Neural Network Action Policy Verification via Predicate Abstraction
— Dissertation Abstract

Marcel Vinzent

Supervisor: Jorg Hoffmann
Saarland University
Saarland Informatics Campus
Saarbriicken, Germany
{vinzent, hoffmann} @cs.uni-saarland.de

Abstract

Neural networks (NN) are an increasingly important repre-
sentation of action policies. With their application for real-
time decision-making in safety critical areas, like, e.g., au-
tonomous driving, it arises the need to gain trust in the ap-
plied policies. The ultimate goal to gain this trust is through
formal verification of the policy-induced behavior. This is a
challenging endeavor as it compounds the state space explo-
sion with the difficulty of analyzing even single NN decision
episodes.

In our work, we make a contribution to cope with this
challenge. We approach safety verification through (over-
approximating) abstract reachability analysis. We compute
predicate abstractions of the policy-restricted state space; ex-
pressing the abstract transition computation as a satisfiability
modulo theories (SMT) problem, and devise a range of algo-
rithmic enhancements to avoid costly calls to SMT.

First empirical results show that our approach can outperform
competing approaches. Future work will further enhance the
technique and extend it to support probabilistic settings.

Introduction

Neural networks (NN) are an increasingly important repre-
sentation of action policies; in particular for real-time deci-
sion making in dynamic environments. The vision is elegant
and simple: The NN policy can be learned in advance and at
run-time a single (computationally efficient) call to the NN
suffices to select an action. But how to verify that such a pol-
icy is safe? Leading such a proof is potentially very hard as
it compounds the state space explosion with the difficulty of
analyzing even single NN decision episodes.

In our work, we contribute to cope with this challenge. We
tackle non-deterministic state spaces over bounded-integer
state variables. Given an NN action policy 7, a start condi-
tion ¢, and an unsafety condition ¢, we verify whether
a state sy = ¢y is reachable from a state sg = ¢o under 7.

We approach safety verification via the extension of pred-
icate abstraction (PA) (Graf and Saidi 1997; Ball et al.
2001) to deal with NN action policies. PA is defined through
a set P of predicates, where each p € P is a linear con-
straint over the state variables (e.g. x < 5 or y > z). Ab-
stract states are characterized by truth value assignments
over P, grouping together all concrete states that induce the
same truth values. Transitions are over-approximated to pre-
serve all possible behaviors. For our purpose of policy safety

verification, we are interested in the predicate abstraction of
the policy-restricted state space ©7, i.e., the subgraph of ©
induced by 7. We refer to the predicate abstraction of ©7 as
policy predicate abstraction (PPA) ©7,. We build the frag-
ment of ©F reachable from ¢q. If ¢y is not reached then
policy 7 is proven to be safe.

To compute PA, one repeatedly needs to decide whether
there is a transition from abstract state A to abstract state
A’ under some action a: does there exist a state s € A
s.t. executing a in s results in s € A’? This transition
problem is routinely addressed using SMT solvers such as
Z3 (de Moura and Bjgrner 2008). Now, to compute the PPA

%, one additionally needs to check whether 7(s) = a, i.e.,
whether the policy selects a in s. Solving this over and over
again via calls to SMT quickly becomes infeasible due to the
complex structure of neural networks.

In our current work, we hence have devised a range of
algorithmic enhancements, leveraging relaxed tests to avoid
costly calls to SMT. Most importantly, continuous relaxation
of the discrete state variables enables to plug in state-of-the-
art SMT solvers tailored to NN (Katz et al. 2017, 2019). We
also have devised a method using branch-and-bound around
relaxed tests to avoid exact calls to SMT altogether, as well
as a method that simplifies SMT calls via information ob-
tained through NN analysis. Empirical results so far show
that our approach can outperform competing approaches and
that our algorithmic enhancements are required for practical-
ity (Vinzent, Steinmetz, and Hoffmann 2022).

Future research will investigate techniques for automatic
abstraction refinement, specifically via counter example
guided abstraction refinement (Clarke et al. 2000). Here, we
will develop refinement approaches to rule out spuriousness
related to the policy. Additionally, we will leverage further
NN analysis techniques to enhance the efficacy of our ap-
proach, e.g., symbolic propagation (Li et al. 2019) and ad-
versarial attack methods (Goodfellow, Shlens, and Szegedy
2015). We also plan to compute quantitative safety results
via value iteration (Givan, Leach, and Dean 1997) in the ab-
stract state space of probabilistic systems.

Related Work

There has been remarkable progress on analyzing individ-
ual NN decision episodes. In our work so far, we query
Marabou (Katz et al. 2019), which extends Simplex by a

lazy case splitting approach to handle piecewise-linear acti-
vation functions. Marabou utilizes a symbolic interval prop-
agation approach (Wang et al. 2018b) which leverages inter-
val arithmetic to propagate bounds on the NN input through
the network. Other related work (Ehlers 2017) leverages
non-symbolic bound propagation for linear relaxation of NN
activation nodes. Follow-up work (Wang et al. 2018a) then
combines symbolic bound propagation with linear relax-
ation. Recent work (Li et al. 2019) extends the symbolic
propagation approach to general abstract domains; e.g., also
zonotopes rather than simple interval bounds. In the context
of our work, such bound propagation techniques can be uti-
lized to over-approximate the possible NN policy behavior.
Additionally, adversarial attack methods (e.g. (Goodfellow,
Shlens, and Szegedy 2015)), can in principle be adapted to
certify transition existence.

The verification of NN decision sequences — NN policies
executed in an environment — is in its infancy. For software
verification, there is initial work on abstract interpretation of
programs with calls to NN sub-procedures (Christakis et al.
2021). Gros et al. (2020b) apply statistical model checking
to statistically verify NN action policies, but this approach
is limited to small numbers of start states as these need to be
explicitly enumerated. Tran et al. (2019) use star sets to ex-
actly compute respectively over-approximate reachable sets
of a system controlled by a neural network; focusing on lin-
ear systems however.

The verification of NN controllers through polynomial ap-
proximation has been studied in several works (e.g. (Huang
et al. 2019; Ivanov et al. 2021)). These approaches are con-
ceptually very different to our work. Specifically, Ivanov et
al. (2021) focus on NN with sigmoid/tanh activation func-
tions! which allows to compile the NN behavior into a hy-
brid system — whose composition with the controlled system
is amenable to known verification techniques. On the one
hand, this immediately enables to perform verification for
a broad range of, possibly complex, systems. On the other
hand, such verification is bound to approximation. In con-
trast, our approach is tailored to piecewise-linear activation
functions (e.g. ReLU) and leverages NN-specific techniques
which enable for exact analysis.

In a context closer to Al sequential decision making, re-
cent work (Akintunde et al. 2018, 2019) explores the use of
MIP encodings for bounded-length verification of NN con-
trolled systems. The approach is technically rather differ-
ent to ours. While we compute individual (abstract) transi-
tions, in bounded-length verification one checks fixed-size
path existence, i.e., transition sequences, via a monolithic
MIP encoding; iteratively for paths of increasing sizes. This
requires to solve encodings of stepwise increasing cost. Em-
pirical evaluations show that for our purposes the prac-
ticability of bounded-length verification is rather limited
(Vinzent, Steinmetz, and Hoffmann 2022).

Besides verification, there are also other techniques to
gain trust in an NN action policy, e.g., safe reinforcement

!Arguably, piecewise-linear activation functions can be
smoothly approximated (e.g., ReLU via Swish (Ramachandran,
Zoph, and Le 2018)) and vice versa (e.g., (Dutta et al. 2018)).

learning (see (Garcia and Fernandez 2015) for an overview),
especially shielding (e.g. (Alshiekh et al. 2017)); or testing
(e.g. (Steinmetz et al. 2022)); or any manner of explainable
Al that may help to elucidate the NN’s action decisions, in
particular visualization (e.g. (Gros et al. 2020a)). In fact, be-
yond verification, our policy predicate abstraction technique
might also turn out to be useful for policy visualization pur-
poses; enabling zooming in the policy-restricted state space
based on abstraction predicates.

Background

State Space Representation. A state space is a tuple
(V, L,O) of state variables V), action labels £, and op-
erators 0. The domain D, of each variable v € V is a
non-empty bounded integer interval. Exp denotes the set
of linear integer expressions over V (i.e., of the form
di-vi+---+d. v, +cwithdy,...,d.,c € Z). C de-
notes the set of linear integer constraints over V), (i.e., of
the form e; 1 ep with <t € {<,=,>} and e, es € Exp),
and all Boolean combinations thereof. An operator o € O
is a tuple (g,1,u) with label [€ £, guard g € C, and (par-
tial) update u: V — Exp.

A (partial) variable assignment s over V is a function
with domain dom(s) C V and s(v) € D, for all v €
dom(s). By s1[s2] we denote the update of s by so, i.e.,
dom(si[s2]) = dom(s1) U dom(ss), where s1[sq](v) =
s2(v) if v € dom(sz) and s1[s2](v) = s1(v) otherwise.
By e(s), respectively ¢ € C, we denote the evaluation of
e € Ezxp , respectively ¢ € C, over s. We write s = ¢, if
@(s) evaluates to true.

The state space of (V, £, O) is a labeled transition system
(LTS) © = (S, L, T). The states S are the complete vari-
able assignments over V. For the transitions 7 C Sx L xS
itholds (s, 1, s") € T iff there exists an operator o = (g, [, u)
such that s = g (the guard is satisfied in the source state s)
and s’ = s[u(s)] withu(s) = {v +— u(v)(s) | v € dom(u)}
(the successor state s’ is the update of s by u evaluated over
s). We also write s = o for s |= g and s[o] for s[u(s)].

Observe that the separation between action labels and op-
erators allows both, state-dependent effects (different oper-
ators with the same label [applicable in different states); as
well as action outcome non-determinism (different operators
with the same label [applicable in the same state).

NN Action Policies. An action policy 7 is a function S —
L. The policy-restricted state space O™ is the subgraph
(S, L, T™) of O with T™ = {(s,1,5") € T | m(s) =}

We consider action policies represented by neural net-
works (NN). Specifically, we focus on fully connected feed-
forward NN with piecewise-linear activation functions. In
the input layer there is an input for each state variable; and
in the output layer there is an output for each action label.
The policy selects an action label by applying argmax to the
output layer.

Policy Safety. A safety property is a pair p = (¢o, dv),
where ¢, ¢y € C. Here, ¢y identifies the set of unsafe
states that should be unreachable from the set of possible
start states represented by ¢o. That is, 7 is unsafe with re-
spect to p iff there exist states sg, sy € S such that sg = ¢,

su | ¢u, and sy is reachable from sg in policy-restricted
O7T. Otherwise 7 is safe.

Policy Predicate Abstraction

In general, it is not feasible to perform explicit reachability
analysis of ¢y (from ¢g) in O7. Instead, our approach is
to perform reachability analysis in the abstract state space
obtained through predicate abstraction (Graf and Saidi
1997). Given a set of predicates P C C, an abstract state
sp is a (complete) truth value assignment over P. The ab-
straction of a (concrete) state s € S is the abstract state
s|p with s|p(p) = p(s) for each p € P. Conversely,
[sp] = {s' € S| §'|p = sp} denotes the concretization
of sp, i.e., the set of all concrete state represented by sp.
Accordingly, we say that sp satisfies a constraint ¢ € C,
written sp = ¢, iff there exists s € [sp] such that s = ¢.

The abstract state space is then defined in a transition-
preserving manner:

Definition 1 (Predicate Abstraction of ©™). The predicate
abstraction of ©7 over P is the LTS O} = (Sp, L, T7),
where Sp is the set of all predicates states over P, and 75 =
{(slp, 1, s'l») | (s,0,8") € T™}.

Due to the underlying policy m, we refer to ©% as pol-
icy predicate abstraction. Due to its over-approximating
nature, safety of can be proven via safety in ©%:

Proposition 2 (Safety in ©%). Let p = (¢o, ¢v) be a safety
property. If there do not exist sp, s, € Sp with sp = ¢y,
s> [= ¢u such that s is reachable from sp in ©F, then 7
is safe with respect to p.

The computation of ©F necessitates to solve the tran-

sition problem for every possible abstract state transition:
(sp,l,s%) € TF iff there exists an operator o € O with
label [and a concrete state s € [sp] such that s = o,
s[o] € s, and m(s) = I. We can check this via individ-
ual tests for each /-labeled operator:
Definition 3 (Transition Test of OF). Let sp, s € Sp,
and let o = (g,l,u) be an operator. The transition test of
©%, denoted TSat™ (sp, 0, s%), is fulfilled iff there exists
s € [sp] suchthat s = o, s[o] € [s/5] and 7(s) = L.

Transition tests are routinely addressed as satisfiability
modulo theories (SMT) (Barrett et al. 1994) problems. Pred-
icate abstraction is applicable in principle so long as any
method for solving these is available. Compared to standard
predicate abstraction approaches, the dominating source of
complexity in computing policy predicate abstraction is that,
in addition to the standard transition condition, one needs to
check whether the policy 7 actually selects [in s € [sp].

Algorithmic Enhancements

An exact SMT solution of TSat™ (sp, 0, s’») is computation-
ally very expensive — specifically due to the large num-
ber of disjunctions encoding every (piecewise-linear) acti-
vation function in the NN representation of 7. In our cur-
rent work, we address this via a range of algorithmic en-
hancements, leveraging relaxed tests that over-approximate
TSat™ (sp, 0, s%). If such a relaxed test is violated, then
TSat™ (sp, 0, s) is violated as well.

Necessary Conditions. One relaxation technique is
through tests on necessary conditions of TSat™ (sp, 0, s5).
Necessary condition that we check are: label selection (s €
[sp]: m(s) = 1I; short I € m(sp)), operator applica-
bility (sp = o), respectively their combination (Is €
[sp]: m(s) =1 A s |= 0), and the non-policy-restricted tran-
sition condition (3s € [sp]: s = 0 A s[o] € [s)).

These conditions essentially check different parts of
TSat™ (sp, 0, s) in isolation. Tests on these conditions have
the decisive advantage that, if one such test is violated, one
can skip all corresponding transition tests. For instance, if
we find [¢ n(sp), then TSat"(sp, 0, s) is violated and
can thus be skipped for all [-labeled operators o and all ab-
stract successor states s%. Additionally, tests ignoring the
NN selection condition are usually much cheaper to answer.

Continuous Relaxation. Another relaxation technique is
through continuous relaxation. Each test (TSat™ (sp, 0, s’5)
as well as tests on necessary conditions) can be relaxed by
interpreting the integer state variables as continuous vari-
ables (with real-valued interval domains). The advantage of
this relaxation is the applicability of existing SMT solvers
specialized to NN analysis. Specifically, in our work so far,
we query Marabou (Katz et al. 2019), an SMT solver tai-
lored to NN with piecewise-linear activation functions.

If a relaxed test is violated, the corresponding exact test is
violated too (and can be skipped). However, continuously-
relaxed tests can be utilized even further: If the solution
found to a relaxed test happens to be integer, the correspond-
ing exact test is derived to be fulfilled as well. While this
will in general not be the case, we can iterate relaxed tests
in a branch & bound (B&B) search for such a solution. In
each iteration, if there exists a state variable v assigned to
a non-integer value « in the relaxed solution found by the
solver, we pick one such v and create two search branches,
restricting v to be less equal |« respectively greater equal
[«]. A branch is terminated once the relaxed tests is found
to be violated, or when an integer solution is found. If no
integer solution is found during the search, the exact tests is
violated. The advantage of this approach is the applicability
of existing SMT solvers dedicated to NN analysis to answer
not only relaxed but also exact tests.

Fixing Activation Cases. Additionally to the enhance-
ment trough relaxed tests, there are further techniques from
NN analysis that can be utilized. One such option is fixing
activation cases in the NN. That is, given value bounds on
the neurons in the network one can potentially prune some
or even fix one of the (piecewise-linear) activation cases of
the respective neuron. For instance, for the prominent ReLU
activation function ReLU(z) := max(z,0) the idea works
as follows: If the activation-function input z is known to be
less equal 0, then one can fix ReLU(x) = 0; if = is known
to be greater equal 0, one can fix ReLU(z) = .

There is a broad range of NN analysis techniques that can
be utilized to compute such bounds (e.g. (Wang et al. 2018b;
Li et al. 2019)) given constraints on the input of an NN (in
our case sp). Towards transition tests — relaxed or exact —
activation case fixing as well as the derived bounds them-
selves can be used to simplify the resulting SMT encodings

and to prune the SMT search space. This idea has been de-
ployed in other work before (e.g. (Mohammadi et al. 2020;
Katz et al. 2019)). Specifically, Marabou (Katz et al. 2019),
which we query for relaxed tests, fixes activation cases based
on bounds implied by individual constraints, respectively
derived through symbolic interval propagation on the net-
work topology (Wang et al. 2018b). In our work, we then
also extract these bounds towards activation case fixing in
exact tests.

Experimental Results

In our experiments so far (Vinzent, Steinmetz, and Hoff-
mann 2022), we evaluated our approach on a collection of
benchmarks that involve action outcome non-determinism.
As competing approaches, we implemented an explicit-
search approach enumerating all states the policy can reach,
as well as a bounded-length verification approach following
the ideas of Akintunde et al. (2018; 2019). The results show
that our algorithmic enhancements — in particular relaxed
tests answered by leveraging dedicated NN analysis tech-
niques — are required for practicality, and that our approach
can outperform its competitors.

Future Work

We distinguish three research lines that we plan to cover in
our future work: technical enhancements, adaption to other
settings, and automatic abstraction refinement. We also note
that there are many more approaches from formal meth-
ods that (when adapted to the the NN policy setting) can
in principle serve as competing verification approaches (e.g.
(Tonetta 2009; Cimatti et al. 2016)).

Technical Enhancements. There remains a broad range
of NN analysis techniques that can be utilized to improve
performance. For instance, techniques to derive tight neuron
value bounds (e.g. (Li et al. 2019)) can be leveraged to en-
hance activation case fixing. In principle, our approach can
profit from any progress in the analysis of single NN deci-
sion episodes.

Furthermore, we also plan to leverage adversarial attack
methods for under-approximation purposes (e.g. (Goodfel-
low, Shlens, and Szegedy 2015)). In essence, if an attack
finds a solution to a transition test, the call to SMT can
be skipped. If not, there still may exist a solution and we
call SMT. That said, robustness guarantees on adversarial
attacks (e.g. (Hein and Andriushchenko 2017)) might even
be used to prove that a solution does not exist.

On the technical level there is also a vast potential for par-
allelization — running several transition tests at once (differ-
ent (solver) techniques, different transitions); as well as in-
cremental solving —e.g., preserving the solver-internal state
between selection and transition tests.

Adaption to Other Settings. In our current setting,
we consider non-probabilistic state spaces with non-
deterministic action outcomes. A natural extension to make
our approach amenable to probabilistic systems is by per-
forming value iteration (e.g. (Givan, Leach, and Dean 1997))

in the abstract state space; obtaining quantitative safety re-
sults. The abstraction computation itself remains unchanged.

Currently, we allow 7 to select inapplicable actions, i.e.,
there may exist s € S such that 7(s) does not label any
outgoing transition and the policy execution stalls. Here, as
potential future work, we plan to extend our approach to en-
able stalling detection. Alternatively, a prominent option is
also to super-impose applicability on 7, restricting its selec-
tion to the applicable actions. Again, we plan to adapt our
approach to such settings as part of future work. In princi-
ple, both adaptions are straight-forward; resulting in signifi-
cantly more expensive SMT problems tough.

Abstraction Refinement. In our work so far, we assume
the predicate set P to be provided as input. Yet, the converse
of Proposition 2 does not hold, i.e., unsafety in ©% does not
imply unsafety in ©7. Depending on P, the abstraction may
contain spurious paths without correspondence in the con-
crete state space. Hence, automatic abstraction generation
(respectively refinement) remains key future work towards a
complete verification procedure.

Here, counter example guided abstraction refinement
(CEGAR) (e.g. (Clarke et al. 2000)) is a common procedure
to refine P, iteratively removing spurious (unsafe) paths un-
til either the abstraction is proven safe, or a non-spurious un-
safe path is found — proving unsafety of the concrete system.
The adaption of CEGAR to NN policy verification is non-
trivial since refinement predicates must reflect NN selection
behavior; a path s, l*, ..., sk, 1%, ..., s} may be spurious
due to I* € m(sk) while 7(s") # I* in the path concretiza-
tions. Our future research will address this challenge. One
idea is to approximate (state-dependent) “selection guards”
via constraints that split 53; based on NN behavior, e.g., with
respect to s; in a path concretization. The selection guards
can then be fed into standard refinement procedures based
on weakest precondition computation.

In the context of CEGAR, we also plan to investigate
the potential of incremental abstraction computation, i.e.,
reusing (transition) information of coarser abstractions when
computing the refined abstract state space. Most importantly
such information can be used to prune the potential tran-
sition space as well as to witness existing transitions. An-
other technique of interest is lazy abstraction, i.e., refining
the abstraction only locally respectively checking (abstract)
policy-restriction only once an abstract unsafe path has been
found. Moreover, the search for counter examples may also
be sped up using heuristics, e.g., again based on information
from coarser (non-policy-restricted) abstractions.

Conclusion

In our work, we provide policy predicate abstraction as a
new method to address NN policy verification. Our experi-
ments so far have shown that it can outperform competing
approaches and that our algorithmic enhancements are re-
quired for practicality. An important future task is to address
the automatic selection of the abstraction predicates.

Overall, we believe that NN policy verification is impor-
tant, and we hope that our work provides one basic building
block for this huge endeavor.

References

Akintunde, M.; Lomuscio, A.; Maganti, L.; and Pirovano, E.
2018. Reachability Analysis for Neural Agent-Environment
Systems. In KR.

Akintunde, M. E.; Kevorchian, A.; Lomuscio, A.; and
Pirovano, E. 2019. Verification of RNN-Based Neural
Agent-Environment Systems. In AAAL

Alshiekh, M.; Bloem, R.; Ehlers, R.; Konighofer, B.;
Niekum, S.; and Topcu, U. 2017. Safe Reinforcement Learn-
ing via Shielding. CoRR, abs/1708.08611.

Ball, T.; Majumdar, R.; Millstein, T. D.; and Rajamani, S. K.
2001. Automatic Predicate Abstraction of C Programs. In
Prog. Lang. Design and Implementation (PLDI).

Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
1994. Satisfiability modulo theories. In Handbook of Satis-
fiability, 825-885.

Christakis, M.; Eniser, H. F.; Hermanns, H.; Hoffmann, J.;
Kothari, Y.; Li, J.; Navas, J.; and Wiistholz, V. 2021. Auto-
mated Safety Verification of Programs Invoking Neural Net-
works. In CAV.

Cimatti, A.; Griggio, A.; Mover, S.; and Tonetta, S. 2016.
Infinite-state invariant checking with IC3 and predicate ab-
straction. Formal Methods Syst. Des., 49(3): 190-218.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-Guided Abstraction Refinement. In
CAV.

de Moura, L.; and Bjgrner, N. 2008. Z3: An Efficient SMT
Solver. In TACAS.

Dutta, S.; Jha, S.; Sankaranarayanan, S.; and Tiwari, A.
2018. Output Range Analysis for Deep Feedforward Neural
Networks. In Dutle, A.; Muifioz, C. A.; and Narkawicz, A.,
eds., NFM.

Ehlers, R. 2017. Formal Verification of Piece-Wise Linear
Feed-Forward Neural Networks. In D’Souza, D.; and Ku-
mar, K. N., eds., Automated Technology for Verification and
Analysis.

Garcia, J.; and Fernandez, F. 2015. A comprehensive survey
on safe reinforcement learning. JMLR, 16: 1437-1480.

Givan, R.; Leach, S. M.; and Dean, T. L. 1997. Bounded Pa-
rameter Markov Decision Processes. In Steel, S.; and Alami,
R., eds., ECP.

Goodfellow, L. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In Learning Rep-
resentations (ICLR).

Graf, S.; and Saidi, H. 1997. Construction of Abstract State
Graphs with PVS. In CAV.

Gros, T. P.; GroB3, D.; Gumhold, S.; Hoffmann, J.; Klauck,
M.; and Steinmetz, M. 2020a. TraceVis: Towards Visual-
ization for Deep Statistical Model Checking. In Proceed-
ings of the 9th International Symposium On Leveraging Ap-
plications of Formal Methods, Verification and Validation
(ISoLA’20).

Gros, T. P.; Hermanns, H.; Hoffmann, J.; Klauck, M.; and
Steinmetz, M. 2020b. Deep Statistical Model Checking.
In Formal Techniques for Distributed Objects, Components,
and Systems (FORTE).

Hein, M.; and Andriushchenko, M. 2017. Formal Guaran-
tees on the Robustness of a Classifier against Adversarial
Manipulation. In NIPS.

Huang, S.; Fan, J.; Li, W.; Chen, X.; and Zhu, Q. 2019.
ReachNN: Reachability analysis of neural-network con-
trolled systems. ACM Trans. Emb. Comp. Sys., 18: 1-22.
Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G.J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Trans.
Emb. Comp. Sys., 20: 7:1-7:26.

Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In CAV.

Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,
C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.; Dill,
D. L.; Kochenderfer, M.; and Barrett, C. 2019. The Marabou
Framework for Verification and Analysis of Deep Neural
Networks. In CAV.

Li, J.; Liu, J.; Yang, P.; Chen, L.; Huang, X.; and Zhang, L.
2019. Analyzing deep neural networks with symbolic prop-
agation: Towards higher precision and faster verification. In
Static Analysis (SAS).

Mohammadi, K.; Karimi, A.; Barthe, G.; and Valera, I.
2020. Scaling Guarantees for Nearest Counterfactual Ex-
planations. CoRR, abs/2010.04965.

Ramachandran, P.; Zoph, B.; and Le, Q. V. 2018. Searching
for Activation Functions. In ICLR Workshop Track Proceed-
ings.

Steinmetz, M.; Fiser, D.; Eniser, H.; Ferber, P.; Gros, T.;
Heim, P.; Holler, D.; Schuler, X.; Wiistholz, V.; Christakis,
M.; and Hoffmann, J. 2022. Debugging a Policy: Automatic
Action-Policy Testing in Al Planning. In Proceedings of the
32nd International Conference on Automated Planning and
Scheduling (ICAPS).

Tonetta, S. 2009. Abstract Model Checking without Com-
puting the Abstraction. In Cavalcanti, A.; and Dams, D.,
eds., Formal Methods.

Tran, H.; Cai, F.; Lopez, D. M.; Musau, P.; Johnson, T. T;
and Koutsoukos, X. D. 2019. Safety Verification of Cyber-
Physical Systems with Reinforcement Learning Control.
ACM Trans. Embed. Comput. Syst., 18(5s): 105:1-105:22.

Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022. Neural
Network Action Policy Verification via Predicate Abstrac-
tion. In Proceedings of the 32nd International Conference
on Automated Planning and Scheduling (ICAPS).

Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018a. Efficient Formal Safety Analysis of Neural Net-
works. In Bengio, S.; Wallach, H. M.; Larochelle, H.; Grau-
man, K.; Cesa-Bianchi, N.; and Garnett, R., eds., NeurIPS.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018b. Formal Security Analysis of Neural Networks us-
ing Symbolic Intervals. In USENIX Security Symposium.

