the AI assessment module, called the agent interrogation
algorithm (AIA) (Verma, Marpally, and Srivastava 2021),
efficiently derives a user-interpretable model of the system
in stationary, fully observable, and deterministic settings.
In the context of this initial work, user-interpretable means
STRIPS-like (Fikes and Nilsson 1971) models because such
models can be easily translated into interpretable descrip-
tions, and they also allow interventions and assessment of
causality. In the future, I plan to learn more general and more
expressive models of the AI system.

Also, in this version, we used plan outcome queries
which are parameterized by an initial state and a plan; and
ask the AI system, the length of the longest prefix of the
plan that it can execute successfully when starting in the
given initial state, as well as the final state that this exe-
cution leads to. E.g., “Given that the truck t1 and pack-
age p1 are at location l1, what would happen if you ex-
ecuted the plan ⟨load truck(p1, t1, l1), drive(t1, l1, l2),
unload truck(p1, t1, l2)⟩?”.

We compared AIA with the closest related work
FAMA (Aineto, Celorrio, and Onaindia 2019) in terms of;
the accuracy of the learned model, the number of queries
asked, and the time taken to generate those queries. Fig. 2
summarizes our findings for systems initialized with IPC
domains. AIA takes lesser time per query and shows better
convergence to the correct model. FAMA sometimes reaches
nearly accurate models faster, but its accuracy continues to
oscillate, making it difficult to ascertain when the learn-
ing process should be stopped. This is because the solution
to FAMA’s internal planning problem introduces spurious
palm tuples in its model if the input traces do not capture the
complete domain dynamics. Also, in domains with negative
preconditions like Termes, FAMA was unable to learn the
correct model.

We also showed that AIA can be used with simulator-
based systems that do not know about predicates and report
states as images. To test this, we wrote classifiers to detect
predicates from images of simulator-states in the PDDL-
Gym (Silver and Chitnis 2020) framework. This framework
provides ground-truth PDDL models, thereby simplifying
the estimation of accuracy. We initialized the AI system
with one of the two PDDLGym environments, Sokoban and
Doors. AIA inferred the correct model in both cases, and
the average number of queries (over 5 runs) used to predict
the correct model for Sokoban and Doors were 201 and 252,
respectively.

Finally, we also show that the models that we learn cap-
ture the correct causal relationships in the AI system’s be-
havior in terms of how the system operates and interacts
with its environment (Verma and Srivastava 2021), unlike
the models learned by approaches that only use observa-
tional data. We call such causal model a generalized dynam-
ical causal model of the AI system capturing under what
conditions it executes certain actions and what happens af-
ter it executes them.

Differential Assessment We developed a differential as-
sessment version of the personalized AI assessment module,
called DAAISy (Nayyar, Verma, and Srivastava 2022). This
addresses the problem of accurately predicting the behavior
of a black-box AI system that is evolving and adapting to
changes in the environment it is operating in.

The algorithm for differential assessment utilizes an ini-
tially known PDDL model of the AI system in the past, and
a small set of observations of AI system’s execution. It uses
these observations to develop an incremental querying strat-
egy that avoids the full cost of assessment from scratch and
outputs a revised model of the system’s new functionality.

We refer to a predicate in an action’s precondition or ef-
fect as a pal-tuple, and it can have three modes; positive,
negative, or absent, depending on whether that predicate is
present in the action’s precondition (or effect) in as a pos-
itive literal, a negative literal or is absent. To assess the
performance of our approach with increasing drift, we em-
ployed two methods of generating the initial domains: (a)
dropping the pal-tuples already present, and (b) adding new
pal-tuples. For each experiment, we used both types of do-
main generation. We generated different initial models by
randomly changing modes of random pal-tuples in the IPC
domains. Thus, in all our experiments an IPC domain plays
the role of ground truth model and a randomized model is
used as the initial known model.

We evaluated the performance of DAAISy along two di-
rections; the number of queries it takes to learn the updated
model of the AI system with increasing amount of drift, and
the correctness of the model DAAISy learns as compared to
the AI system’s updated model.

As shown in the plots in Fig. 3, the computational cost
of assessing each AI system, measured in terms of the num-
ber of queries used by DAAISy, increases as the amount of
drift in the AI system’s model increases. This is expected as
the amount of drift is directly proportional to the number of
pal-tuples affected in the domain. This increases the number
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Figure 3: The number of queries used by DAAISy and AIA
(marked × on y-axis), as well as accuracy of model com-
puted by DAAISy with increasing amount of drift. Amount
of drift equals the ratio of drifted pal-tuples and the total
number of pal-tuples in the domains (#Pals).

of pal-tuples that DAAISy identifies as affected, and hence
ends up asking more questions.

Also, DAAISy always took fewer queries as compared
to AIA to reach reasonably high levels of accuracy because
AIA does not use information about the initial known model
of the AI system and thus ends up querying for all possi-
ble pal-tuples. DAAISy, on the other hand, predicts the set
of pal-tuples that might have changed based on the observa-
tions collected from the AI system and thus requires signifi-
cantly fewer queries.

Discovering the capabilities and learning their descrip-
tions We also developed a version of AAM that can dis-
cover high-level capabilities of an AI planning agent ex-
pressible in terms of the user-interpretable concept vocabu-
laries (Verma, Marpally, and Srivastava 2022). The descrip-
tions of these capabilities as a model are returned to the user
as opposed to the model of agent’s primitive actions.

We initialized the agents using the General Video Game
Artificial Intelligence framework (Perez-Liebana et al.
2016). For each agent, we create a random game instance
with the goal of achieving one of the user’s specified proper-
ties of interest (implemented as predicates). We use the so-
lution to that instance to generate an execution trace that is
used to discover the capabilities of the agent. We then ask
the agent a sequence of queries and use the responses to
complete the descriptions of these capabilities in a STRIPS-
like form. Note that these queries are generated in high-level
user vocabulary that the agent does not understand, hence
we split each query into multiple sub-queries in a form that
agent can answer. The multiple agent responses are also con-
verted to the high-level responses used to complete the capa-
bility descriptions. The approach is guaranteed to compute

Figure 4: Data from behavior analysis shows that using computed
capability descriptions took lesser time and yielded more accurate
results.

capability descriptions that are correct in the sense that they
are consistent with the execution traces, and refinable and
executable with respect to the true capabilities of the agent.

We also conducted a user study to evaluate interpretablity
of the capability descriptions computed by our approach. In-
tuitively, our notion of interpretability matches that of com-
mon English and its use in AI literature, e.g., as enunciated
by Doshi-Velez and Kim (2018): “the ability to explain or to
present in understandable terms to a human.” We evaluate
this through the following operational hypothesis:

H1. The discovered capabilities make it easier for users to
analyze and predict outcome of agent’s possible behaviors.

We designed a user study to evaluate H1. This study com-
pares the predictability and analyzability of agent behavior
in terms of the agent’s low-level actions and high-level ca-
pabilities. Each user is explained the rules of an ATARI-like
game. One group of users – called the primitive action group
– are presented with text descriptions of the agent’s primitive
actions, while the users in the other group – called the capa-
bility group – are presented with a text description of the
six capabilities discovered by our approach. The capability
group users are asked to choose a short summarization for
each capability description, out of the eight possible sum-
marizations that we provide, whereas the primitive action
group users are asked to choose a short summarization for
each of the five primitive action description, out of the five
possible summarizations that we provide. Then each user is
given the same 5 questions in order. Each question contains
two game state images; start and end state. The user is asked
what sequence of actions or capabilities that the agent should
execute to reach the end state from the start state. Each ques-
tion has 5 possible options for the user to choose from, and
these options differ depending on their group. We then col-
lect the data about the accuracy of the answers, and the time
taken to answer each question.

The results for the behavior analysis study are shown in
(Fig. 4) The users took less time to answer questions and
they got more responses correct when using the capabilities
as compared to using primitive actions. This validates H1
that the discovered capabilities made it easier for the users
to analyze and predict the agent’s behavior correctly.
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