
Domain-Independent Heuristics in Probabilistic Planning – Dissertation Abstract

Thorsten Klößner
Saarland University, Saarland Informatics Campus

Foundations of Artificial Intelligence Group
kloessner@cs.uni-saarland.de

Supervisor: Jörg Hoffmann

Abstract

It has been almost two decades since MDP heuristic search
algorithms have been developed. These algorithms guaran-
tee to find an optimal partial policy for the initial state for
several optimization objectives without necessarily expand-
ing the entire state space, if provided with a heuristic that pro-
vides optimistic objective value estimates for all states. While
a large set of such domain-independent heuristic families is
available in classical planning, the same cannot be said about
probabilistic planning. So far, with the exception of occupa-
tion measure heuristics for (constrained) Stochastic Shortest-
Path Problems, most of the research on domain-independent
heuristic construction consists of using a classical heuristic
on the all-outcomes determinization of the planning problem,
in which the probabilistic effect of an action can be chosen at
will. Because this approach is agnostic to the uncertainty in
the underlying problem, these heuristics are often uninforma-
tive. In this thesis, I will develop new domain-independent
heuristics for probabilistic planning which take the proba-
bilistic nature of the problem into account. To this end, the
main focus of the thesis lies in developing the foundations of
abstraction heuristics for probabilistic planning, in particular
Pattern Database heuristics and Merge-and-Shrink heuristics.

Introduction
AI planning is a long-standing discipline in artificial intelli-
gence which deals with the automatic deduction of strategies
for autonomous agents. In classical planning, the simplest
form of planning, a single agent acts inside a fully observ-
able and deterministic environment. Probabilistic Planning
relaxes these assumptions to allow stochastic environments,
where an action leads to one of multiple possible outcomes,
each occurring with an associated probability that is known
a priori. In this thesis, I will focus on fully observable prob-
lems, where problems are commonly modelled as a Markov
Decision Process (MDP). In this setting, the behaviour of
the agent is typically specified by a function from states to
actions, called a policy.

There exist various optimization criteria can be consid-
ered to specify the desired behaviour of an agent. In this
thesis, I focus on two settings in particular. In the MaxProb
setting, we want to find a policy that maximizes the proba-
bility to reach a set of goal states when starting in the initial
state of the problem. On the other hand, Stochastic Shortest-
Path Problems (SSPs, Bertsekas and Tsitsiklis (1991)) as-

sociate each action application with a real-valued cost. The
objective of the agent is to reach a set of goal states with
probability one in the limit, while minimizing the expected
accumulated cost to do so.

There exist a plethora of algorithms to solve MDPs both
optimally and approximately for these settings. Heuristic
search algorithms for SSPs (e.g. Hansen and Zilberstein
(2001), Bonet and Geffner (2003), Trevizan et al. (2017))
have the potential to prevent the exhaustive generation of
the whole state space of the problem. These algorithms re-
quire an admissible heuristic to ensure optimality, i.e. a func-
tion which underestimates the real minimal expected cost-
to-goal of a state. These algorithms can also be extended
to MaxProb (Kolobov et al. 2011), where they require an
upper-bounding heuristic on the maximal goal probability
of a state instead.

Although substantial effort has been invested into the de-
velopment of MDP heuristic search algorithms themselves,
research regarding admissible heuristics which can be sup-
plied to these algorithms is, to this day, rather sparse. Most
of the research utilizes the all-outcomes determinization
(Yoon, Fern, and Givan 2007), in which the agent can simply
choose the probabilistic outcome of an action. With the help
of this transformation, any classical heuristic can be used to
guide the search by delegating to the determinization.

While the determinization-based approach enables the use
of a large arsenal of classical planning heuristics, these
heuristics are often not very informative, since the uncer-
tainty in the problem is completely ignored. On the other
hand, occupation measure heuristics for (constrained) SSPs
(Trevizan, Thiébaux, and Haslum 2017) actually make use
of the probabilistic information. These LP-based heuristics
can be seen as extensions of operator-counting heuristics
(Pommerening et al. 2014) to probabilistic planning. Tre-
vizan, Thiébaux, and Haslum experimental evaluations show
that these heuristics lead to greatly decreased search effort
compared to determinization-based heuristics. As of today,
these heuristics are considered state-of-the-art.

In this thesis, I develop novel domain-independent heuris-
tics for probabilistic planning which are not agnostic to
the uncertainty of the problem. To this end, I extend sev-
eral families of abstraction heuristics from classical plan-
ning to probabilistic planning, including Pattern Database
heuristics (Korf 1997; Haslum et al. 2007; Pommerening,



Röger, and Helmert 2013), and Merge-and-Shrink heuris-
tics (Helmert, Haslum, and Hoffmann 2007; Nissim, Hoff-
mann, and Helmert 2011; Helmert et al. 2014). Apart from
an experimental evaluation, I investigate the theoretical re-
lationships with previous heuristics, in particular with clas-
sical abstraction heuristics on the determinization as well as
occupation measure heuristics.

Preliminaries
I consider probabilistic planning problems with full observ-
ability in the context of different optimization objectives.
This thesis abstract focuses primarily on the MaxProb ob-
jective, which prioritizes goal probability maximization, as
well as Stochastic Shortest-Path Problems (SSPs, Bertsekas
and Tsitsiklis (1991)). To represent both settings in a uni-
form manner, the underlying probabilistic model will be
kept separate from the considered optimization objective.

MDPs and Optimization Objectives As the baseline
model, we define a Markov Decision Process (MDP) as a 4-
tuple 〈S,A, T , sI〉. S is the finite, non-empty set of states,
A is a finite, non-empty set of actions, T : S × A × S →
[0, 1] is the transition probability function and sI ∈ S is
the initial state of the problem. For any state-action pair
〈s, a〉 ∈ S × A, either

∑
t∈S T (s, a, t) = 1 (a is enabled

in s) or T (s, a, t) = 0 for all t ∈ S (a is disabled in s).
The set of actions enabled in s is denoted A(s). We assume
that A(s) 6= ∅ for all states. We can easily introduce artifi-
cial self-loops to achieve this. Finally, a policy is a mapping
π : S → A with π(s) ∈ A(s) for every state s ∈ S.

The MaxProb optimization objective is specified by a set
of goal states SG ⊆ S. The semantics of a policy in presence
of this optimization objective is given by the policy state
value function VπMP : S → [0, 1], where VπMP(s) represents
the probability to reach the goal when starting in the state s
and following policy π. It is defined as the (point-wise) least
solution of the equation system

VπMP(s) =

{
1 s ∈ SG ,∑

t∈S T (s, a, t)VπMP(t) s /∈ SG .

The optimal state value function V∗MP is defined as
V∗MP(s) := maxπ VπMP(s). A policy π? is optimal if Vπ?

MP =
V∗MP. For MaxProb, an optimal policy always exists. More-
over, we say that π is an s-proper policy, if VπMP(s) = 1. If π
is s-proper for all s, then π is proper.

The optimization objective considered for SSPs is given
by a set of goal states SG ⊆ S and an action cost function
c : A → R. This objective makes two additional assump-
tions: (i) There exists a proper policy and (ii) Every improper
policy eventually accumulates infinite cost1. The policy state
value function VπSSP : S → R is only defined for proper poli-
cies π for this objective. VπSSP(s) gives the expected accu-
mulated cost until the goal is reached when starting in state
s and acting according to π. It is the unique solution of the

1More general SSP definitions exist (Kolobov et al. 2011; Guil-
lot and Stauffer 2020), but I focus on this traditional definition for
the sake of brevity.

equation system

VπSSP(s) =

{
0 s ∈ SG

c(π(s)) +
∑
t∈S T (s, a, t)VπSSP(t) s /∈ SG

The optimal state value function V∗SSP is defined by
V∗SSP(s) := minπ proper VπSSP(s). Analogously, a policy π? is
optimal if Vπ?

SSP = V∗SSP and always exists.

Probabilistic SAS+ Tasks The planning problem is spec-
ified as a probabilistic SAS+ task (Trevizan, Thiébaux, and
Haslum 2017), except that the cost function is omitted since
it is not needed for MaxProb. A probabilistic SAS+ task is
a tuple 〈V,A, sI ,G〉. V denotes the state variables, where
each v ∈ V is associated with a finite domain D(v) of
at least two values. A partial state is a partial function
s : V ⇀

⋃
v∈V D(v) with s(v) ∈ D(v) if defined. We de-

note the variables on which s is defined by V(s). s is a state
if V(s) = V . The set of states of a probabilistic SAS+ task
Π is denoted S(Π). For a set of variables P ⊆ V and partial
state s, we denote by s[P ] the projection of s onto P and
define the set S[P ] := {s[P ] | s ∈ S}. We say s subsumes
t, written t ⊆ s, if V(s) ⊆ V(t) and s[V(s)] = t[V(s)]. The
application of partial state e onto partial state s is defined
by appl(s, e)(v) = e(v) if v ∈ V(e) and s(v) otherwise.
A is the set of actions. An action a specifies its precondi-
tion pre(a), and a probability distribution Pra over effects,
where an effect is a partial state. The possible effects of a
are denoted Eff(a) := {e | Pra(e) > 0}. Lastly, the initial
state sI is a state and the goal G is a partial state.

A probabilistic SAS+ task Π = 〈V,A, sI ,G〉 induces the
MDP 〈S(Π),A, T , sI〉 where T (s, a, t) is defined as 0 if
pre(a) * s and by

T (s, a, t) :=
∑

e∈Eff(a) s.t.
appl(s,e)=t

Pra(e)

otherwise. The set of goal states for the MaxProb and SSP
objective is given by SG = {s | s ⊆ G}.

Heuristics A heuristic h returns an estimate h(s) for the
optimal state value V∗MP(s) or V∗SSP(s) of a state s. For Max-
Prob, a heuristic is admissible if h(s) ≥ V∗MP(s), whereas it
is admissible in the SSP setting if h(s) ≤ V∗SSP(s). For SSPs,
a heuristic is consistent if the equation

h(s) ≤ c(a) +
∑
t∈S
T (s, a, t)h(t)

is satisfied for every s ∈ S and a ∈ A(s), and goal-aware
if h(s) = 0 for goal states s ∈ SG . These properties are
convenient because a heuristic that is both consistent and
goal-aware is admissible. Also, some SSP heuristics search
algorithms like iLAO* (Hansen and Zilberstein 2001) can
be optimized for consistent, goal-aware heuristics.

Lastly, a finite family of heuristics (hi)i∈I (where I is
some index set) is additive if

∑
i∈I hi(s) ≤ V∗SSP(s) and

multiplicative if
∏
i∈I hi(s) ≥ V∗MP(s).



Abstraction Heuristics
In classical planning, abstractions heuristics are a fairly ver-
satile family of heuristics that has been studied extensively
in various forms, for example through Pattern Databases
(e.g. Korf (1997); Haslum et al. (2007); Pommerening,
Röger, and Helmert (2013)), Cartesian Abstraction (Seipp
and Helmert 2013) and Merge-and-Shrink Abstraction (e.g.
Helmert, Haslum, and Hoffmann (2007); Nissim, Hoffmann,
and Helmert (2011); Helmert et al. (2014)). In classical plan-
ning, an abstraction is typically specified by a surjective ab-
straction mapping α : S → α(S), which associates each
state with a corresponding abstract state α(s) ∈ α(S). For
a labelled transition system (LTS), the deterministic plan-
ning model usually assumed in classical planning, an ab-
straction induces an abstract LTS which overapproximates
the behaviour of the original LTS. This abstract LTS can then
be solved to obtain an admissible heuristic for the original
problem. To do the same with respect to an MDP, a defini-
tion for the abstract MDP induced by an abstraction mapping
needs to be proposed.

Projection Heuristics
In recent work (Klößner et al. 2021), we propose a defi-
nition for the specific case of projections. A projection is
an abstraction mapping s 7→ s[P ] which considers a sub-
set of state variables (a pattern) P ⊆ V of the problem.
The abstract MDP for a projection with respect to P is de-
fined as 〈S[P ], A, TP , sI [P ]〉, where the transition probabil-
ity TP (σ, a, τ) is defined as 0 if pre(a)[P ] * σ, otherwise

TP (σ, a, τ) =
∑

e∈Eff(a) s.t.
appl(σ,e[P ])=τ

Pra(e).

The probabilistic projection heuristic hP (s) := V∗MP(s[P ])
is an admissible heuristic for MaxProb, and the analogous
heuristic hP (s) := V∗SSP(s[P ]) is even consistent and goal-
aware for SSPs, when the abstract set of goal states for
both objectives is defined as SG [P ] and the cost function
for SSPs is unchanged for the abstraction. Most importantly,
these heuristics dominate the respective determinization-
based projection heuristic on the same pattern.

Pattern Database Heuristics
In classical planning, Pattern Database (PDB) heuristics are
a family of abstraction heuristics that use several projec-
tions in unison to achieve a more accurate heuristic. Given a
collection of patterns C ⊆ P(V), the corresponding pat-
tern database heuristic is constructed by precomputing a
lookup table of heuristic values for each individual projec-
tion heuristic hP for P ∈ C. When an estimate for a state s
is requested, these individual projection heuristics can then
be combined by performing the necessary table lookups and
taking the highest estimate: hmax

C (s) = maxP∈C{hP (s)}.
An even better approach is to employ additivity constraints
to find sub-collections D ⊆ C such that the heuristics
(hP )P∈D become additive (Haslum et al. 2007). Max’ing
over these sub-collections then yields and an even stronger
heuristic, called the canonical PDB heuristic hcan

C (s).

We published two papers (Klößner et al. 2021; Klößner
and Hoffmann 2021) in which we transfer these concepts to
probabilistic planning and construct pattern database heuris-
tics which exploit a collection of MDP projections instead.
In particular, we show that the well-known additivity con-
straints considered by Haslum et al. can be adapted and used
in a straightforward manner to obtain additivity constraints
for SSPs and even multiplicativity constraints for MaxProb.

In more detail, we say that an action affects a variable v
if there is a possible effect e ∈ Eff(a) with v ∈ V(e) and
e(v) 6= pre(a)(v). An action a affects a pattern P if any
variable v ∈ P is affected. We show that, for a collection of
patternsC, if every action affects at most one pattern P ∈ C,
the projection heuristics (hP )P∈C are additive for the SSP
objective, and multiplicative for the MaxProb objective.

This observation leads to a direct generalization of hcan
C (s)

for both MaxProb and SSPs. We show that construction of
this heuristic is analogous to the construction in classical
planning: Finding the maximal additive sub-collections of
C can still be accomplished by finding the maximal cliques
in the graph where nodes are the pattern P ∈ C and two pat-
terns are connected if their projections are additive, which is
easy to check for only two patterns. Our empirical evaluation
shows a substantial improvement over the determinization-
based canonical PDB heuristics.

In very recent work (Klößner et al. 2022b), we also deal
with the question of how to construct reasonably construct
the initial pattern collectionC when the problem is no longer
deterministic. We consider and extend two approaches that
have been studied in classical planning: Pattern construction
via Counter-example guided abstraction refinement (CE-
GAR, Rovner, Sievers, and Helmert (2019)) and pattern
construction as a search problem solved using hill-climbing
(Haslum et al. 2007). We reformulate both of these frame-
works to operate on MDPs, as opposed to using the classi-
cal algorithm variants on the determinization. Compared to
classical pattern construction techniques on the determiniza-
tion, both algorithms have a significant advantage in partic-
ular problem domains. However, there also exist many do-
mains in which we observe no benefit over determinization-
based pattern construction, so these algorithms can by no
means be seen as a universal answer to this research ques-
tion. We might therefore revisit this topic in the future.

Merge-and Shrink Heuristics
The Merge-and-Shrink framework (Dräger, Finkbeiner, and
Podelski 2006) is a framework that originates from model
checking but has since found use in various forms in classi-
cal planning, in particular to compute abstraction heuristics.
In a nutshell, the Merge-and-Shrink framework operates on
a factored transition system which is a tuple of labelled tran-
sition systems (LTS) F = 〈Θ1, . . . ,Θn〉 with a common set
of labels. Each Θi is called a factor. These factors implic-
itly represent the LTS that is their synchronous product. If
Θi = 〈Si,L, T i, siI〉, the synchronous product is the LTS⊗
F = 〈

⊗n
i=1 Si,L, T ⊗, 〈s1

I , . . . s
n
I〉〉 where

T ⊗ := {〈〈s1, . . . , sn〉, a, 〈t1, . . . , tn〉〉
| ∀i ∈ {1, . . . , n}.〈si, a, ti〉 ∈ T i}.



At the start of Merge-and-Shrink, the tuple of atomic pro-
jections (to a single variable) of the LTS induced by the plan-
ning task yields the initial factored transition system and is
an exact implicit representation of the state space. In each
iteration, the algorithm applies one of four transformation to
the factored transition system:
1. Merge: Select two factors Θ1 and Θ2 and replace them

by their synchronous product Θ1 ⊗Θ2.
2. Shrink: Select a factor and apply an abstraction on top of

it. Replace the old factor with the abstraction.
3. Prune: Select a factor and remove states which are not

alive, i.e. which are unreachable or cannot reach the goal.
4. Label Reduction: Reduce the number of labels by aggre-

gating multiple labels into a common label.
Depending on how the framework is used, the procedure ei-
ther stops when there is only one factor left or when a mem-
ory or time limit is reached.

The algorithms has several important properties. If we ig-
nore label reduction, each factor represents an abstraction of
the original state space at any point in time in the algorithm
(modulo non-alive states). The algorithm can therefore be
used to construct abstraction heuristics. Furthermore, with-
out label reduction and if bisimulation is used as a shrinking
strategy, then each factor represents a bisimulation the fac-
tored LTS implicitly represents a bisimulation of the original
LTS at any point in time (modulo non-alive states).

As of yet, it remains an open question whether the Merge-
and-Shrink framework can be formulated for probabilistic
planning. The first approach that comes to mind is to model
each factor as an MDP and to initialize the factored repre-
sentation with all atomic (MDP) projections. A reasonable
definition of a product between MDPs should again have the
property that the product of all atomic projections yield the
original state space. Regrettably, this is impossible to accom-
plish. Consider a planning task with variables v, w ∈ {0, 1}
and a single action a with the following effects:

Pra({v 7→ 1}) = 0.25 Pra({w 7→ 1}) = 0.25

Pra({v 7→ 1, w 7→ 1}) = 0.5

Unfortunately, this planning task has exactly the same pro-
jections onto v and w as the planning task where the effect
probabilities are changed to

Pra({}) =
1

16

Pra({v 7→ 1}) =
3

16
Pra({w 7→ 1}) =

3

16

Pra({v 7→ 1, w 7→ 1}) =
9

16

Consequentially, we cannot define a merging operation that
reconstructs the original MDP of the planning task from the
atomic projections, as there are already multiple MDPs with
the same atomic projections. The problem arises because
we do no longer remember the individual action outcomes
in the atomic projections. Whereas in classical Merge-and-
Shrink we must only synchronize those transitions with the
same label when building the product, we have an additional

layer of synchronization in the probabilistic setting: We must
now also synchronize on the outcomes of an action, as every
factor must be subject to the same outcome. Therefore, the
planning model used to represent a factor must remember
the individual outcomes and their probabilities.

Regarding shrinking strategies, previous considerations in
classical planning dealt with variants of bisimulation (Nis-
sim, Hoffmann, and Helmert 2011; Katz, Hoffmann, and
Helmert 2012). Therefore, a natural candidate to investigate
for shrinking strategies in probabilistic planning is proba-
bilistic bisimulation (Larsen and Skou 1991), as well as pos-
sibly relaxed variations of this concept. Alternatively, tradi-
tional shrinking strategies are still applicable by considering
the determinization of a factor. In particular, any bisimula-
tion on the determinization is a probabilistic bisimulation,
although not necessarily the coarsest bisimulation.

Finally, label reduction is a transformation that becomes
useful when using bisimulation as a shrinking strategy. Of-
ten, using bisimulation only leads to a small reduction in the
size of a factor, making this shrinking strategy barely effec-
tive in isolation. However, collapsing multiple labels into a
common label usually has positive effects on bisimulation,
as less labels mean less restrictions for the bisimulation rela-
tion. If the label reduction is exact, i.e. it does not introduce
any spurious transitions in the represented transition system,
then this transformation can even be safely applied without
changing the cost-to-goal estimates the factors. It is there-
fore important to also consider label reduction when using a
variant of bisimulation in the probabilistic setting.

Other Contributions and Research Ideas
Although this thesis mainly focuses on abstraction heuris-
tics, any topic related to domain-independent heuristic con-
struction for MaxProb and SSPs falls into the broader scope
of the thesis. In a recent publication (Klößner et al. 2022a),
we propose a theory of cost partitioning (Katz and Domshlak
2010) for SSPs. We found out that Trevizan, Thiébaux, and
Haslum’s projection occupation measure heuristic hpom es-
sentially computes an optimal cost-partitioning over atomic
projections. This has major implications, as it means that op-
timal cost partitioning over PDB heuristics is theoretically
superior to hpom. An obvious candidate for future work is an
experimental evaluation of different cost-partitioning tech-
niques and different sets of combined heuristics.

Conclusion
Abstraction heuristics for MaxProb and SSPs are promis-
ing candidates to extend the landscape of admissible heuris-
tics for these settings and enable more effective use of
MDP heuristic search algorithms. So far, we focused in par-
ticular on Pattern Database heuristics, for which we ob-
serve a clear advantage over determinization-based heuris-
tics. When combined with cost-partitioning, these heuristics
even have the potential to outperform occupation measure
heuristics, which are the most powerful heuristics for SSPs
at present. In future work, we aim to transfer the Merge-and-
Shrink framework to probabilistic planning and take a de-
tailed look at various cost-partitioning techniques for SSPs.



References
Bertsekas, D. P.; and Tsitsiklis, J. N. 1991. An Analysis of Stochas-
tic Shortest Path Problems. Mathematics of Operations Research,
16: 580–595.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improv-
ing the Convergence of Real-Time Dynamic Programming. In
Giunchiglia, E.; Muscettola, N.; and Nau, D., eds., Proceedings
of the 13th International Conference on Automated Planning and
Scheduling (ICAPS’03), 12–21. Trento, Italy: AAAI Press.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed Model
Checking with Distance-Preserving Abstractions. In Valmari, A.,
ed., Proceedings of the 13th International SPIN Workshop (SPIN
2006), volume 3925 of Lecture Notes in Computer Science, 19–34.
Springer-Verlag.
Guillot, M.; and Stauffer, G. 2020. The Stochastic Shortest Path
Problem: A polyhedral combinatorics perspective. European Jour-
nal of Operational Research, 285(1): 148–158.

Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops. Artificial Intelligence,
129(1-2): 35–62.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig, S.
2007. Domain-Independent Construction of Pattern Database
Heuristics for Cost-Optimal Planning. In Howe, A.; and Holte,
R. C., eds., Proceedings of the 22nd National Conference of the
American Association for Artificial Intelligence (AAAI’07), 1007–
1012. Vancouver, BC, Canada: AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible Ab-
straction Heuristics for Optimal Sequential Planning. In Boddy,
M.; Fox, M.; and Thiebaux, S., eds., Proceedings of the 17th In-
ternational Conference on Automated Planning and Scheduling
(ICAPS’07), 176–183. Providence, Rhode Island, USA: Morgan
Kaufmann.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge & Shrink Abstraction: A Method for Generating Lower
Bounds in Factored State Spaces. Journal of the Association for
Computing Machinery, 61(3): 16:1–16:63.
Katz, M.; and Domshlak, C. 2010. Optimal admissible composition
of abstraction heuristics. Artificial Intelligence, 174(12–13): 767–
798.
Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to Relax
a Bisimulation? In Bonet, B.; McCluskey, L.; Silva, J. R.; and
Williams, B., eds., Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (ICAPS’12), 101–
109. AAAI Press.
Klößner, T.; and Hoffmann, J. 2021. Pattern Databases for Stochas-
tic Shortest Path Problems. In Proceedings of the 14th Annual
Symposium on Combinatorial Search (SOCS’21), 131–135. AAAI
Press.
Klößner, T.; Pommerening, F.; Keller, T.; and Röger, G. 2022a.
Cost Partitioning Heuristics for Stochastic Shortest Path Problems.
In Proceedings of the 32nd International Conference on Automated
Planning and Scheduling (ICAPS’22), 193–202. AAAI Press.
Klößner, T.; Steinmetz, M.; Torralba, À.; and Hoffmann, J. 2022b.
Pattern Selection Strategies for Pattern Databases in Probabilistic
Planning. In Proceedings of the 32nd International Conference on
Automated Planning and Scheduling (ICAPS’22), 184–192. AAAI
Press.
Klößner, T.; Torralba, Á.; Steinmetz, M.; and Hoffmann, J. 2021.
Pattern Databases for Goal-Probability Maximization in Proba-
bilistic Planning. In Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling (ICAPS’21), 80–89.
AAAI Press.

Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011. Heuris-
tic Search for Generalized Stochastic Shortest Path MDPs. In Bac-
chus, F.; Domshlak, C.; Edelkamp, S.; and Helmert, M., eds., Pro-
ceedings of the 21st International Conference on Automated Plan-
ning and Scheduling (ICAPS’11). AAAI Press.
Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s Cube Us-
ing Pattern Databases. In Kuipers, B. J.; and Webber, B., eds.,
Proceedings of the 14th National Conference of the American As-
sociation for Artificial Intelligence (AAAI’97), 700–705. Portland,
OR: MIT Press.
Larsen, K. G.; and Skou, A. 1991. Bisimulation through proba-
bilistic testing. Information and Computation, 94(1): 1–28.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Computing Per-
fect Heuristics in Polynomial Time: On Bisimulation and Merge-
and-Shrink Abstraction in Optimal Planning. In Walsh, T., ed.,
Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence (IJCAI’11), 1983–1990. AAAI Press/IJCAI.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting the
Most Out of Pattern Databases for Classical Planning. In Rossi,
F., ed., Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI’13). AAAI Press/IJCAI.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B. 2014. LP-
Based Heuristics for Cost-Optimal Planning. In Chien, S.; Do, M.;
Fern, A.; and Ruml, W., eds., Proceedings of the 24th International
Conference on Automated Planning and Scheduling (ICAPS’14),
226–234. AAAI Press.
Rovner, A.; Sievers, S.; and Helmert, M. 2019. Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal
Classical Planning. In Proceedings of the 29th International Con-
ference on Automated Planning and Scheduling (ICAPS’19), 362–
367. AAAI Press.
Seipp, J.; and Helmert, M. 2013. Counterexample-guided Carte-
sian Abstraction Refinement. In Borrajo, D.; Fratini, S.; Kambham-
pati, S.; and Oddi, A., eds., Proceedings of the 23rd International
Conference on Automated Planning and Scheduling (ICAPS’13),
347–351. Rome, Italy: AAAI Press.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Occupa-
tion Measure Heuristics for Probabilistic Planning. In Proceedings
of the 27th International Conference on Automated Planning and
Scheduling (ICAPS’17), 306–315. AAAI Press.
Trevizan, F. W.; Thiébaux, S.; Santana, P. H.; and Williams, B.
2017. I-dual: Solving Constrained SSPs via Heuristic Search in
the Dual Space. In Sierra, C., ed., Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’17),
4954–4958. AAAI Press/IJCAI.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A Baseline
for Probabilistic Planning. In Boddy, M.; Fox, M.; and Thiebaux,
S., eds., Proceedings of the 17th International Conference on Au-
tomated Planning and Scheduling (ICAPS’07), 352–359. Provi-
dence, Rhode Island, USA: Morgan Kaufmann.


