
32nd International Conference on
Automated Planning and Scheduling

June 13–24, 2022, virtually from Singapore

DC 2022
ICAPS Doctoral Consortium 2022

Participants

Carlos Núñez-Molina Universidad de Granada
Devin Thomas University of New Hampshire
Eyal Weiss Bar-Ilan University
Johannes Schmalz The Australian National University
Kristýna Pant̊učková Charles University
Marcel Vinzent Saarland University
Maxence Grand University of Grenoble Alpes
Naman Shah Arizona State University
Pulkit Verma Arizona State University
Songtuan Lin The Australian National University
Thorsten Klößner Saarland University
Ursula Addison City University of New York
Xiaodi Zhang The Australian National University

Mentors

Alessandro Cimatti Center for Digital Industry, Fondazione Bruno Kessler
Christopher Beck University of Toronto
David Smith Consultant
Eva Onaindia Polytechnic University of Valencia
George Konidaris Brown University
Hector Geffner Universitat Pompeu Fabra
Laura Hiatt Naval Research Laboratory
checked from here Malte Helmert University of Basel
Masataro Asai MIT-IBM Watson AI Lab / IBM Research Cambridge
Mauro Vallati University of Huddersfield
Sarah Keren Technion – Israel Institute of Technology
Subbarao (Rao) Kambhampati Arizona State University

Organizers

Pascal Bercher The Australian National University
Sara Bernardini Royal Holloway, University of London

ii

Preface

The ICAPS Doctoral Consortium (DC) is intended to provide PhD students with the opportunity to
interact closely with established researchers and get feedback on their research and advice on career
possibilities and build a professional network, improving the cohesion of new researchers within the
ICAPS community.

At ICAPS 2022, we received 13 submissions from students across Europe, Israel, North America, and
Australia. Each student submitted a dissertation abstract, a list of preferred mentors, a CV, and a
supervisor statement via EasyChair. We admitted all students.

We implemented a mentoring program by which almost all students could be paired with their first
mentor choice. The students and the mentors met online before the start of the DC Program.

The papers covered a variety of topics, including Neurosymbolic AI, Deep Learning, Reinforcement
Learning, Neural Networks, Action Policies, Verification, Predicate Abstraction, Long-Term Auton-
omy, Goal Formulation, Goal Management, Probabilistic Planning, Replanning, Linear Programming,
HTN Planning, Plan Recognition, Conformant Planning, Model Reconciliation, Markov Decision Pro-
cess, Stochastic Shortest Path Problems, Heuristic Search, Abstraction Heuristics, Integrated Task and
Motion Planning, Situated Planning, Metareasoning, Interpretability, Classical Planning and Search.

The DC program took place on July 20th, from 5 pm UCT to 0:15 am UCT online of gather.town and
Zoom since ICAPS 2022 was a virtual conference. It was particularly challenging to find a time and
schedule that works for all participants as their time zones span from the US over Europe to Australia.
Despite this challenge, all the PhD students participated in the DC.

The PhD students pre-recorded short videos with a presentation of their papers, which was made avail-
able online on YouTube prior to the start of the conference. During the DC Program, the students
presented their posters. The poster presentation was arranged in two sessions to allow the students to
see each other’s work.

Wheeler Ruml, Professor in the Department of Computer Science at the University of New Hampshire,
gave an invited talk titled “Why Are You Doing This? Advice on Writing Papers and Giving Talks”,
which was well attended by the students and the community.

Finally, the DC Program included social events at the start and end of the technical program. The
students engaged in two “speed-dating” sessions (called speed.gathering) during which they had an
opportunity to get to know each other.

Additional information regarding the DC can be found on the following page:
http://icaps22.icaps-conference.org/dc-2022

Pascal and Sara,
ICAPS DC 2022 Organizers,
July 2022

iii

http://icaps22.icaps-conference.org/dc-2022

iv

Invited Talk

We were more than happy to announce a very exciting speaker!

Wheeler Ruml gave an invited talk on:

Why Are You Doing This? Advice on Writing Papers and Giving Talks

Science is a grand conversation that spans the globe and continues over generations. Writing a paper is
your chance to cheat death and join in this noble endeavor. Just as you formulate your thoughts before
speaking during a conversation, you should understand what you are trying to say with your paper,
even before you start the research. Similarly, giving a talk is your chance to share with others the
good news that you’ve discovered. But don’t overestimate the listener - they are probably jet-lagged
or distracted by a child screaming in the other room. This talk will be full of my personal opinions
and advice - I hope it is helpful to you!

Bio

Wheeler Ruml, Professor in the Department of Computer Science at the University of New Hampshire

Wheeler Ruml is a Professor of Computer Science at the University
of New Hampshire (UNH). He was General Co-Chair of ICAPS-14,
Treasurer for the ICAPS executive council, and a co-founder and
President of SoCS. Before joining UNH, he led a team at Xerox’s
PARC lab that used AI planning techniques to build the world’s
fastest printer. He enjoys trying to decide which node to expand.

v

vi

Table of Contents

A Generalization of Automated Planning Using Dynamically Estimated Action Models

Eyal Weiss . 1 – 3

Action Model Learning based on Grammar Induction

Maxence Grand . 4 – 8

Application of Neurosymbolic AI to Sequential Decision Making

Carlos Núñez-Molina . 9 – 12

Counter-Example Based Planning

Xiaodi Zhang . 14 – 17

Data Efficient Paradigms for Personalized Assessment of Taskable AI Systems

Pulkit Verma .18 – 22

Domain Specific Situated Planning

Devin Thomas . 23 – 26

Domain-Independent Heuristics in Probabilistic Planning

Thorsten Klößner . 27 – 31

Learning Hierarchical Abstractions for Efficient Taskable Robots

Naman Shah . 32 – 35

Modeling Assistance for AI Planning From the Perspective of Model Reconciliation

Songtuan Lin .36 – 40

Neural Network Action Policy Verification via Predicate Abstraction

Marcel Vinzent . 41 – 45

Plan Recognition

Kristýna Pant̊učková . 46 – 49

Probabilistic Replanning with Guarantees

Johannes Schmalz . 50 – 53

la VIDA: A System for Value and Identity Driven Autonomous Agent Behavior in Vir-
tual World Scenarios

Ursula Addison .54 – 57

vii

viii

ix

A Generalization of Automated Planning Using
Dynamically Estimated Action Models – Dissertation Abstract

Eyal Weiss
The MAVERICK Group, Bar-Ilan University, Israel

Supervisor: Prof. Gal A. Kaminka
{weissey, galk}@cs.biu.ac.il

Abstract
Representing real-world planning problems is a major open
subject. Standard planning modeling languages are fully
declarative, making it challenging to use them for express-
ing complex mathematical functions, that are often required
for describing the effects of actions. Recent approaches turn
to external sources of information, such as simulators or
black-box modules, to overcome such modeling limitations.
This paper proposes a novel approach to represent and solve
planning problems, by starting with partial declarative ac-
tion models and incrementally refining them during planning
by invoking domain-specific external modules. Since these
might be computationally expensive, we provide the planner
the ability to trade-off modeling uncertainty against computa-
tion time, to meet target plan accuracy. Results that were ob-
tained for planning with dynamic estimation of action costs
are sketched, and planned work, together with open chal-
lenges, are further detailed.

Introduction
AI planning is a mature research field that has undergone
major developments over the years. While its roots built
on purely symbolic and highly abstract problem formula-
tion (Fikes and Nilsson 1971), it has gradually evolved to
support richer declarative representations by using more de-
tail, which is evident, e.g., in the various PDDL versions in-
troduced (McDermott et al. 1998), cf. (Fox and Long 2003).
In addition, current planning technology, that is tailored
to solve problems expressed in terms of standard formula-
tions (such as PDDL), is based on solid theory, sophisti-
cated search algorithms (Lipovetzky and Geffner 2017), ef-
ficient domain-independent heuristics (see the description of
many heuristics in the book (Ghallab, Nau, and Traverso
2016)) and data-dependent planner portfolios (Gerevini,
Saetti, and Vallati 2014), where much of this work has been
translated to optimized open-source software implementa-
tions (Helmert 2006). However, it is widely accepted that
the adoption of AI planning technology outside the research
community is not very common, which stands in sharp con-
trast to its maturity.

We believe that simplistic modeling is one of the key
factors that inhibit widespread use. In particular, we claim
that many real-world planning problems cannot be ad-
equately represented solely using current modeling lan-
guages, and therefore they are not applicable to existing

domain-independent planning technology. This argument
has been raised before at various times and contexts (Mc-
Cluskey 2003; Boddy 2003; Rintanen 2015), yet the solu-
tion that was consistently suggested—to make modeling lan-
guages more expressive—seems unlikely to be sufficient on
its own. This is because the effects of some actions may only
be described using complex mathematical functions, or even
only known in black-box form. Hence, it is our belief that as
long as exclusively fully declarative models are used, there
will still be planning problems out of reach.

A recent trend advocates coupling of external sources of
information to the planner, in order to overcome modeling
limitations. Presently, there are two major lines of research
taking this approach: planning with simulators (Francès
et al. 2017), and domain-specific attempts—notably within
the framework of Task and Motion Planning (a recent review
is provided in (Garrett et al. 2021)). While these may well
be appropriate for some applications, they do not offer a full
solution to the gap in problem modeling. Indeed, the first re-
lies on simulators that are not always available, and further-
more, it sacrifices much mathematical structure—inherent in
declarative action models—rendering many known heuris-
tics inapplicable, while the second is, as mentioned, domain-
specific, and thus does not offer a high level of generality.

Motivated by the gap suggested, and the opportunity it
presents, we focus our efforts on the following question.

Research Question How can we leverage state-of-the-
art domain-independent planning technology to tackle real-
world problems that cannot be adequately represented using
purely declarative models?

Breaking the Barrier between Problem
Modeling and Planning

Our proposal is to postpone part of the modeling to the plan-
ning phase, and to utilize external sources of information for
model completion ad hoc. Since calling external modules
during planning can be computationally expensive (similar
to using heuristic functions), it is advantageous to provide
the planner with the ability to make educated choices, to
balance computation time against allowed uncertainty. Thus,
our vision is to start with a partial declarative model, and to
incrementally refine it during planning only where it appears
necessary for finding a plan that meets a target accuracy.

ICAPS Doctoral Consortium 2022

1

While this idea is fairly high-level, we offer one concrete
implementation based on the following specifications:

• Keep problem structure symbolic and abstract, by using
declarative action models that initially only specify struc-
tural preconditions and effects (e.g. via predicates).

• Acquire numeric model parameters online, by letting the
planner call domain-specific external modules (i.e., esti-
mators) that provide information about their values.

• Define an acceptable accuracy for the sought-after plan,
and allow the planner to control the model uncertainty,
so it can trade-off accuracy vs. computation time.

Consequences The immediate implication of the sug-
gested approach is an enhanced ability to represent and solve
planning problems, as clearly every declarative representa-
tion (that so far was constructed prior to planning) can be
completed incrementally by the planner, given appropriate
external modules. The price paid is increased planning time,
due to additional computational effort spent on refining the
model. This trade-off is typical for problem generalization,
as it entails solving a harder problem. The main challenge
that arises is thus to develop computationally efficient plan-
ners, able to balance resource allocation between search ef-
fort and model refinement effort.

We believe that this suggestion provides several appealing
properties. First, any kind of estimator can be used, so there
are no restrictions on the type of data being processed dur-
ing planning, nor on the mathematical operations it utilizes,
and in particular it can be black-box. Second, state-of-the-art
domain-independent planning techniques retain relevance,
as the only difference in the problem formulation is the need
to dynamically acquire numeric model parameters. Namely,
exiting heuristics can still get the information they need to
work, where the sole modification is that they take as in-
puts estimations of—instead of exact—numeric parameters.
More broadly, current domain-independent planners need to
be extended, rather than replaced, in order to be applicable.
Lastly, model uncertainty can be systematically controlled to
meet target plan accuracy, while offering significant poten-
tial savings on redundant modeling time. This might seem
somewhat unusual, as modeling time is not typically a fac-
tor considered from the planning perspective, yet richer rep-
resentations of planning problems could become prohibitive
if fully compiled prior to planning. Indeed, consider the im-
plications on the time required to construct a model, in case
an estimator is applied for every ground action prior to plan-
ning. This is similar to applying numerous heuristics prior
to the planning phase, which is clearly a waste of resources.

PhD Research Goals We have set two goals for the PhD
period that follow our proposal into concrete setups. The first
is to develop a framework that supports dynamic estimation
of action costs, and the second is to develop an analogous
framework for dynamic estimation of action effect probabil-
ities. Achieving these goals require appropriate problem for-
mulations, algorithms, software implementation and finally
empirical validation. We highlight that the first line of work
falls into the category of deterministic planning, where the
second belongs to probabilistic planning. Hence, the expec-

tation is that pursuing each goal will require a different tool-
set, yet the similarities can help carry lessons learned from
one line of work to the other.

Lastly, we wish to clarify a distinction between our
intended setup for probabilistic planning, and standard
Markov Decision Process (MDP) with unknown probabil-
ities. While the latter is typically approached via Reinforce-
ment Learning, so that an agent seeks to find a policy by
trial and error (and in particular, by acting), our setup fo-
cuses on pure planning, where probabilities can be gradually
estimated by calling appropriate estimators.

Research Status
We first briefly describe some of our achievements so far,
and then continue to detail what is planned next. We note
that most of the research that was carried out relates to cost
estimation, where probability estimation is largely left for
future work. In addition, since the results obtained for the
latter have not yet passed external inspection, we do not
present them here.

Dynamic Action Cost Estimation
Our framework employs the basic assumption that every
ground action can potentially have multiple cost estima-
tors, with varying degrees of accuracy and different running
times. In particular we assume that once called, each esti-
mator returns lower and upper bounds for the true action
cost. Note that this does not prevent knowledge of exact
costs (where the bounds are simply equal), nor the usage
of bound priors, that can be specified in the initial problem
model (these can be thought of as estimators that have fast
O(1) run time). It is worth mentioning that an anytime al-
gorithm that serves as a cost estimator can in fact represent
different estimators, where each of them is just an invocation
of the same one but provided different running times.

Relying on this assumption, we then define a deterministic
planning problem where the goal of the planner is to find a
plan that meets a target sub-optimality multiplier as fast as
possible. I.e., it aims to efficiently find a plan πϵ that satisfies

c(πϵ) ≤ c∗ × ϵ,

with c∗ being the optimal cost and ϵ ≥ 1. We proved that an
algorithm which utilizes lower and upper bounds of costs,
instead of exact values, can solve this problem by relying
on the ratio of the accumulated bounds for the action costs
composing the plan.

This lead to the development of ASEC (which stands for
A∗ with Synchronous Estimations of Costs) that implements
this idea. ASEC serves as our principal algorithm for solving
such problem instances, and we have been able to prove that
it is sound, and incomplete in general, but is complete un-
der special circumstances. Next, we developed a post-search
procedure and an iterative framework, which both build on
ASEC to obtain improved results. We further showed that
applying a particular strategy for using ASEC within the it-
erative framework renders the resulting algorithm complete.

We implemented ASEC and its extensions by modifying
and extending Fast Downward, and then empirically tested

ICAPS Doctoral Consortium 2022

2

its performance on problems generated from planning com-
petition benchmarks, which were added synthetic estima-
tors. Our findings provide strong empirical evidence that
ASEC outperforms alternatives w.r.t. run time, while typi-
cally meeting the target bound. These results, along with de-
tailed analysis and another variant of ASEC, are summarized
in a paper that is currently under submission process.

Planned Work We have three more objectives that we
plan to pursue: 1. In the near future we intend to test var-
ious strategies for using ASEC within the iterative frame-
work, since we have reason to believe that applying a data-
dependent approach could yield run time improvements (at
least in some cases). 2. The empirical results we obtained
suggest that supporting a cache mechanism (for the esti-
mated values) could provide considerable savings. Further-
more, it appears to make it simpler to develop an asyn-
chronous version for ASEC, which might be more efficient.
Hence, we plan to put it to test. 3. Lastly, we are considering
to make stronger assumptions by adding meta-information
about the estimators (such as expected run time), so that the
planner could make more educated choices.

Challenges and Future Work
We suggest several interesting possibilities for future re-
search. First, our work is clearly just the first offspring, and
there may exist better algorithms to be discovered that solve
the problems we suggested. Second, model uncertainty can
be quantified using various statistical measures, leading to
divergent problem setups, e.g., utilizing the Probably Ap-
proximately Correct (PAC) framework, or using standard de-
viations for setting a target bound on the plan cost. Third,
a considerable challenge that arises from our proposed re-
search is to connect actual external computational modules
to the planner. Namely, in order to test the suggested ideas
on real-world examples, one has to embark on a significant
software development project, as each domain has its own
relevant estimators and their unique APIs. This also makes
it harder to compare different algorithms, as synthetic data
(generated by synthetic estimators) might fail to reveal prac-
tical pain points. On the other hand, we believe this also
presents an opportunity to increase the exposure of existing
planning tools outside the research community.

References
Boddy, M. S. 2003. Imperfect match: PDDL 2.1 and real
applications. Journal of Artificial Intelligence Research, 20:
133–137.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4): 189–208.
Fox, M.; and Long, D. 2003. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research, 20: 61–124.
Francès, G.; Ramiŕez, M.; Lipovetzky, N.; and Geffner, H.
2017. Purely Declarative Action Descriptions are Overrated:
Classical Planning with Simulators. In IJCAI.

Garrett, C. R.; Chitnis, R.; Holladay, R.; Kim, B.; Silver, T.;
Kaelbling, L. P.; and Lozano-Pérez, T. 2021. Integrated task
and motion planning. Annual review of control, robotics,
and autonomous systems, 4: 265–293.
Gerevini, A.; Saetti, A.; and Vallati, M. 2014. Plan-
ning through automatic portfolio configuration: The pbp ap-
proach. Journal of Artificial Intelligence Research, 50: 639–
696.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
planning and acting. Cambridge University Press.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26: 191–246.
Lipovetzky, N.; and Geffner, H. 2017. Best-first width
search: Exploration and exploitation in classical planning.
In Thirty-First AAAI Conference on Artificial Intelligence.
McCluskey, T. L. 2003. PDDL: A Language with a Purpose?
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL-
the planning domain definition language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computa-
tional Vision and Control.
Rintanen, J. 2015. Impact of modeling languages on the
theory and practice in planning research. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

ICAPS Doctoral Consortium 2022

3

Action Model Learning based on Grammar Induction – Dissertation Abstract

Maxence Grand
Under the Supervision of Damien Pellier and Humbert Fiorino

Univ. Grenoble Alpes, LIG
3800 Grenoble, France

{Maxence.Grand, Damien.Pellier, Humbert.Fiorino}@univ-grenoble-alpes.fr

Abstract

This paper presents a novel approach to learn PDDL domain
called AMLSI (Action Model Learning with State machine
Interaction) based on grammar induction. AMLSI learns with
no prior knowledge from a training dataset made up of action
sequences built by random walks and by observing state tran-
sitions. The domain learnt is accurate enough to be used with-
out human proofreading in a planner even with very highly
partial and noisy observations. Thus AMLSI takles a key is-
sue for domain learning that is the ability to plan with the
learned domains. It often happens that small learning errors
lead to domains that are unusable for planning. AMLSI con-
tribution is to learn domains from partial and noisy observa-
tions with sufficient accuracy to allow planners to solve new
problems. Also, this paper presents an incremental and a tem-
poral extension.

Introduction
Hand-coding Planning domains is generally considered dif-
ficult, tedious and error-prone. The reason is that experts in
charge modelling domains are not always PDDL experts and
vice versa. To overcome this issue, two main approaches
have been proposed. One is to develop knowledge engineer-
ing tools facilitating PDDL writing. These tools provide sup-
port for consistency and syntactic error checking, domain vi-
sualisation etc. An inconvenient aspect of these tools is that
they require PDDL expertise and background in software en-
gineering (Shah et al. 2013).

The other approach is to develop machine learning algo-
rithms to automatically generate Planning domains as, for
instance, ARMS (Yang, Wu, and Jiang 2007), SLAF (Sha-
haf and Amir 2006), LSONIO (Mourão et al. 2012), LOCM
(Cresswell, McCluskey, and West 2013). These algorithms
use training datasets made of possibly noisy and partial
state/action sequences generated by a planner, or randomly
generated. Classically, IPC benchmarks are used to gener-
ate training datasets. The performance of these algorithms
is then measured as the syntactical distance between the
learned domains and the IPC benchmarks. Machine learn-
ing approaches have three main drawbacks.

First, most of these approaches require a lot of data to
perform the learning of Planning domains and in many real
world applications, acquiring training datasets is difficult
and costly, e.g., Mars Exploration Rover operations (Bresina

State Machine
to learn

Output

PDDL Domain

Input

AMLSI

Sequences actions
tested

Actions name
and observable

predicates

Observed sequences of
partial and noisy states

resulting from the execution
of the tested sequences of

actions

Figure 1: AMLSI: Action Model Learning with State ma-
chine Interaction

et al. 2005). Also, dataset acquisition is a long term evolu-
tive process: in real world applications, training data become
available gradually over time. Moreover, in practice, it is im-
portant to be able to update learned PDDL domains to new
incoming data without restarting the learning process from
scratch.

Second, the learned domains are not accurate enough to
be used ”as is” in a planner: a step of expert proofreading is
still necessary to correct them. Even small syntactical errors
can make sometime the learned domains useless for plan-
ning. Therefore, we consider that domain accuracy, that we
define as the capacity of a learned domain to solve planning
problems that were not used in the training dataset, is a better
performance indicator than syntactical distance in practice.

Third, even if some approaches, e.g., (Mourão et al. 2012;
Segura-Muros, Pérez, and Fernández-Olivares 2018; Ro-
drigues, Gérard, and Rouveirol 2010) are able to learn from
noisy and/or partially observable data, few approaches are
able to handle very high levels of noise and partial observa-
tions as can be encountered in real world applications, es-
pecially in robotics where observations are extracted using
miscalibrated or noisy sensors.

To address these challenges, we propose a novel Planning
domain learning algorithm called AMLSI (Action Model
Learning with State machine Interaction). A key idea in
AMLSI is that real world can be modelled as state machines
and that retro-engineering real world state machines is anal-
ogous to learning a Deterministic Finite Automaton (DFA),
which is equivalent to a regular grammar: we argue that
(1) it is possible to learn a DFA by querying a real world

ICAPS Doctoral Consortium 2022

4

state machine (see Figure 1), and (2) to induce a PDDL do-
main from this regular grammar. AMLSI does not require
any prior knowledge regarding the feasibility of actions in a
given state, and state observations can be partial and noisy.
AMLSI is highly accurate even with highly partial and noisy
state observations. Thus it minimizes PDDL proofreading
and correction for domain experts. Our experiments show
that in many cases AMLSI does not even require any cor-
rection of the learned domains. AMLSI is lean and efficient
on data consumption. It uses a supervised learning approach
based on grammar induction. Training data are action/state
(possibly partial and noisy) sequences labeled as feasible
or infeasible. Both, feasible and infeasible action/state se-
quences are used by AMLSI to learn PDDL domains, thus
maximizing data usability.

The rest of the paper is organized as follows. First of all,
we propose some related works on PDDL domain learning.
Then we present our contributions and finally we give our
Future works.

Related Works
Many approaches have been proposed to learn Planning do-
mains (see Table - 1). These approaches can be classified ac-
cording to the input data of the learning process. The input
data can be plan ”traces” obtained by resolving a set of plan-
ning problems, annoted plans, decomposition tree or random
walks. The input data can contain in addition to the tasks
also states which can be fully observable (FO), partially ob-
servable (PO), no observable (NO), or noisy. Also, these ap-
proaches can be classified according to the output. The out
can be PDDL domains and more precisely STRIPS and/or
ADL domains, Temporal domains and HTN domains. In the
rest of this section, we classify approaches according to the
output.

PDDL Learning
A first group of approaches takes as input a set of plan
traces and a partial domain, and tries to incrementally
refine this domain to complete it, as for instance, Op-
Maker (McCluskey, Richardson, and Simpson 2002) or RIM
(Zhuo, Nguyen, and Kambhampati 2013). In all of these ap-
proaches, it is assumed that the observations are complete
and noiseless except OPMaker that induces operators with
user interactions by using the GIPO tools (Simpson, Kitchin,
and McCluskey 2007). A second group of approaches only
takes plan traces as input. Most of them deals with partial
observations. Among these approaches are ARMS (Yang,
Wu, and Jiang 2007), LAMP (Zhuo et al. 2010), Louga
(Kucera and Barták 2018), Plan-Milner algorithm (Segura-
Muros, Pérez, and Fernández-Olivares 2018), AIA (Verma,
Marpally, and Srivastava 2021) or FAMA (Aineto, Celorrio,
and Onaindia 2019). Among these works, the ARMS sys-
tems is the most known. It gathers knowledge on the sta-
tistical distribution of frequent sets of actions in the plan
traces. Then, it forms a weighted propositional satisfiabil-
ity problem (weighted SAT) and solves it with a weighted
MAX-SAT solver. Unlike ARMS, SLAF is able to learn
actions with conditional effects. To that end, SLAF relies

on building logical constraint formula based on a direct
acyclic graph representation. Louga takes also as input plan
traces and work with partial noiseless observations. How-
ever, Louga is able to learn actions with static properties
and negative preconditions. Louga uses a genetic algorithm
to learn action effects and an ad-hoc algorithm to learn ac-
tion preconditions. FAMA takes as input partial plan traces,
i.e. plan traces where some actions are missing, and obser-
vations are partial. This algorithm turns the task of learn-
ing into a planning problem: the learning problem is trans-
lated into a planning problem, and it resolves it by using
a classical planner. Plan-Milner uses a classification algo-
rithm based on inductive rule learning techniques: it learns
action models with discrete numerical values from partial
and noisy observations. The AIA algorithm learns planning
domains by using a rudimentary query system. It generates
plans and queries a black-box AI system with these plans to
test them and updates its action model from the black-box
responses. Finally, the LOCM family of action model learn-
ing approaches (Cresswell, McCluskey, and West 2013; Gre-
gory and Cresswell 2015) works without information about
initial, intermediate and final states. These algorithms ex-
tract, from plan traces, parameterized automata representing
the behaviour of each object of the planning problems. Then
preconditions and effects are generated from these automata.
The last group of approaches takes as input random walks,
that is, sets of action sequences randomly generated. Ran-
dom walk approaches like IRALe (Rodrigues, Gérard, and
Rouveirol 2010) deal with complete but noisy observations.
IRALe is based on an online active algorithm to explore and
to learn incrementally the action model with noisy obser-
vations. Other approaches such as LSONIO (Mourão et al.
2012) deal with both partial and noisy observations. LSO-
NIO uses a classifier based on a kernel trick method to learn
action models. It consists of two steps: (1) it learns a state
transition function as a set of classifiers, and (2) it derives
the action model from the parameters of the classifiers.

Temporal Learning
Temporal PDDL domains have different levels of action
concurrency (Cushing et al. 2007). Some are sequential,
which means that all plans can be rescheduled into a com-
pletely sequential succession of durative actions: each dura-
tive action starts after the previous durative action is termi-
nated. Some temporal domains require other forms of action
concurrency such as Single Hard Envelope (SHE) (Coles
et al. 2009). SHE is a form of action concurrency where a du-
rative action can be executed only if another durative action
called the envelope extends over it. (Garrido and Jiménez
2020) have proposed an algorithm to learn temporal domains
using CSP techniques. However this approach is limited to
sequential temporal domains. To our best knowledge, there
is no learning approach for both SHE and sequential tempo-
ral domains.

HTN Learning
First of all, the CAMEL algorithm (Ilghami et al. 2002)
learns the preconditions of HTN Methods from observa-
tions of plan traces, using the version space algorithm. Then,

ICAPS Doctoral Consortium 2022

5

Algorithm
Input Output

Input Environment Noise level STRIPS ADL Temporal HTN
EXPO Partial domain, Plan traces FO 0% •
RIM Partial domain, Plan traces FO 0% •

OPMaker Partial domain, Plan traces FO 0% •
ARMS Plan traces PO 0% •
Louga Plan traces PO 0% •
FAMA Plan traces PO 0% •

Plan-Milner Plan traces PO 10% •
AIA Plan traces FO 0% •

LOCM Plan traces NO 0% •
LOP Plan traces NO 0% •

NLOCM Plan traces NO 0% •
ERA Random walk FO 0% •

IRALe Random walk FO 20% •
LSONIO Random walk PO 5% •

SLAF Plan traces PO 0% • •
LAMP Plan traces PO 0% • •

(Garrido and Jiménez 2020) Plans PO 0% •
(Xiaoa et al. 2019) Plans FO 0% •

HTN-Maker Plans FO 0% •
(Hogg, Kuter, and Munoz-Avila 2010) Plans FO 0% •

(Li et al. 2014) Plans FO 0% •
(Garland and Lesh 2003) Annoted Plans FO 0% •

CAMEL Plans FO 0% •
HDL Plans FO 0% •

LHTNDT Plans FO 0% •
HTN-Learner Decomposition Trees PO 0% • •

Table 1: State-of-the-art action model learning algorithms. From left to right: the kind of input data, the kind of environment:
Fully Observable, Partially Observable or Non Observable, the maximum level of noise in observations, and and the domain
expressivity STRIPS, ADL, Temporal and HTN

.

move(rb ra)

goto(ra)

pick(b1 l ra) pick(b2 r ra) move(ra rb)

goto(rb)

drop(b1 l rb)drop(b2 r rb)

move2balls(b1 b2 rb)

(a) An annoted plan

move(rb ra)

goto(ra) pick(b1 l ra) pick(b2 r ra)

move(ra rb)

goto(rb) drop(b1 l rb)drop(b2 r rb)

move2balls(b1 b2 rb)

(b) A decomposition tree

Figure 2: HTN Learning Input examples

the HDL algorithm (Ilghami, Nau, and Muñoz-Avila 2006)
takes as input plan traces. For each decomposition in plan
traces, HDL checks if there exist a method responsible of
this decomposition. If not, HDL creates a new method and
initializes a new version space to capture its preconditions.
Preconditions are learned in the same way as in the CAMEL
algorithm. Then, (Xiaoa et al. 2019) propose an algorithm to
update incomplete methods by task insertions. Then HTN-
Maker (Hogg, Munoz-Avila, and Kuter 2008) takes as input
plan trace generated from PDDL planner and annoted task
provided by a domain expert. These approach use annoted
task to build incrementally HTN Methods with precondi-
tions. Then, (Li et al. 2014) proposed an algorithm taking
as input only plan traces. This algorithm builds, from plan
traces, a context free grammar (CFG) allowing to regener-
ate all plans. Then, methods are generated using CFG: one
method for each production rule in the CFG. Then (Garland

and Lesh 2003) and (Nargesian and Ghassem-Sani 2008)
proposed to learn HTN Methods from annoted plan. An-
noted plan (see Figure - 2a) are plan segmented with the dif-
ferent takes solved. Then, (Hogg, Kuter, and Munoz-Avila
2010) proposed an algorithm based on reinforcement learn-
ing. Only HTN-Learner proposes to learn Action Model and
HTN Methods from decomposition trees. A decomposition
tree (see Figure - 2b) is a tree corresponding to the decom-
position of a method.

Contributions
In this section we will give our different contributions. More
precisely, we give the method used to generate the observa-
tions. Then (see Figure - 3) we describe the algorithm used
to learn PDDL domains. Then, we show how to learn PDDL
domains incrementally. Finally we show how to learn Tem-
poral domains.

Observation Generation
AMLSI produces a set of observations by using a random
walk. AMLSI is able to efficiently exploit these observations
by taking into account not only the fact that some actions
are applicable in certain states but also that others are not.
More precisely, to generate the observations, AMLSI uses
random walks by applying a randomly selected action to the
initial state of the problem. If this action is feasible, it is
appended to the current action sequence. This procedure is
repeated until the selected action is not feasible in the cur-
rent state. The feasible prefix of the action sequence is then
added to the set of positive samples, and the complete se-
quence, whose last action is not feasible, is added to the set
of negative samples. This generation method allow to max-
imize data usability in situations where obtaining training

ICAPS Doctoral Consortium 2022

6

Training datasets

DFA
Learning

Operator
Generation

Operator
Refinement

Refined PDDL
Domain

DFA

PDDL Domain

(a) AMLSI: PDDL domain
learning overview

Update DFA

Operator
overhaul

Operator
Refinement

New training datasets

tth iteration

Updated
DFA

Overhauled
Domain

Refined
Domain

Incremental learning process

Accurate PDDL Domain after convergence

(b) IncrAMLSI: Incremental PDDL domain learning
overview

AMLSI

Sample
Translation

Domain
Translation

Temporal
training datasets

Temporal Domain

Classical
training datasets

PDDL Domain

(c) TempAMLSI: Temporal
domain learning overview

Figure 3: Contributions overview

datasets is costly and/time-consuming.

Domain Learning
PDDL Learning An overview of the AMLSI (Grand,
Fiorino, and Pellier 2020b,a) algorithm is shown in Fig-
ure 3a. AMLSI is composed of three steps:
1. DFA Learning: AMLSI uses an alternative version of the

RPNI (Oncina and Garcı́a 1992) algorithm with the DFA
learning algorithm proposed by (Grand, Fiorino, and Pel-
lier 2020b).

2. Operator Generation: AMLSI generates the set of PDDL
operators from the learned DFA with the observed states.

3. Operator Refinement: AMLSI refines the operator pre-
conditions and effects. This refinement steps is necessary
to address partial and noisy observations.

Incremental Learning An overview of the IncrAMLSI
algorithm (Grand, Fiorino, and Pellier 2021a) is shown in
Figure 3b. IncrAMLSI learns incrementally the PDDL do-
main from incoming data and does not restart from scratch
when new data become available at each iteration t. More
precisely, IncrAMLSI consists in incrementally updating
the PDDL domain with the new incoming training datasets
available at iteration t to produce the new domain. This al-
gorithm is made up of three steps:
1. Update of the DFA with the DFA learning algorithm pro-

posed by (Grand, Fiorino, and Pellier 2020b).
2. Overhaul of the PDDL operators in order to add new

operators and remove preconditions and effects that are
no longer compatible with positive and negative samples,
and the updated DFA at iteration t.

3. Refinement of the PDDL operators as in AMLSI algo-
rithm to deal with noisy and partial states in observations.

The incremental process is operated each time new training
datasets are input and until convergence of the PDDL do-
main.

Temporal Learning Some planners, such as Crikey
(Halsey, Long, and Fox 2004), solve Temporal Problems
by using non-temporal planners. To that end, they convert
Temporal Problems into PDDL planning problems, solve
them with a non-temporal planner. Then they convert the
classical plan into a temporal plan with rescheduling tech-
niques. TempAMLSI (Grand, Fiorino, and Pellier 2021b)
reuse this idea in order to learn Temporal domains: Tem-
pAMLSI learns a PDDL domain and then infer a Temporal
domain. TempAMLSI (summarized in Figure - 3c) has three
steps.

1. Sample Translation: After having generated the samples
of temporal sequences (including both feasible and infea-
sible sequences), TempAMLSI translates them into non-
temporal sequences.

2. PDDL Domain Learning: TempAMLSI uses AMLSI to
learn an intermediate and classical PDDL domain.

3. Domain Translation: TempAMLSI translates the PDDL
domain into a Temporal domain.

This algorithm is able to learn both Sequential and SHE ac-
curate Temporal domains.

Conclusion and Future Works
As we have seen before, we presented the AMLSI algorithm
for learning PDDL domains. More precisely, the AMLSI
algorithm learns STRIPS-compliant domains. We plan to
extend the expressivity of the learned domains and more
specifically we plan to extend AMLSI to learn ADL do-
mains. Next, we presented two extensions: (1) an incremen-
tal extension and (2) a temporal extension. We plan to de-
velop a hierarchical extension to learn HTN domains. Fi-
nally, the AMLSI algorithm and its extension has only been
tested with IPC benchmarks, we plan to test the AMLSI al-
gorithm and its extension with real-world dataset from sev-
eral fields.

ICAPS Doctoral Consortium 2022

7

References
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
action models with minimal observability. Artificial Intelli-
gence, 275: 104–137.
Bresina, J. L.; Jónsson, A. K.; Morris, P. H.; and Rajan, K.
2005. Activity Planning for the Mars Exploration Rovers.
In Proc of ICAPS, 40–49.
Coles, A.; Fox, M.; Halsey, K.; Long, D.; and Smith, A.
2009. Managing concurrency in temporal planning using
planner-scheduler interaction. Artificial Intelligence, 173(1):
1–44.
Cresswell, S.; McCluskey, T. L.; and West, M. M. 2013. Ac-
quiring planning domain models using LOCM. Knowledge
Engineering Review, 28(2): 195–213.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is Temporal Planning Really Temporal? In
Proc of IJCAI, 1852–1859.
Garland, A.; and Lesh, N. 2003. Learning hierarchical task
models by demonstration. MERL.
Garrido, A.; and Jiménez, S. 2020. Learning Temporal Ac-
tion Models via Constraint Programming. In Proc of ECAI,
2362–2369.
Grand, M.; Fiorino, H.; and Pellier, D. 2020a. AMLSI: A
Novel and Accurate Action Model Learning Algorithm. In
Proc of KEPS workshop.
Grand, M.; Fiorino, H.; and Pellier, D. 2020b. Retro-
engineering state machines into PDDL domains. In Proc
of ICTAI, 1186–1193.
Grand, M.; Fiorino, H.; and Pellier, D. 2021a. IncrAMLSI:
Incremental Learning of Accurate Planning Domains from
Partial and Noisy Observations. In Proc of ICTAI, 121–128.
Grand, M.; Fiorino, H.; and Pellier, D. 2021b. TempAMLSI
: Temporal Action Model Learning based on Grammar In-
duction. In Proc of KEPS workshop.
Gregory, P.; and Cresswell, S. 2015. Domain Model Acqui-
sition in the Presence of Static Relations in the LOP System.
In Proc of ICAPS, 97–105.
Halsey, K.; Long, D.; and Fox, M. 2004. CRIKEY-a tem-
poral planner looking at the integration of scheduling and
planning. In Proc of the Integrating Planning into Schedul-
ing Workshop, 46–52.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2010. Learning
methods to generate good plans: Integrating htn learning and
reinforcement learning. In Proc of AAAI, volume 24.
Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with Minimal Additional Knowl-
edge Engineering Required. In Proc of AAAI, 950–956.
Ilghami, O.; Nau, D. S.; and Muñoz-Avila, H. 2006. Learn-
ing to Do HTN Planning. In Proc of ICAPS, 390–393.
Ilghami, O.; Nau, D. S.; Muñoz-Avila, H.; and Aha, D. W.
2002. CaMeL: Learning Method Preconditions for HTN
Planning. In Proc of ICAPS, 131–142.
Kucera, J.; and Barták, R. 2018. LOUGA: Learning Plan-
ning Operators Using Genetic Algorithms. In Proc of PKAW
Workshop, 124–138.

Li, N.; Cushing, W.; Kambhampati, S.; and Yoon, S. 2014.
Learning probabilistic hierarchical task networks as proba-
bilistic context-free grammars to capture user preferences.
TIST, 5(2): 1–32.
McCluskey, T. L.; Richardson, N. E.; and Simpson, R. M.
2002. An Interactive Method for Inducing Operator Descrip-
tions. In Proc of ICAPS, 121–130.
Mourão, K.; Zettlemoyer, L. S.; Petrick, R. P. A.; and Steed-
man, M. 2012. Learning STRIPS Operators from Noisy and
Incomplete Observations. In Proc of UAI, 614–623.
Nargesian, F.; and Ghassem-Sani, G. 2008. LHTNDT: Learn
HTN Method Preconditions using Decision Tree. In Proc of
ICINCO-ICSO, 60–65.
Oncina, J.; and Garcı́a, P. 1992. Inferring regular languages
in polynomial update time. In Pattern Recognition and Im-
age Analysis: Selected Papers from the IVth Spanish Sympo-
sium, volume 1, 49–61. World Scientific.
Rodrigues, C.; Gérard, P.; and Rouveirol, C. 2010. Incre-
mental Learning of Relational Action Models in Noisy En-
vironments. In Proc of ICLP, 206–213.
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares,
J. 2018. Learning Numerical Action Models from Noisy
and Partially Observable States by means of Inductive Rule
Learning Techniques. In Proc of KEPS workshop.
Shah, M.; Chrpa, L.; Jimoh, F.; Kitchin, D.; McCluskey, T.;
Parkinson, S.; and Vallati, M. 2013. Knowledge engineer-
ing tools in planning: State-of-the-art and future challenges.
Knowledge engineering for planning and scheduling, 53: 53.
Shahaf, D.; and Amir, E. 2006. Learning Partially Observ-
able Action Schemas. In Proc of AAAI Conference on Arti-
ficial Intelligence, 913–919.
Simpson, R. M.; Kitchin, D. E.; and McCluskey, T. L. 2007.
Planning domain definition using GIPO. Knowledge Engi-
neering Review, 22: 117–134.
Verma, P.; Marpally, S. R.; and Srivastava, S. 2021. Asking
the Right Questions: Learning Interpretable Action Models
Through Query Answering. In Proc of AAAI Conference on
Artificial Intelligence, 12024–12033.
Xiaoa, Z.; Wan, H.; Zhuoa, H. H.; Herzigb, A.; Perrusselc,
L.; and Chena, P. 2019. Learning HTN Methods with Pref-
erence from HTN Planning Instances. Proc of HPlan work-
shop, 31.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted MAX-SAT. Artifi-
cial Intelligence, 171(2-3): 107–143.
Zhuo, H. H.; Nguyen, T. A.; and Kambhampati, S. 2013. Re-
fining Incomplete Planning Domain Models Through Plan
Traces. In Proc of IJCAI, 2451–2458.
Zhuo, H. H.; Yang, Q.; Hu, D. H.; and Li, L. 2010. Learning
complex action models with quantifiers and logical implica-
tions. Artificial Intelligence, 174(18): 1540–1569.

ICAPS Doctoral Consortium 2022

8

Application of Neurosymbolic AI to Sequential Decision Making – Dissertation
Abstract

Carlos Núñez-Molina1

Juan Fernández-Olivares2 (PhD director), Pablo Mesejo3 (PhD co-director)
1,2,3Universidad de Granada, Spain

1ccaarlos@correo.ugr.es, 2faro@decsai.ugr.es, 3pmesejo@decsai.ugr.es

Abstract

In the history of AI, two main paradigms have been applied
to solve Sequential Decision Making (SDM) problems: Au-
tomated Planning (AP) and Reinforcement Learning (RL).
Among the many proposals to unify both fields, the one
known as neurosymbolic AI has recently attracted great at-
tention. It combines the Deep Neural Networks characteristic
of modern RL with the symbolic representations typical of
AP. The main goal of this PhD is to progress the state of the
art in neurosymbolic AI for SDM. To do so, three different
lines of research have been proposed. In the first one, I will
perform a study of the literature and summarize my findings
into a review. In the second one, I will extend my previous
work (Núñez-Molina et al. 2021), which combined Deep Q-
Learning with Classical Planning to improve planning perfor-
mance, with the ability to manage non-determinism and will
apply it to a real logistics problem. Finally, in the third line
of research, I will develop a method for generating planning
problems and leverage it to learn HTN domains without ex-
pert traces and to study the properties of planning domains.

Introduction
Sequential Decision Making (SDM) (Littman 1996) is the
problem of solving Sequential Decision Processes (SDP). In
a SDP, an agent situated in an environment must make a se-
ries of decisions in order to complete a task or achieve a goal.
These ordered decisions must be selected according to some
optimality criteria, generally formulated as the maximiza-
tion of reward or the minimization of cost. SDPs provide
a general framework which has been successfully applied
to solve problems in fields as diverse as robotics (Kober,
Bagnell, and Peters 2013), logistics (Schäpers et al. 2018),
games (Mnih et al. 2015), finance (Charpentier, Elie, and
Remlinger 2021) and natural language processing (Wang,
Li, and He 2018).

Throughout the years, many AI methods have been pro-
posed to solve SDPs. They can be grouped in two main
categories: Automated Planning (AP) (Ghallab, Nau, and
Traverso 2004) and Reinforcement Learning (RL) (Sutton
and Barto 2018). These two paradigms mainly differ in how
they obtain the solution and how they represent their knowl-
edge:

• AP techniques exploit the existing prior knowledge about
the environment dynamics, encoded in what is known

as the action model or planning domain, to carry out a
search process in order to find a valid plan that achieves
a set of goals starting from the initial state. Regarding
the knowledge representation employed, many AP tech-
niques encode their knowledge in a symbolic manner, us-
ing a formal language based on first-order logic such as
PDDL (Fox and Long 2003). These symbolic AP meth-
ods will be referred to as Symbolic Planning (SP).

• Standard RL methods learn the optimal policy, i.e., a
mapping from states to actions in order to maximize re-
ward, automatically from data, without performing any
planning process whatsoever. Additionally, the vast ma-
jority of RL methods represent their learned knowledge
in a subsymbolic way, often as the weights of a Deep
Neural Network (DNN).

Each of these paradigms presents several advantages and
drawbacks:
• In the case of SP, its symbolic representation is amenable

to interpretation, whereas most RL methods represent
their knowledge as a non-interpretable black-box. Addi-
tionally, SP methods can more easily reason about long-
term sequences of actions than RL approaches, which
tend to be greedier.

• The main advantage of RL is that it is able to learn the
solution of the SDP, i.e., the optimal policy, from data
automatically obtained by interacting with the environ-
ment. Due to this, RL can be easily applied to solve a
wide range of problems with little effort from the human
engineers. In the case of SP, these human engineers must
provide extensive prior knowledge, mainly in the form of
the planning domain, which requires a lot more effort.

Since the shortcomings of SP align with the strengths of
RL and vice versa, it seems natural to try to reconcile these
two competing paradigms into a single unified approach.

Many works have tried to bridge the gap between RL and
SP. Some of these works have focused on extending the ca-
pabilities of RL methods with those of SP. Model-based RL
(Moerland, Broekens, and Jonker 2020) enhances (model-
free) RL with the ability to perform a look-ahead process
over a model of the world. Additionally, several model-
based RL methods try to learn how to actually carry out
this deliberative process, i.e., they learn to plan (Tamar et al.
2016). Relational RL (Tadepalli, Givan, and Driessens 2004)

ICAPS Doctoral Consortium 2022

9

represents the learned knowledge in a symbolic way, with
the goal of improving the interpretability and generalization
of classical RL. Regarding modern Deep RL, some works
have substituted standard DNNs for architectures with re-
lational inductive biases, such as Graph Neural Networks
(GNN) (Battaglia et al. 2018), which represent the learned
knowledge in terms of objects and their relations.

In parallel to all these efforts, many authors have taken
inspiration from RL in order to improve SP. Some works
have proposed efficient planning algorithms, such as Mon-
teCarlo Tree Search (MCTS) (Kocsis and Szepesvári 2006),
which do not require a symbolic representation of the envi-
ronment dynamics. In the case of MCTS, the authors em-
ploy a RL algorithm known as UCB1 in conjunction with
rollouts to estimate future rewards and guide the planning
process. Other works have developed methods for learning
the prior knowledge SP techniques require, in order to re-
lieve some of the burden on experts. Some of them focus
on learning the structure of the SDP, whose most important
aspects are encoded in the planning domain (Segura-Muros,
Pérez, and Fernández-Olivares 2021), whereas others learn
domain-specific control knowledge to guide and speed up
the search, such as planning policies and heuristics (Jiménez
et al. 2012).

In recent years, a novel approach for integrating SP and
RL has attracted a lot of attention. This hybrid approach,
known with the name of Neurosymbolic AI (Besold et al.
2017), consists of methods which combine the DNNs usu-
ally employed in modern RL with the symbolic representa-
tions typical of SP. Neurosymbolic methods pose a promis-
ing approach towards a real unification of SP and RL, since
they try to integrate the main strenghts of each approach:
the ability to automatically extract knowledge from data as
in RL with the interpretability and reasoning ability of SP.

Several works have successfully applied these methods to
the field of SDM. (Asai and Fukunaga 2018) proposes Lat-
plan, a model that uses a Variational Autoencoder (VAE)
(Kingma and Welling 2013) to learn a symbolic action
model from pairs of images, which makes possible to ap-
ply standard symbolic search algorithms to solve planning
problems encoded in a subsymbolic way. (Katz et al. 2021)
presents a semi-automatic method for performing scenario
planning, i.e., generating a variety of possible future sce-
narios to support decision making and risk management. It
uses DNNs to extract forces and causal relations from doc-
uments, and off-the-shelf planners that exploit the extracted
information to generate plans corresponding to possible fu-
ture scenarios. (Shen, Trevizan, and Thiébaux 2020) pro-
poses STRIPS-HGNs, a special type of GNN that receives
as input the symbolic description of a planning problem and
predicts the heuristic value, which is then used to guide a
symbolic planning procedure. Finally, (Toyer et al. 2018)
presents ASNets, a novel type of DNN architecture which is
able to learn a policy that generalizes to different problems
of the same planning domain, thanks to its unique structure
which resembles a symbolic planning process.

In the light of these recent advances, the main goal of this
PhD dissertation is to progress the state of the art in neu-
rosymbolic AI for SDM, with the development of methods

for both solving SDPs and learning aspects of their structure.

Current State of the PhD
So far, the line of research has focused on the integration
of SP and Deep RL. In (Núñez-Molina, Fdez-Olivares, and
Pérez 2020), we proposed a neurosymbolic online execu-
tion system which combines PDDL-based planning with the
Deep RL algorithm known as Deep Q-Learning (Mnih et al.
2013), in order to decrease the load of the planner. To per-
form this combination, we resorted to goal selection. We
trained the Deep Q-Learning algorithm to select goals in-
stead of actions, where the available goals are known a pri-
ori. Once a goal is selected, it is given to the symbolic plan-
ner, which obtains a plan from the current state to the goal.
After achieving the goal, Deep Q-Learning is used to se-
lect a new one, and this process of interleaving planning and
goal selection continues until the final goal is achieved. In-
stead of maximizing reward, Deep Q-Learning is trained to
select goals in such a way that minimizes the length of the
plans obtained by the planner. We tested our architecture on
a deterministic version of the video game known as Boul-
derDash, present in the GVGAI framework (Perez-Liebana
et al. 2015), where the agent must obtain a number of gems
(which correspond to the goals in our method) and then exit
the level. We trained our model on a set of training levels
and evaluated it on a different set of test levels, in order to
test its generalization ability. In this preliminary work, we
compared the performance (in terms of plan length) of our
model, referred to as DQP, with a baseline model trained
with supervised learning to select the best next goal in a
greedy way. The obtained results show that, as training data
increases, our DQP model performs better than the greedy
baseline model, since it performs long-term thinking when
selecting goals. The results were presented in the ICAPS
2020 IntEx/GR workshop.

In our next work (Núñez-Molina et al. 2021), we greatly
improved the performance of our approach regarding goal
selection quality. In addition, we compared it against the
same planner our architecture uses, but this time with no
goal selection at all. The results obtained show that, on (ge-
ometric) average, our method is able to greatly reduce plan-
ning times in exchange for obtaining plans with 25% more
actions. Thus, our approach strikes a good balance between
time complexity and solution quality, and makes possible to
apply standard symbolic planners to environments with tight
time restrictions.

Then, in (Núñez-Molina, Fdez-Olivares, and Pérez sub-
mitted) we improved once again the performance of our ap-
proach, augmented our architecture with the ability to detect
non-achievable goals, provided a more detailed mathemat-
ical formulation and compared our approach against stan-
dard Deep Q-Learning (with no planning). Results showed
that our method generalizes better than standard Deep Q-
Learning and is more sample-efficient. Thus, our neurosym-
bolic approach performs better than standard SP and RL
when both plan quality and time requirements are consid-
ered. This third work has been submitted to a journal and is
currently undergoing minor revisions.

ICAPS Doctoral Consortium 2022

10

Research Plan
The main research hypothesis explored in this PhD is the
following: Neurosymbolic AI provides a successful ap-
proach for solving and learning the structure of SDPs.
In order to verify this hypothesis, six goals corresponding to
three different lines of research have been proposed.

The first line of research contains Goal 1 and simply cor-
responds to a study of the literature. The second one con-
tains Goals 2 and 3 and continues the line of research on
goal selection with Deep Q-Learning. The third one entails
a method for automatically generating planning problems
(Goal 4) and two possible applications of such method to
learn aspects of the SDP structure (Goals 5 and 6). Although
these three lines of research can be pursued in no particular
order, the goals within each of them must be achieved fol-
lowing the goal numeration described below:

Goal 1: Study of the state of the art. Firstly, I will per-
form a comprehensive study of the state of the art regarding
AI methods for SDM, focusing on the case of finite Markov
Decision Processes (MDP) (Sutton and Barto 2018). I will
research AI methods ranging from standard SP and RL/Deep
RL techniques to hybrid approaches such as model-based
RL, techniques for learning to plan and neurosymbolic mod-
els. I will not only study how these techniques can be applied
to solve MDPs, i.e., finding the optimal policy/plan, but also
how they make possible to learn the structure of the MDP,
e.g., the action model and additional aspects such as land-
marks (Hoffmann, Porteous, and Sebastia 2004).

This first goal has already been partially completed. As
detailed above, I have researched the field of AI for SDM
and summarized my findings into a review which I intend to
submit very soon. In this review, I have given special empha-
sis to those hybrid models which try to integrate the compet-
ing SP and RL approaches. This work is also part position
paper, as I discuss what properties an ideal method for SDM
should possess. Based on these ideal features, I propose a
theoretical framework to compare the different methods for
solving SDPs. As a result of this comparison, I conclude that
neurosymbolic models are currently the closest approach to
this ideal method for SDM and, thus, pose a very promising
direction for future work.

Goal 2: Uncertainty management with DQP. In this
goal, I plan to continue my previous line of research on goal
selection with Deep Q-Learning. My intention is to enhance
my DQP model with the ability to manage uncertainty, so
that it can be applied to stochastic environments. To achieve
this, I will employ Deep Q-Learning to predict the uncer-
tainty associated with a given goal in addition to the plan
length. This uncertainty will correspond to the probability
that a plan from the current state to the goal can be success-
fully executed from start to finish without interruptions (e.g.,
an obstacle suddenly appearing). This way, it will be possi-
ble to select those goals which result in a short plan overall
in addition to being likely achievable by the agent, which re-
sults essential for dynamic, non-deterministic environments.

This new ability of the DQP model also serves as an exe-
cution monitoring tool. By repeatedly predicting the uncer-
tainty associated with an already-selected goal during the
execution of its plan, the agent will be able to detect unex-

pected situations as a result of an increase in the uncertainty
value predicted by the network. Once this value surpasses a
given threshold, we can consider the goal no longer achiev-
able. In this case, the agent will simply select a new goal to
replace the old one and try to achieve it.

One interesting property of this approach is that the goal
selection procedure (based on Deep Q-Learning) is respon-
sible for completely managing the uncertainty, i.e., non-
determinism, in the environment. In principle, this makes
possible to apply a classical, deterministic planner to a
stochastic environment, instead of a probabilistic planner.
However, it remains unclear if this approach (deterministic
planner + goal selection with uncertainty) will be enough in
highly dynamic environments or, instead, it will be neces-
sary to also manage uncertainty at the planner level, i.e., by
using a probabilistic planner.

Goal 3: Application of DQP to a real logistics problem.
As the final step in this line of research, I plan to apply my
DQP approach to solve a real-world problem. The goal is to
manage the logistics of a company which relies on a fleet
of trucks to transport and deliver packages. The main deci-
sions to take concern which packages each truck must carry
and the route each truck must follow in order to successfully
deliver the packages to their recipients, while meeting a set
of requirements such as time deadlines, service cost restric-
tions, and regulation constraints. Since this problem is too
complex to be directly solved with standard SP techniques,
I propose to use my DQP approach to map high-level deci-
sions, such as to which truck assign each delivery order, to
goals and train my goal selection method to select them so as
to optimize a series of metrics, e.g., minimize the total dis-
tance traveled, and satisfy a set of criteria, e.g., each package
must be delivered before its deadline. Once the goals have
been selected, a symbolic planner can then be used to ob-
tain the low-level plan that achieves each goal. Furthermore,
the DQP model will be used to adapt to unexpected situa-
tions, such as new delivery orders and truck breakdowns. To
achieve this, it will constantly monitor the state of the exe-
cution and modify the goals to achieve (and their associated
plans) when needed.

Several modifications will need to be made in order to
adapt the DQP model to this real-world scenario, many of
which will only be clear once the specifications of the prob-
lem are well known. However, since the data for training the
model will be in the form of logs, it seems likely that the
DQP model will need to be able to handle symbolic data.
Up to this point, the DNN trained with Deep Q-Learning to
select goals corresponds to a Convolutional Neural Network
(CNN) (Krizhevsky, Sutskever, and Hinton 2012), which re-
ceives an image-like encoding of the states and goals to se-
lect from. In order to adapt it to symbolic data, I plan to
substitute the CNN with a DNN suitable for relational rep-
resentations. A reasonable approach would be to employ a
GNN and encode the information about the states and goals
as a graph, which would then be given as input to the net-
work.

Goal 4: Neurosymbolic method for generating plan-
ning problems. This goal corresponds to a new line of re-
search, consisting on the automatic generation of planning

ICAPS Doctoral Consortium 2022

11

problems for any given planning domain. This method will
be useful for two main purposes: generating data for train-
ing Machine Learning methods (e.g., those that learn plan-
ning policies and heuristics) and creating a set of benchmark
problems to compare the performance of different planners
in planning competitions (such as those held in the ICAPS).
I plan to develop a method which receives as input a PDDL
domain and outputs a set of planning problems pertaining to
that particular domain. The problems generated must satisfy
three main properties: validity (the initial state must repre-
sent a possible situation of the world and the problem must
be solvable), diversity (the problems must vary in kind) and
quality (according to a metric defined by the user, such as
the resolution difficulty of the problems).

In a similar fashion to (Fuentetaja and De la Rosa 2012),
I will follow a problem generation as planning approach,
where SP is used to generate planning problems. Each plan-
ning problem is composed of two parts: the initial state and
the goal to achieve. For each problem, a valid initial state is
first generated. Starting from an empty state, a search pro-
cess is performed, where at each step either a new object is
added or a predicate is instantiated on the state objects. Af-
ter generating the initial state, a different search process is
performed, where each step corresponds to applying a valid
action of the planning domain and modifying the state pred-
icates according to the action effects. Once a given number
of actions have been executed, the problem goal is gener-
ated as a subset of the predicates of the state the search pro-
cedure has ended at. In addition to the planning domain, the
user may provide two additional pieces of prior information:
a validation method (e.g., a list of rules) which receives as
input an initial state and returns whether it is valid or not
(otherwise every possible initial state is regarded as valid),
and the set of predicates which can form part of the goal
(otherwise all the predicates will be considered).

The validation method is used to prune the search when a
node is generated corresponding to a non-valid initial state.
The other validity requirement, regarding the solvability of
the generated problems, does not need to be checked, since
the sequence of actions applied to obtain the goal from the
initial state correspond to a valid solution plan. In order to
generate problems of a certain quality, e.g., problems with
properties which make them hard to solve, I will rely again
on Deep Learning. A DNN (possibly a GNN) will receive
as input a partially-generated problem (possibly encoded as
a graph) and output its quality value, which will be used to
guide the search towards problems of good quality. Once a
problem has been completely generated, it will be solved
with an off-the-shelf planner in order to assess its quality.
For example, the resolution difficulty of a problem can be
estimated as the number of states the planner needed to ex-
plore to find its solution. The computed metric will serve as
a reward signal to train the DNN with RL methods. Finally,
it is important that the generated problems are diverse. One
possible approach is to obtain at each step the n nodes with
highest quality and then select one of them completely at
random. This provides a simple method for balancing qual-
ity and diversity which resembles the epsilon-greedy explo-
ration method in RL.

Goal 5: Learning HTN domains from PDDL without
plan traces. Here I plan to leverage the problem genera-
tion method previously explained in order to learn a Hierar-
chical Task Network (HTN) (Georgievski and Aiello 2015)
domain just from a PDDL domain, with no need for plan
traces. Given a planning domain, I will use the method in
Goal 4 to generate a large and diverse set of planning prob-
lems. Then, the generated problems will be solved with an
off-the-shelf planner and the solution plans obtained will be
provided, along with the planning domain and problems, as
inputs to some HTN learning method such as the one pro-
posed in (Nejati, Langley, and Konik 2006). This way, it will
be possible to learn a HTN domain just from a PDDL do-
main, without needing an expert to provide example prob-
lems and their solution plans, since these will be obtained
with my problem generation method. If the generated prob-
lems properly represent the different types of problems in
the domain, then the HTN domain obtained should be appli-
cable to solve any of them. An alternative approach is to bias
the problem generation method towards generating instances
of a given type, e.g., problems of high difficulty. Then, the
HTN domain learned from them should be tailored to this
specific type of problems, thus helping to solve them in a
very efficient way.

Goal 6: Domain characterization. As the final goal of
my PhD, I plan to utilize the problem generation method
previously detailed to study the properties of a particular
planning domain, what I refer to as domain characterization.
Given a planning domain, a large and diverse set of planning
problems will be generated and then solved with an off-the-
shelf planner. Once this data has been obtained, I will use
Data Mining techniques to study the properties of the gener-
ated problems and their solutions, which will serve to char-
acterize the domain as a whole. One possible approach is to
apply clustering techniques to group the problems in clusters
of similar problems according to a series of metrics, e.g.,
resolution difficulty, solution length and resources needed
to solve the problem. By studying the properties of these
clusters, it will be possible to analyze the different types of
problems in the domain, which will help to understand the
different situations which can arise in it. For example, in the
logistics domain of Goal 3, each problem could correspond
to a different logistics task, composed of a particular number
of trucks, packages, locations and delivery orders. By clus-
tering the problems according to their resource utilization
(e.g., how many kilometers the trucks need to travel to de-
liver the packages), it will be possible to analyze which char-
acteristics influence the utilization of resources (e.g., large
packages and delivery orders for distant cities, etc.), which
could be useful as a decision support system.

Acknowledgements

This work is being partially funded by the Andalu-
sian Regional Projects B-TIC-668-UGR20 and PYC20-
RE-049UGR, and the Spanish National Project RTI2018-
098460-B-I00 with FEDER funds.

ICAPS Doctoral Consortium 2022

12

References
Asai, M.; and Fukunaga, A. 2018. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary.
In Thirty-Second AAAI Conference on Artificial Intelligence.
Battaglia, P. W.; Hamrick, J. B.; Bapst, V.; Sanchez-
Gonzalez, A.; Zambaldi, V.; Malinowski, M.; Tacchetti, A.;
Raposo, D.; Santoro, A.; Faulkner, R.; et al. 2018. Relational
inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261.
Besold, T. R.; Garcez, A. d.; Bader, S.; Bowman, H.; Domin-
gos, P.; Hitzler, P.; Kühnberger, K.-U.; Lamb, L. C.; Lowd,
D.; Lima, P. M. V.; et al. 2017. Neural-symbolic learning
and reasoning: A survey and interpretation. arXiv preprint
arXiv:1711.03902.
Charpentier, A.; Elie, R.; and Remlinger, C. 2021. Rein-
forcement learning in economics and finance. Computa-
tional Economics.
Fox, M.; and Long, D. 2003. PDDL2. 1: An extension to
PDDL for expressing temporal planning domains. Journal
of artificial intelligence research.
Fuentetaja, R.; and De la Rosa, T. 2012. A Planning-Based
Approach for Generating Planning Problems. In Workshops
at the Twenty-Sixth AAAI Conference on Artificial Intelli-
gence.
Georgievski, I.; and Aiello, M. 2015. HTN planning:
Overview, comparison, and beyond. Artificial Intelligence.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Elsevier.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search.
Jiménez, S.; De La Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A review of machine learning for
automated planning. The Knowledge Engineering Review.
Katz, M.; Srinivas, K.; Sohrabi, S.; Feblowitz, M.; Udrea,
O.; and Hassanzadeh, O. 2021. Scenario planning in the
wild: A neuro-symbolic approach. FinPlan 2021.
Kingma, D. P.; and Welling, M. 2013. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114.
Kober, J.; Bagnell, J. A.; and Peters, J. 2013. Reinforcement
learning in robotics: A survey. The International Journal of
Robotics Research.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. Advances in neural information processing systems.
Littman, M. L. 1996. Algorithms for sequential decision-
making. Brown University.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. nature.
Moerland, T. M.; Broekens, J.; and Jonker, C. M. 2020.
Model-based reinforcement learning: A survey. arXiv
preprint arXiv:2006.16712.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning hierar-
chical task networks by observation. In Proceedings of the
23rd international conference on Machine learning.
Núñez-Molina, C.; Fdez-Olivares, J.; and Pérez, R. 2020.
Improving online planning and execution by selecting goals
with deep q-learning. In ICAPS 2020 Workshop on Inte-
grated Execution (IntEx) / Goal Reasoning (GR).
Núñez-Molina, C.; Fdez-Olivares, J.; and Pérez, R. submit-
ted. Learning to select goals in Automated Planning with
Deep Q-Learning. Expert Systems With Applications.
Núñez-Molina, C.; Vellido, I.; Nikolov-Vasilev, V.; Pérez,
R.; and Fdez-Olivares, J. 2021. A Proposal to Integrate Deep
Q-Learning with Automated Planning to Improve the Per-
formance of a Planning-Based Agent. In Conference of the
Spanish Association for Artificial Intelligence.
Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Schaul, T.;
Lucas, S. M.; Couëtoux, A.; Lee, J.; Lim, C.-U.; and Thomp-
son, T. 2015. The 2014 general video game playing competi-
tion. IEEE Transactions on Computational Intelligence and
AI in Games.
Schäpers, B.; Niemueller, T.; Lakemeyer, G.; Gebser, M.;
and Schaub, T. 2018. ASP-based time-bounded planning for
logistics robots. In Twenty-Eighth International Conference
on Automated Planning and Scheduling.
Segura-Muros, J. Á.; Pérez, R.; and Fernández-Olivares, J.
2021. Discovering relational and numerical expressions
from plan traces for learning action models. Applied Intelli-
gence.
Shen, W.; Trevizan, F.; and Thiébaux, S. 2020. Learning
domain-independent planning heuristics with hypergraph
networks. In Proceedings of the International Conference
on Automated Planning and Scheduling.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Tadepalli, P.; Givan, R.; and Driessens, K. 2004. Relational
reinforcement learning: An overview. In Proceedings of the
ICML-2004 workshop on relational reinforcement learning.
Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. Advances in neural infor-
mation processing systems.
Toyer, S.; Trevizan, F.; Thiébaux, S.; and Xie, L. 2018. Ac-
tion schema networks: Generalised policies with deep learn-
ing. In Thirty-Second AAAI Conference on Artificial Intelli-
gence.
Wang, W. Y.; Li, J.; and He, X. 2018. Deep reinforcement
learning for NLP. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics: Tuto-
rial Abstracts.

ICAPS Doctoral Consortium 2022

13

Counter-Example Based Planning – Dissertation Abstract

Xiaodi Zhang1

Supervisors: Alban Grastien1, Hanna Kurniawati1, Charles Gretton1

1 School of Computing, Australian National University
Acton, ACT, Australia, 2601

firstname.lastname@anu.edu.au

Abstract

CPCES is one of conformant planning problem solvers. It
continuously searches candidate plans and counter-examples
until finding a valid plan or no solution. The goal of my Ph.D.
project includes improving its efficiency, making it compati-
ble with more classical planners, and using it to solve contin-
gent planning problems.

Background
Conformant Planning Problem
Conformant planning is the problem of searching for a plan
in an environment that is partially known: either the initial
state or the actions’ effects are non-deterministic. Confor-
mant planning problem is EXPSPACE-complete (Haslum
and Jonsson 1999). In comparison, classical planning prob-
lem with no uncertainty is only PSPACE-complete. Con-
formant planning can be used in different areas. For exam-
ple, Mars exploration robot can collect soil samples in an
unknown environment; logistics company distributes trunks
and airplanes in different cities; etc.

Given a set of facts V , a state s is a set of facts s.
A conformant planning model is defined as a tuple P =
⟨V,A,ΦI ,ΦG⟩, where

• V is a finite set of facts
• ΦI is the initial states, s |= ΦI

• ΦG is the goal states, s |= ΦG

• A is a set of actions. Each action a ∈ A is defined as
a pair ⟨pre, coneff ⟩, where pre is the precondition, and
coneff is a set of conditional effects. Each conditional
effect is a pair ⟨c, eff ⟩, where c is the condition, and eff
is the effects. Effect includes positive effects eff + and
negative effect eff −. If a state s satisfies the precondition,
after executing action a, the next state s′ is s′ = s ∪
(
⋃

⟨c,eff ⟩∈coneff ,s|=c eff
+)\(⋃⟨c,eff ⟩∈coneff ,s|=c eff

−).

The solution π to P is a sequence of actions π = a1...an. A
valid plan must reach the goal states for all initial states.

Here is an example of conformant planning problem in
Figure 1. At the beginning, a robot is located in a 5 × 5
grid, but its exact location is unknown. The robot has access
to four actions: GO E, GO W, GO S, and GO N (go East,
go West, go South, and go North, respectively). The grid is

G

T

W E

N

S

1 2 3 4 5

1

2

3

4

5

Figure 1: A robot is required to move to “G” but the initial
state is unknown. Doing GO E × 4, GO S × 4 will move
the robot to ”T” no matter where it is at beginning, since the
robot keeps standing when it hits the wall. One of solutions
is GO E × 4, GO S × 4, GO N × 2, GO W × 2.

surrounded by walls to prevent the robot from moving out.
In other words, when robot hits the wall, it keeps its position.
The robot should finally move to (3,3), denoted as “G”. The
unknown initial state is the trickiest part of this problem.
However, if the robot does GO E × 4, GO S × 4, no matter
where it is at beginning, it must be finally at (5,1), denoted
as “T”. So, one of the solutions is GO E × 4, GO S × 4,
GO N × 2, GO W × 2.

Literature Review
It is impractical to enumerate all the possible states during
the search, so how to represent belief states decides the effi-
ciency of a planner, and the way of representation is the most
difficult parts when designing a planner. T1 is translation-
based approach (Albore, Ramirez, and Geffner 2011). It ad-
dresses the difficulty by compiling planning problem to an-
other one which adopts a more compact representation of
belief states, so it is easier to be solved. Currently, T1 is one
of the best conformant planners. Conformant-FF selects
a specific language to represent the problem and uses heuris-
tic functions to estimate the distance to the goal (Hoffmann

ICAPS Doctoral Consortium 2022

14

and Brafman 2006). But conformant-FF has two short
comings. First, when there are effects with more than one
unknown condition, conformant-FF cannot get enough
heuristic values. Second, it is expensive in checking repeated
states in the problem of lacking different known propositions
in the belief states. MBP is a model-based approach. It uses
Symbolic Model Checking techniques and Binary Decision
Diagrams to handle a large size of belief states (Bertoli et al.
2001). The shortcoming of MBP is that it requires high mem-
ory. POND chooses to use Labeled Uncertainty Graph (LUG)
to represent GraphPlan-like information for different ini-
tial states, and use lazily enforced hill-climbing strategy to
search a plan (Bryce 2006). The CNF planner uses a spe-
cific form of CNF, CNF-state, to represent belief states and
solve the problem (To, Son, and Pontelli 2010), but for some
benchmarks, it spends long time in searching a solution.

As we can see, most planners represents belief states by
using other form of languages, diagrams or models. Scala
and Grastien created a new method, CPCES, which sim-
plifies the problem not through a specific representation,
but through searching counter-examples (Grastien and Scala
2020).

CPCES
CPCES at first was designed to solve deterministic confor-
mant planning problem (unknown initial states and deter-
ministic actions’ effects). The algorithm of CPCES can be
explained as follow: CPCES addresses the problem by re-
placing belief states with a small set of initial states, which is
called sample. In each iteration, CPCES searches a candidate
plan that is valid for the sample. If no candidate plan exists,
there is no solution to the problem. Then, CPCES searches
a counter-example, an initial state that breaks the candidate
plan. If no such counter-example exists, the candidate plan
is a valid plan. Otherwise, the counter-example is added into
the sample (Algorithm 1).

Algorithm 1: The conformant planner CPCES.
1: input: conformant planning problem P
2: output: a conformant plan, or no plan
3: B := ∅
4: loop
5: π := produce-candidate-plan(P,B)
6: if there is no such π then
7: return no plan
8: end if
9: q := generate-counter-example(P, π)

10: if there is no such q then
11: return π
12: end if
13: B := B ∪ {q}
14: end loop

CPCES consists of two main parts. The first part (Line 9)
uses SMT formula to search a counter-example to a candi-
date plan. The basic idea of search counter-example is to
do regression, finding an initial state that breaks the pre-
condition of an action or dissatisfies the goal. In the sec-

ond part (Line 5), CPCES translates the conformant plan-
ning problem to the classical planning problem by creating
a multi-interpretation domain and a multi-interpretation in-
stance (both are PDDL files), then uses Fast Forward
(FF) (Hoffmann and Nebel 2001) to search a candidate
plan. The translation procedure is named the reduction of
conformant planning: executing n classical plannings in par-
allel where all actions are synchronized. Because of the re-
duction, the candidate plan must be valid for all samples.
CPCES has been proved sound and complete. It only uses

a small set of initial states to search candidate plans, sig-
nificantly decreasing the cost. Compared with T1, CPCES
performs better on complex domains while T1 is good at 1-
width domains (the conformant width is the maximum num-
ber of facts in the context whose initial value is unknown).

Scala and Grastien further developed CPCES to address
non-deterministic conformant planning problems (Scala and
Grastien 2021). Non-deterministic conformant planning is
a more complex issue in which both initial states and ac-
tions’ effects are uncertain. Using Figure 1 as an example
for non-deterministic planning. Now the robot is broken.
When it wants to move East, it may move North-East in-
stead. To solve this kind of problem, CPCES translates a
non-deterministic conformant planning to a classical plan-
ning by synchronizing this problem with a non-deterministic
finite automaton (NFA) that prevents the invalid solutions.

Work I Have Done
Improve CPCES by Searching Superior
Counter-Examples
I noticed that CPCES searches counter-examples randomly.
Is it possible to improve CPCES by searching a specific kind
of counter-examples? Look at Figure 1. Now there are two
robots in the grid, and both of them are required to move
to “G”. We suppose robots do not collide when they are at
the same position. In Table 1, I listed several conditions of
counter-examples. The first counter-example (CE1) for two
robots are (1,1), and the second counter-example (CE2) for
Robot2 is (5,5) but Robot1 remains (1,1). The candidate plan
generated in the 2nd round may be weak, because CPCES
considers Robot1 can only be at (1,1). Now we update CE2
to CE2’ where Robot1 is at (4,4). The candidate plan be-
comes stronger, because both (1,1) and (4,4) are covered for
Robot1. I was inspired from this example, believing that the
more information the counter-example covers, the more ef-
ficient CPCES searches a valid plan. So I developed CPCES
by searching a superior counter-example over another one
in each round. A superior counter-example is computed by
tags.

Robot1 Robot2
CE1 (1,1) (1,1)
CE2 (1,1) (5,5)
CE2’ (4,4) (5,5)

Table 1: If CE2 for Robot1 remains the same as CE1, it is not
a good counter-example. Updating CE2 to CE2’ in which
Robot1 is located at (4,4) will be better.

ICAPS Doctoral Consortium 2022

15

A subgoal φ is a conjunct of an action precondition or
the goal. An action a can be applied at state s only when
φ(s) is true. A variable v depends on another variable v′

if there exists an action a that mentions variable v′ in its
conditional effect. The context ctx(φ) of subgoal φ is a set
of variables mentioned by φ, the variables they depend on,
and by transitivity, all the variables they depend on. Given a
context c, a tag for an initial state s is denoted as tagc(s),
which is the intersection of c and s: tagc(s) = c ∩ s. Given
a belief state B and a context c, the set of tags of B for c is
Tc(B) = {tagc(s)|s ∈ B}. We use T (B) =

⋃
c∈C Tc(B)

to represent all the tags in the problem, where C is a set of
all the contexts.

Algorithm 2: compute-superior-counter-example
input: conformant planning problem P
q := generate-counter-example(π)
if there is no such q then

return π is valid
end if
loop
q′ := improve-counter-example(B, q)
if there is no such q′ then

return q
end if
q := q′

end loop

A counter-example s′ is better than another counter-
example s if T (B ∪ s) ⊆ T (B ∪ s′). This is because the
more tags there are, the more information we get. The in-
tersection of the set of plans generated from each tag is
the same as the plans generated from belief state: Π(B) =⋂

t∈T (B) Π(t). The experiment results illustrate that finding
superior counter-examples makes CPCES more efficient on
multi-context domains, while on 1-context domains the ef-
ficiency is not impacted. This work has been published at
AAAI-2020 (Zhang, Grastien, and Scala 2020).

Use Fast Downward Planner in CPCES
CPCES uses FF (Helmert 2006) to search candidate plans.
I considered adding Fast Downward (FD) into CPCES as an
option of planner, since FD provides more options on search
engines and heuristic functions.
FD contains two parts (Helmert 2006). The first part trans-

lates PDDL files to a SAS+ file. It computes mutex groups,
translates the problem to a multi-valued planning task, and
finally writes a SAS+ file to save the task. The second part is
using SAS+ file to search a valid plan. Translation helps FD
simplify the question so the problem can be solved quickly.
However, this is a trade-off, since translation itself is a com-
plex procedure and it is expensive.

Using FD in CPCES directly is impractical. CPCES calls
FF in each iteration, and with the number of iterations in-
creasing, the interpretation instance file becomes larger and
larger. It is difficult for FD to handle with translating a large
file, not to mention FD will be used in all iterations. I did

some experiments and the results display that for all the do-
mains, the searching time of FD is too long, sometimes even
out of memory.

To address this issue, I designed a viable approach to use
FD in CPCES. In CPCES’s interpretation instance file, each
state variable v is replaced by a new variable vi where i is the
interpretation number (iteration number). It is easy to under-
stand that if two variables vi and v′i are mutually exclusive,
vk and v′k (k ̸= i) must be mutually exclusive. This is be-
cause variables represented by k and variables represented
by i are two parallel classical problems but have the same
properties. So separately translating interpretation file and
merging them is applicable.

Having FD translate the whole interpretation file is dif-
ficult, but translating an interpretation file with only single
interpretation number should be much easier. Based on this
idea, I designed a new algorithm to replace FF with FD by
letting FD translate the interpretation file with only one in-
terpretation number in each iteration, and merging the result
into previous SAS+ file (Figure 2).

inter-1
inter-2

...
inter-n

inter-1 inter-2 inter-n

SAS+
for
all

SAS+
for

inter-1
+

SAS+
for

inter-2
+ +

SAS+
for

inter-n

iteration-1 iteration-2 iteration-n

Figure 2: In each iteration, CPCES adds a new interpreta-
tion variable into interpretation instance file, so the interpre-
tation instance file becomes larger and larger. Translating a
large PDDL file to a SAS+ file by FD is impractical. I solved
this problem by asking FD to translate the interpretation in-
stance file with a single interpretation number in each itera-
tion, then merge the result with previous SAS+ file.

This approach has been tested on several benchmarks.
The search engine in FD is eager best-first search, with
best-first open list and FF heuristic. The results shows that
the search time is extremely shorter than using FD directly.
However, this approach is currently worse than FF in terms
of searching time. I am not sure whether this is because the
search engine is not the best. So, I will test more search en-
gines in the future.

ICAPS Doctoral Consortium 2022

16

Future Works
Add More Planners into CPCES
CPCES currently chooses FF to search a plan. This is not
friendly, because some people may be interested in other
planners or algorithms, such as FD, granplan, partial order
planning. It is necessary to add them into CPCES.

Contingent Planning Problem
In contingent planning, the initial state is unknown, but the
agent can observe the nearby environment during the ac-
tions. For example, in Figure 1, when the robot goes to “T”,
the wall at the East and the South will be detected. Then, the
robot will GO N or GO W rather than GO E or GO W to
avoid hitting the wall.

Given a set of facts V , a state s is a set of facts s(v) where
v ∈ V . A contingent planning model is defined as a tuple
P = ⟨V,A,O,ΦI ,ΦG⟩, where
• V , ΦI , ΦG, and A are defined as before.
• O is a set of observations (sensing actions). Each obser-

vation o ∈ O can be defined as a pair ⟨c, v⟩, where c is
the condition, and v is a positive variable in V . The pair
indicates that the truth value of v is observable when c
holds.

The solution π to P is a tree of actions, in which the fork is a
sensing action, and the child node is the next action decided
by what has been observed.

Compared with contingent planning problem, conformant
planning problem lacks sensing actions. Because of it, con-
formant planning is actually a special contingent planning
where there is no observation, so no branch in the plan.
While CPCES works on conformant planning, why not con-
tingent planning?

Increase the Efficiency of CPCES
The number of initial states in CPCES decides the complex-
ity of the problem. In fact, some initial states are more im-
portant than others. Back to Figure 1, for instance, if we only
consider two initial states: (1,1), (5,5), the result is the same
as considering all the initial states. These two initial states
are called ”important initial states”. Even though we ignor-
ing all the other 23 initial states, these 2 initial states are
strong enough to help us find a valid plan. Finding impor-
tant initial states before searching a plan may dramatically
increase the efficiency of the planner. But how to find these
important initial states is a difficult problem. What is more,
is the procedure of finding important initial states expensive?
Is it worthwhile to find important initial states?

Probabilistic Planning Problem
Uncertainty about action’s effect is a key feature of proba-
bilistic planning problem: a probability will be assigned to
each effect. As a consequence, the goal is to find a plan that
is valid with a specified problem. How to develop CPCES
to solve probabilistic planning problem? Is CPCES more ef-
ficient comparing other probabilistic planners? Can I solve
probabilistic planning problem by combining CPCES with
other planners?

Build CPCES Website
CPCES is a successful conformant planner, and it has a huge
potential to be further developed. Propagating CPCES to the
world is my duty, so build a website is necessary. We en-
courage everyone to participate in developing CPCES so that
CPCES can become one of the most useful planners in the
world.

References
Albore, A.; Ramirez, M.; and Geffner, H. 2011. Effective
heuristics and belief tracking for planning with incomplete
information. In Twenty-First International Conference on
Automated Planning and Scheduling.
Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001. MBP: a model based planner. In Proc. of
the IJCAI’01 Workshop on Planning under Uncertainty and
Incomplete Information.
Bryce, D. 2006. POND: The partially-observable and non-
deterministic planner. Sixteenth International Conference on
Automated Planning and Scheduling, 58.
Grastien, A.; and Scala, E. 2020. CPCES: A planning
framework to solve conformant planning problems through
a counterexample guided refinement. Artificial Intelligence,
284: 103271.
Haslum, P.; and Jonsson, P. 1999. Some results on the com-
plexity of planning with incomplete information. In Euro-
pean Conference on Planning, 308–318. Springer.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Hoffmann, J.; and Brafman, R. I. 2006. Conformant plan-
ning via heuristic forward search: A new approach. Artificial
Intelligence, 170(6-7): 507–541.
Hoffmann, J.; and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research, 14: 253–302.
Scala, E.; and Grastien, A. 2021. Non-Deterministic Confor-
mant Planning Using a Counterexample-Guided Incremen-
tal Compilation to Classical Planning. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 31, 299–307.
To, S. T.; Son, T. C.; and Pontelli, E. 2010. A New Approach
to Conformant Planning Using CNF*. In Twentieth Interna-
tional Conference on Automated Planning and Scheduling.
Zhang, X.; Grastien, A.; and Scala, E. 2020. Computing
superior counter-examples for conformant planning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 10017–10024.

ICAPS Doctoral Consortium 2022

17

Data Efficient Paradigms for Personalized Assessment of
Taskable AI Systems – Dissertation Abstract

Pulkit Verma
Thesis Advisor: Siddharth Srivastava

Autonomous Agents and Intelligent Robots Lab,
School of Computing and Augmented Intelligence, Arizona State University, USA

verma.pulkit@asu.edu

Abstract

The vast diversity of internal designs of taskable black-box AI
systems and their nuanced zones of safe functionality make it
difficult for a layperson to use them without unintended side
effects. The focus of my dissertation is to develop algorithms
and requirements of interpretability that would enable a user
to assess and understand the limits of an AI system’s safe
operability. We develop a personalized AI assessment mod-
ule that lets an AI system execute instruction sequences in
simulators and answer the queries about its execution of se-
quences of actions. Our results show that such a primitive
query-response capability is sufficient to efficiently derive a
user-interpretable model of the system’s capabilities in fully
observable, and deterministic settings.

1 Introduction
The growing deployment of AI systems presents a perva-
sive problem of ensuring the safety and reliability of these
systems. The problem is exacerbated because most of these
AI systems are neither designed by their users nor are their
users skilled enough to understand their internal working,
i.e., the AI system is a black-box for them. Hence such sys-
tems may be used by non-experts who may not understand
how they work or what they can and cannot do. Ongoing
research on the topic focuses on the significant problem of
answering such a user’s questions about the system’s behav-
ior (Chakraborti et al. 2017a; Dhurandhar et al. 2018; An-
jomshoae et al. 2019). However, most non-experts hesitate
to ask questions about new AI tools (Mou and Xu 2017)
and often do not know which questions to ask for assess-
ing the safe limits and capabilities of an AI system. This
problem is aggravated in situations where an AI system can
carry out planning or sequential decision making. Lack of
understanding about the limits of an imperfect system can
result in unproductive usage or, in the worst-case, serious
accidents (Randazzo 2018). This, in turn, limits the adop-
tion and productivity of the AI systems.

My dissertation work aims to create general algorithms
and methods for interpretability which when used with a
black-box AI system, can help generate a description of its
capabilities by interrogating it. Consider a situation where
a logistics company buys new delivery robots. The person
managing these robots is unsure whether the robots correctly
understand a task, or if they can even execute it safely. If the

Personalized

AI Assessment

Module

Query

Response

Preferences on
Interpretability

Interpretable Model of

AI System's Capabilities

User Black-Box

AI System

Figure 1: The personalized AI assessment module uses the
user’s preferred vocabulary, queries the AI system, and de-
livers an interpretable model of the AI system’s capabilities.

manager was dealing with a delivery person, it might ask
them questions such as “do you think it would be alright
to bring refrigerated items in a regular bag?” If the answer
is “yes”, it might be a cause for concern. Answers to such
questions can help the manager develop an understanding of
the robot’s frame of knowledge, or “model” while placing a
minimal introspective requirement on the robot.

I will next explain the focus of my dissertation (Sec. 2),
followed by a short discussion on related work (Sec. 3), and
will finally discuss some preliminary results (Sec. 4).

2 Focus of My Dissertation
In my dissertation, I plan to develop a personalized AI-
assessment module (AAM), shown in Fig. 1, which can de-
rive the model of capabilities of a black-box AI system in
terms of an user-interpretable vocabulary. AAM takes as in-
put using as input (i) the agent (ii) a compatible simulator
using which the agent can simulate its primitive action se-
quences; and (iii) the user’s concept vocabulary, which may
be insufficient to express the simulator’s state representa-
tion. Such assumptions on the agent are common. In fact,
use of third-party simulators for development and testing is
the bedrock of most of the research on taskable AI systems
today (including game playing AI, autonomous cars, and
factory robots). Providing simulator access for assessment
is reasonable as it would allow AI developers to retain free-
dom and proprietary controls on internal software while sup-
porting calls for assessment and regulation using approaches
like ours. AAM then queries the AI system and receives its
responses. At the end of the querying process, AAM returns
a user-interpretable model of the AI system’s capabilities.
This approach’s advantage is that the AI system need not
know the user vocabulary or the modeling language.

ICAPS Doctoral Consortium 2022

18

Most simulator-based and analytical-model-based AI sys-
tems can easily answer the kind of questions discussed ear-
lier. However, identifying the high-level capabilites of the AI
system and generating the right set of questions to ask the AI
system to efficiently learn a model of system’s capabilities
is a challenging problem. The focus of this new direction of
research is on solving this problem. In context of this work,
“actions” refer to the core functionality of the agent, denot-
ing the agent’s decision choices, or primitive actions that the
agent could execute (e.g., a keystrokes in a video game). In
contrast, “capabilities” refer to the high-level behaviors that
the AI system can perform using its AI algorithms for be-
havior synthesis, including planning and learning (e.g., nav-
igating to a room, opening a door, etc.). Thus, actions refer
to the set of choices that a tabular-rasa agent may possess,
while capabilities are a result of its agent function (Russell
1997) and can change as a result of algorithmic updates even
as the agent uses the same actions.

Additionally, this proposed method, when used with any
AI system, would also help make them compliant with Level
II assistive AI – systems that make it easy for users to learn
how to use them safely (Srivastava 2021).

2.1 Generating Interrogation Policies
I aim to create an interrogation policy that will generate the
queries for the AI system, and use the AI system’s answers
to estimate its model in the user-interpretable vocabulary. I
plan to generate these queries by reducing the query gener-
ation to a planning problem and then use an interrogation
algorithm to iteratively generate new queries actively, based
on responses to previous queries.

2.2 Inferring the Action Model
Given the predicates and actions, there is an exponential
number of PDDL (McDermott et al. 1998) models possi-
ble. To avoid this combinatorial explosion, I plan to use a
top-down process that eliminates large classes of models,
inconsistent with the AI system, by computing queries that
discriminate between pairs of abstract models. When an ab-
stract model’s answer to a query differs from that of the AI
system, we can eliminate the entire set of possible models
that are refinements of this abstract model.

I plan to start research on this front with simplistic queries
in deterministic fully observable environments and expand
the scope to more general settings. I plan to first extend this
to settings where the model of an AI system adapts itself
to work with the user in a better way, or due to some other
reason. This will avoid relearning the complete model from
scratch, and will learn the AI system’s model much faster. In
the future, this mechanism can be extended to more general
forms of queries. Similar to active learning, information the-
oretic metrics can also be utilized to ascertain which queries
will be better at any given time in the querying process.

2.3 Discovering the Capabilities and Learning
their Descriptions

As mentioned earlier, I want the assessment module to dis-
cover the high-level capabilities of the AI system that can

plan (using search or a policy), and not just the action model
of an AI system. I plan to collect a set of state observations
capturing the behavior of the AI system in form of the state
transitions. I would then discover the high-level capabilities
of the AI system’s behavior using those state transitions, and
then learn the description of these capabilities similar to the
learning of action model discussed earlier. I plan to extend
this to settings where either the capabilities are stochastic
even though the low level transition system is deterministic,
or the low level transition itself is stochastic, thereby result-
ing in capabilities that are stochastic.

3 Related Work
Learning action models Several action model learning
approaches (Gil 1994; Yang, Wu, and Jiang 2007; Cresswell,
McCluskey, and West 2009; Zhuo and Kambhampati 2013;
Aineto, Celorrio, and Onaindia 2019) have focused on learn-
ing the AI system’s model using passively observed data.
Jiménez et al. (2012) and Arora et al. (2018) present a com-
prehensive review of such approaches. These approaches do
not feature any interventions, hence are susceptible to learn-
ing buggy models. Unlike these approaches, our approach
queries the AI system and is guaranteed to converge to the
true model while presenting a running estimate of the accu-
racy of the derived model; hence, it can be used in settings
where the AI system’s model changes due to learning or a
software update.

Differential assessment Bryce, Benton, and Boldt (2016)
address the problem of learning the updated mental model of
a user using particle filtering given prior knowledge about
the user’s mental model. However, they make a strong as-
sumption that the user knows enough to point out errors
in the learned model if needed. Model reconciliation litera-
ture (Chakraborti et al. 2017b; Sreedharan et al. 2019; Sreed-
haran, Chakraborti, and Kambhampati 2021) deals with in-
ferring the differences between the user and the agent mod-
els and removing them using explanations. These methods
consider white-box known models whereas our approach
works with black-box AI systems.

Learning high-level models Given a set of options encod-
ing skills as input, Konidaris, Kaelbling, and Lozano-Perez
(2018) and James, Rosman, and Konidaris (2020) propose
methods for learning high-level propositional models of op-
tions representing various “skills.” They assume access to
predefined options and learn the high-level symbols that de-
scribe those options at the high-level. While they use options
or skills as inputs to learn models defining when those skills
will be useful in terms of auto-generated symbols (for which
explanatory semantics could be derived in a post-hoc fash-
ion), our approach uses user-provided interpretable concepts
as a priori inputs to learn AI system capabilities: high-level
actions as well as their interpretable descriptions in terms of
the input vocabulary.

4 Preliminary Results
We developed three preliminary versions of the personalized
AI assessment module, each focusing on one specific sub-

ICAPS Doctoral Consortium 2022

19

M
od

el
 A

cc
ur

ac
y

Ti
m

e
pe

r Q
ue

ry
 (s

)

Number of Queries

Figure 2: Performance comparison of AIA and FAMA in
terms of model accuracy and time taken per query.

problem of the overall larger goal.

Learning the Action Model The first preliminary version
of the AI assessment module, called the agent interrogation
algorithm (AIA) (Verma, Marpally, and Srivastava 2021),
efficiently derives a user-interpretable model of the system
in stationary, fully observable, and deterministic settings.
In the context of this initial work, user-interpretable means
STRIPS-like (Fikes and Nilsson 1971) models because such
models can be easily translated into interpretable descrip-
tions, and they also allow interventions and assessment of
causality. In the future, I plan to learn more general and more
expressive models of the AI system.

Also, in this version, we used plan outcome queries
which are parameterized by an initial state and a plan; and
ask the AI system, the length of the longest prefix of the
plan that it can execute successfully when starting in the
given initial state, as well as the final state that this exe-
cution leads to. E.g., “Given that the truck t1 and pack-
age p1 are at location l1, what would happen if you ex-
ecuted the plan ⟨load truck(p1, t1, l1), drive(t1, l1, l2),
unload truck(p1, t1, l2)⟩?”.

We compared AIA with the closest related work
FAMA (Aineto, Celorrio, and Onaindia 2019) in terms of;
the accuracy of the learned model, the number of queries
asked, and the time taken to generate those queries. Fig. 2
summarizes our findings for systems initialized with IPC
domains. AIA takes lesser time per query and shows better
convergence to the correct model. FAMA sometimes reaches
nearly accurate models faster, but its accuracy continues to
oscillate, making it difficult to ascertain when the learn-
ing process should be stopped. This is because the solution
to FAMA’s internal planning problem introduces spurious
palm tuples in its model if the input traces do not capture the
complete domain dynamics. Also, in domains with negative
preconditions like Termes, FAMA was unable to learn the
correct model.

We also showed that AIA can be used with simulator-
based systems that do not know about predicates and report
states as images. To test this, we wrote classifiers to detect
predicates from images of simulator-states in the PDDL-
Gym (Silver and Chitnis 2020) framework. This framework
provides ground-truth PDDL models, thereby simplifying
the estimation of accuracy. We initialized the AI system
with one of the two PDDLGym environments, Sokoban and
Doors. AIA inferred the correct model in both cases, and
the average number of queries (over 5 runs) used to predict
the correct model for Sokoban and Doors were 201 and 252,
respectively.

Finally, we also show that the models that we learn cap-
ture the correct causal relationships in the AI system’s be-
havior in terms of how the system operates and interacts
with its environment (Verma and Srivastava 2021), unlike
the models learned by approaches that only use observa-
tional data. We call such causal model a generalized dynam-
ical causal model of the AI system capturing under what
conditions it executes certain actions and what happens af-
ter it executes them.

Differential Assessment We developed a differential as-
sessment version of the personalized AI assessment module,
called DAAISy (Nayyar, Verma, and Srivastava 2022). This
addresses the problem of accurately predicting the behavior
of a black-box AI system that is evolving and adapting to
changes in the environment it is operating in.

The algorithm for differential assessment utilizes an ini-
tially known PDDL model of the AI system in the past, and
a small set of observations of AI system’s execution. It uses
these observations to develop an incremental querying strat-
egy that avoids the full cost of assessment from scratch and
outputs a revised model of the system’s new functionality.

We refer to a predicate in an action’s precondition or ef-
fect as a pal-tuple, and it can have three modes; positive,
negative, or absent, depending on whether that predicate is
present in the action’s precondition (or effect) in as a pos-
itive literal, a negative literal or is absent. To assess the
performance of our approach with increasing drift, we em-
ployed two methods of generating the initial domains: (a)
dropping the pal-tuples already present, and (b) adding new
pal-tuples. For each experiment, we used both types of do-
main generation. We generated different initial models by
randomly changing modes of random pal-tuples in the IPC
domains. Thus, in all our experiments an IPC domain plays
the role of ground truth model and a randomized model is
used as the initial known model.

We evaluated the performance of DAAISy along two di-
rections; the number of queries it takes to learn the updated
model of the AI system with increasing amount of drift, and
the correctness of the model DAAISy learns as compared to
the AI system’s updated model.

As shown in the plots in Fig. 3, the computational cost
of assessing each AI system, measured in terms of the num-
ber of queries used by DAAISy, increases as the amount of
drift in the AI system’s model increases. This is expected as
the amount of drift is directly proportional to the number of
pal-tuples affected in the domain. This increases the number

ICAPS Doctoral Consortium 2022

20

Accuracy gained by DAAISy Number of queries by DAAISy
Accuracy of initial model Accuracy of model computed by DAAISy

M
od

el
 A

cc
ur

ac
y

N
um

be
r

of
 Q

ue
ri
es

% drift

Figure 3: The number of queries used by DAAISy and AIA
(marked × on y-axis), as well as accuracy of model com-
puted by DAAISy with increasing amount of drift. Amount
of drift equals the ratio of drifted pal-tuples and the total
number of pal-tuples in the domains (#Pals).

of pal-tuples that DAAISy identifies as affected, and hence
ends up asking more questions.

Also, DAAISy always took fewer queries as compared
to AIA to reach reasonably high levels of accuracy because
AIA does not use information about the initial known model
of the AI system and thus ends up querying for all possi-
ble pal-tuples. DAAISy, on the other hand, predicts the set
of pal-tuples that might have changed based on the observa-
tions collected from the AI system and thus requires signifi-
cantly fewer queries.

Discovering the capabilities and learning their descrip-
tions We also developed a version of AAM that can dis-
cover high-level capabilities of an AI planning agent ex-
pressible in terms of the user-interpretable concept vocabu-
laries (Verma, Marpally, and Srivastava 2022). The descrip-
tions of these capabilities as a model are returned to the user
as opposed to the model of agent’s primitive actions.

We initialized the agents using the General Video Game
Artificial Intelligence framework (Perez-Liebana et al.
2016). For each agent, we create a random game instance
with the goal of achieving one of the user’s specified proper-
ties of interest (implemented as predicates). We use the so-
lution to that instance to generate an execution trace that is
used to discover the capabilities of the agent. We then ask
the agent a sequence of queries and use the responses to
complete the descriptions of these capabilities in a STRIPS-
like form. Note that these queries are generated in high-level
user vocabulary that the agent does not understand, hence
we split each query into multiple sub-queries in a form that
agent can answer. The multiple agent responses are also con-
verted to the high-level responses used to complete the capa-
bility descriptions. The approach is guaranteed to compute

Figure 4: Data from behavior analysis shows that using computed
capability descriptions took lesser time and yielded more accurate
results.

capability descriptions that are correct in the sense that they
are consistent with the execution traces, and refinable and
executable with respect to the true capabilities of the agent.

We also conducted a user study to evaluate interpretablity
of the capability descriptions computed by our approach. In-
tuitively, our notion of interpretability matches that of com-
mon English and its use in AI literature, e.g., as enunciated
by Doshi-Velez and Kim (2018): “the ability to explain or to
present in understandable terms to a human.” We evaluate
this through the following operational hypothesis:

H1. The discovered capabilities make it easier for users to
analyze and predict outcome of agent’s possible behaviors.

We designed a user study to evaluate H1. This study com-
pares the predictability and analyzability of agent behavior
in terms of the agent’s low-level actions and high-level ca-
pabilities. Each user is explained the rules of an ATARI-like
game. One group of users – called the primitive action group
– are presented with text descriptions of the agent’s primitive
actions, while the users in the other group – called the capa-
bility group – are presented with a text description of the
six capabilities discovered by our approach. The capability
group users are asked to choose a short summarization for
each capability description, out of the eight possible sum-
marizations that we provide, whereas the primitive action
group users are asked to choose a short summarization for
each of the five primitive action description, out of the five
possible summarizations that we provide. Then each user is
given the same 5 questions in order. Each question contains
two game state images; start and end state. The user is asked
what sequence of actions or capabilities that the agent should
execute to reach the end state from the start state. Each ques-
tion has 5 possible options for the user to choose from, and
these options differ depending on their group. We then col-
lect the data about the accuracy of the answers, and the time
taken to answer each question.

The results for the behavior analysis study are shown in
(Fig. 4) The users took less time to answer questions and
they got more responses correct when using the capabilities
as compared to using primitive actions. This validates H1
that the discovered capabilities made it easier for the users
to analyze and predict the agent’s behavior correctly.

ICAPS Doctoral Consortium 2022

21

References
Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning
Action Models With Minimal Observability. Artif. Intell.,
275: 104–137.
Anjomshoae, S.; Najjar, A.; Calvaresi, D.; and Främling, K.
2019. Explainable Agents and Robots: Results from a Sys-
tematic Literature Review. In Proc. AAMAS.
Arora, A.; Fiorino, H.; Pellier, D.; Métivier, M.; and Pesty,
S. 2018. A Review of Learning Planning Action Models.
The Knowledge Engineering Review, 33: E20.
Bryce, D.; Benton, J.; and Boldt, M. W. 2016. Maintaining
Evolving Domain Models. In Proc. IJCAI.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017a. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In Proc. IJCAI.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017b. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In Proc. IJCAI.
Cresswell, S.; McCluskey, T.; and West, M. 2009. Acquisi-
tion of Object-Centred Domain Models from Planning Ex-
amples. In Proc. ICAPS.
Dhurandhar, A.; Chen, P.-Y.; Luss, R.; Tu, C.-C.; Ting, P.;
Shanmugam, K.; and Das, P. 2018. Explanations based on
the Missing: Towards Contrastive Explanations with Perti-
nent Negatives. In Proc. NeurIPS.
Doshi-Velez, F.; and Kim, B. 2018. Considerations for Eval-
uation and Generalization in Interpretable Machine Learn-
ing, 3–17. Springer International Publishing.
Fikes, R. E.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2(3-4): 189–208.
Gil, Y. 1994. Learning by Experimentation: Incremental Re-
finement of Incomplete Planning Domains. In Proc. ICML.
James, S.; Rosman, B.; and Konidaris, G. 2020. Learning
Portable Representations for High-Level Planning. In Proc.
ICML.
Jiménez, S.; De La Rosa, T.; Fernández, S.; Fernández, F.;
and Borrajo, D. 2012. A Review of Machine Learning for
Automated Planning. The Knowledge Engineering Review,
27(4): 433–467.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From Skills to Symbols: Learning Symbolic Representa-
tions for Abstract High-Level Planning. Journal of Artificial
Intelligence Research, 61(1): 215–289.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D. S.; and Wilkins, D. 1998. PDDL –
The Planning Domain Definition Language. Technical Re-
port CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control.
Mou, Y.; and Xu, K. 2017. The Media Inequality: Compar-
ing the Initial Human-Human and Human-AI Social Inter-
actions. Computers in Human Behavior, 72: 432–440.
Nayyar, R. K.; Verma, P.; and Srivastava, S. 2022. Differen-
tial Assessment of Black-Box AI Agents. In Proc. AAAI.

Perez-Liebana, D.; Samothrakis, S.; Togelius, J.; Schaul, T.;
and Lucas, S. 2016. General Video Game AI: Competition,
Challenges and Opportunities. In Proc. AAAI.
Randazzo, R. 2018. What went wrong with Uber’s Volvo
in fatal crash? Experts shocked by technology failure. The
Arizona Republic.
Russell, S. J. 1997. Rationality and Intelligence. Artificial
Intelligence, 94(1-2): 57–77.
Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems. In ICAPS 2020 Workshop on
Planning and Reinforcement Learning.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2021.
Foundations of Explanations as Model Reconciliation. Arti-
ficial Intelligence, 103558.
Sreedharan, S.; Hernandez, A. O.; Mishra, A. P.; and Kamb-
hampati, S. 2019. Model-Free Model Reconciliation. In
Proc. IJCAI.
Srivastava, S. 2021. Unifying Principles and Metrics for
Safe and Assistive AI. In Proc. AAAI.
Verma, P.; Marpally, S. R.; and Srivastava, S. 2021. Asking
the Right Questions: Learning Interpretable Action Models
Through Query Answering. In Proc. AAAI.
Verma, P.; Marpally, S. R.; and Srivastava, S. 2022. Discov-
ering User-Interpretable Capabilities of Black-Box Planning
Agents. In Proc. KR.
Verma, P.; and Srivastava, S. 2021. Learning Causal Models
of Autonomous Agents using Interventions. In IJCAI 2021
Workshop on Generalization in Planning.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning Action Mod-
els from Plan Examples Using Weighted MAX-SAT. Artifi-
cial Intelligence, 171(2-3): 107–143.
Zhuo, H. H.; and Kambhampati, S. 2013. Action-Model Ac-
quisition from Noisy Plan Traces. In Proc. IJCAI.

ICAPS Doctoral Consortium 2022

22

Domain Specific Situated Planning – Dissertation Abstract

Devin Thomas
University of New Hampshire, Advisor: Dr. Wheeler Ruml

Abstract

There has been much recent work on finding paths in grid
maps among moving obstacles. However, in addition to as-
suming complete omniscience regarding the map and the ob-
stacles’ trajectories, previous work has also assumed that time
stands still while the agent plans. My dissertation addresses
situated pathfinding, in which time passes and the obstacles
continue to move while the agent plans. I will study situated
planning in three domains: Grid pathfinding among moving
obstacles, orienteering and opportunistic science.

Introduction
Traditionally when planning we assume that we receive the
problem instance as input, then formulate a plan, then the
clock begins and the agent executes the plan. Sometimes we
would prefer to consider time passing as we plan, which is
situated planning. I am working on situated planning in three
domains, Grid pathfinding among moving obstacles, orien-
teering and opportunistic science.

When planning, our aim is to find a quick and safe path
for our agent to reach its goal. While realtime planning al-
gorithms address this by setting a fixed time bound for the
agent to return an incremental plan. In contrast a situated
agent plans “as the clock ticks” (Cashmore et al. 2018a)
time passes, whether the agent is moving, thinking or wait-
ing. Situated planning is less rigid than realtime planning,
the agent may choose to spend additional time planning if it
believes it will benefit from doing so. This “metareasoning”
about when and for how long to plan maybe be important
for some situated agents.

In my dissertation we will explore situated planning in
several domains. First in grid based path planning, where the
environment includes both static and moving obstacles and
the agent seeks to minimize it’s goal achievement time while
avoiding collision with any obstacles. Second in the orien-
teering problem, where the agent is given a graph containing
nodes with varying values, and has a time limit to visit some
portion of those nodes and accumulate as much total value as
it can. Thirdly the problem of opportunistic science, where
the agent may have a window of time to amend its plan to
take advantage a transient measurement. In the remainder of
this abstract I will give an overview of the background of sit-
uated planning, and each of the domains we intend to work
on.

Situated Planning

(Russell and Wefald 1991) argue that computations are ac-
tions, and the utility of such an action should be derived from
its effect on the agents choice of actions. This utility can be
estimated from statistical knowledge of the utility of previ-
ous computation actions. More recently the problem of situ-
ated planning was posed by Cashmore et al. (2018a), where
the planner understands that execution is waiting on plan-
ning. This allows the planner to prune partial plans where the
planning would likely finish too late to execute. In domain
independent planning with absolute deadlines this showed
empirical improvements over a baseline planner which had
a set planning time, and moved all the deadlines earlier by
that same planning time. (Shperberg et al. 2019) formalize
the metareasoning problem allocating planning effort when
actions expire (AE2) where the situated agent must decide
which search nodes to expend planning effort on, when they
each have an expiration time, and expected completion ef-
fort in addition to the normal cost. They optimize to max-
imize the probability that at least one solution is found by
the deadline. They develop a formal MDP solution for AE2,
and empirically demonstrate a greedy scheme which was
near optimal in solution quality, while also fast enough to
be used in metareasoning. The delay-damage aware (DDA)
greedy scheme presented by (Shperberg et al. 2021) pro-
vides an optimal pseudo-polynomial solution in the case of
known deadlines and, a fast greedy scheme that shows im-
provements over previous schemes with unknown deadlines.
Situated planning is an area of active work, and it remains
unclear how much of the sophisticated theoretical work can
be applied to concrete problems. This dissertation focuses
on three different domains where we can test the utility of
these metareasoning algorithms.

Three Problem Domains

We have three domains which we will explore situated plan-
ning in. This first is a 2D grid with static and moving obsta-
cles, this setting has been the focus of the work thus far. The
others are orienteering and opportunistic science which we
have discussed as potential domains to explore, but have not
begun working in yet.

ICAPS Doctoral Consortium 2022

23

Grid Pathfinding Among Moving Obstacles
The problem statement for situated grid pathfinding among
moving obstacles is: we have an agent that is situated on a
2D grid, with 8-way movement plus the ability to wait in
place. The environment contains static and moving obsta-
cles, the safety of the agent is binary. If the agent collides
with an obstacle at any point in time it dies, otherwise it is
safe. The agent has a starting location, and a goal location
to reach as quickly as possible avoiding collision with any
obstacles. The cost of the agent’s actions is the time they
take to complete, and the state space is ⟨x, y, t⟩ where the
location is discrete and the temporal dimension continuous.

More formally, situated grid pathfinding among moving
obstacles is a 6-tuple ⟨S,N,A,C, sstart, G⟩ where:

• S is a set of states, which are tuples ⟨x, y, t⟩ representing
the agent’s discrete grid cell and real-valued time.

• I is a function from x, y locations to a set of intervals
{[ti, tj], . . . , [tk, tl]}, representing safe times when the
agent can occupy the grid point at ⟨x, y⟩ without col-
liding with a dynamic obstacle. Static obstacles corre-
spond to grid cells with no safe intervals. Dynamic ob-
stacles create unsafe intervals corresponding to the grid
cells they occlude.

• A is a set of actions where each action a ∈ A; a : S → S
has a duration ta. We use 8-way motion augmented with
a wait action.

• C is the mapping of actions to their durations. C : A →
R+, we use C(a ∈ A) = ta. {up, down, left , right}
have a duration of 1, diagonal motions have a duration of√
2.

• G is the goal grid cell, ⟨x, y⟩.
• sstart ∈ S is the starting state.

Given a SSIPP problem presented to an agent at time t0,
a emergent solution plan is defined as a sequence of actions
(a0, a1, ..., ai, ..., aN) emitted by the agent, where

• The solution begins at Sstart.
• Define Succ(s, a) : S × A → S the successor function

returning the result of applying action a at state s.
• We can then recursively define the states of the path si =
Succ(si−1, ai−1) with s0 being the Sstart.

• Each action is feasible, the states si are always within a
safe interval, and thus never in collision with any obsta-
cle.

• the agent ends at the goal cell after a finite sequence of
actions.

The objective of the agent is to execute a plan that reaches a
goal state as quickly as possible.

The offline equivalent to this problem is addressed by
safe interval path planning(SIPP). The safe intervals are con-
structed by grouping all consecutive co-located states into a
safe interval at that location, i ∈ I . This compresses the
continuous time dimension into a compact discrete repre-
sentation which can then be solved with optimally with A∗

(Phillips and Likhachev 2011) (Yakovlev and Andreychuk
2017), or sub-optimally with variations of weighted A∗ or

focal search (Yakovlev, Andreychuk, and Stern 2020) or
with anytime algorithms which run fast enough to be used
in soft-realtime on a specific problem instance (Narayanan,
Phillips, and Likhachev 2012).

SIPP and its variants take advantage of the property that
when searching offline there is a built in dominance of states
within an interval, with earlier arrival into an interval always
being better. This is no longer the case when the agent is sit-
uated, as a hasty agent may miss out on opportunities that re-
quire more careful deliberation. Because of this our situated
problem requires a more sophisticated handling of intervals
to be correct. Our more sophisticated method, and how and
when it is an improvement over simpler or incorrect methods
is part of our upcoming paper.

In this domain we are also exploring how cutting edge
methods from realtime search apply to situated planning.
The situated agent must perform heuristic learning in or-
der to escape local minima, the agent can back up informa-
tion from the search frontier using methods like local search
space real time A∗(LSS-LRTA∗) (Koenig and Sun 2009),
potentially with separate learning of the static environment
from the dynamic environment using partitioned learning re-
altime A∗(PLRTA∗) (Cannon, Rose, and Ruml 2014). Our
agent must also have a strategy for picking which search
nodes to expand first, in similar realtime settings it has been
shown to be beneficial to use a f̂(n) = g(n) + ĥ(n) rather
than f(n) = g(n) + h(n) where ĥ(n) is the expected cost
to goal at search node n, rather than a heuristic cost to goal
h(n) (Kiesel, Burns, and Ruml 2015). The agent also may
benefit from committing to more than one action at a time,
thus increasing the amount of time it has to plan the next
set of actions. One method would be to commit all the way
to the search frontier, which then allows a situated plan-
ner to plan even further for the next set of actions thus dy-
namically increasing the size of partial plan committed to
(Kiesel, Burns, and Ruml 2015). For realtime planning that
scheme has been shown to be too aggressive, leading the
agent to over-commit. (Cheng and Ruml 2019) found that
a constrained dynamic scheme, where the size of set of ac-
tions committed to was allowed to grow, but only by a fixed
amount per iteration was better.

This initial grid problem setting while simple, provides
an arena to test how methods from realtime planning can
be adapted to the situated setting. We have begun our ex-
perimentation using the same set of instances used by the
bounded-suboptimal SIPP paper (Yakovlev, Andreychuk,
and Stern 2020). Our initial results suggest that with ap-
propriate choices of state space representation and learning
algorithm, a situated agent can perform very well in these
instances. As such it is not yet clear if this setting will be
suitable, or sufficiently complex to explore our questions on
how the agent should metareason.

The grid path planning domain has been the focus of our
work so far, we are in the process of preparing a paper ex-
ploring the effects of choices in state space representation
and heuristic learning on the success of a situated agent.
Following the paper we plan to finish exploring the effects
of other methods that have been found to be beneficial in

ICAPS Doctoral Consortium 2022

24

realtime search in the situated setting, such as altering the
choice of expansion algorithm and the commitment strategy.
Additionally so far we have used problem instances from
(Yakovlev, Andreychuk, and Stern 2020), we would like to
construct instances of our own, for example instances of the
game Frogger would be appropriate for this situated agent.

The Orienteering Problem

In a orienteering problem, the agent is given a starting lo-
cation, and a set of checkpoints each with some score as-
sociated with it. The agent seeks to visit these checkpoints
and return to the starting location, such that it maximizes
the sum of the scores it accumulates while returning by
some deadline (Vansteenwegen, Souffriau, and Oudheusden
2011). The orienteering problem with time windows, aug-
ments the orienteering problem with locations who’s point
value is only captured if the agent reaches them within a cer-
tain time interval. In this way it is similar, but distinct from
the safe intervals mentioned before.

Orienteering is a natural problem to consider in a situated
manner, as only limited information of the problem instance
is available prior to starting the race. Additionally a situ-
ated agent may benefit from metareasoning on how long to
spend planning, especially in the orienteering problem with
time windows, when spending a substantial time at the start
planning might mean missing out on quick deadlines. A sit-
uated agent in this setting must balance its short term goals
to accumulate the most points, with its long term constraint
that it must return by the time limit.

Opportunistic Science

The opportunistic science domain is an agent who is execut-
ing a long term plan which it must complete. During execu-
tion the agent is presented with an unexpected opportunity to
achieve a large reward by expending some surplus resources
it is holding in reserve, whether those resources are time, or
battery charge or sampling capacity. These opportunities are
transient, and rare or otherwise impractical to plan for as part
of the long term plan. Similar to the orienteering problem,
the agent must keep in mind the need to maintain adequate
resources to complete its long term goals, while reacting to
opportunities in such a way as to maximize its benefit.

There are numerous autonomous agents who may en-
counter transient scientific opportunities. This can be a mar-
tian rover who could observe a dust devil and record it, or
use it to clean off it’s solar panels (Lorenz and Reiss 2015).
This has included a focus on on-board systems to adjust
to unexpected surplus or deficits in rover resources (Gaines
et al. 2006) (Rabideau et al. 2020). Similarly this problem
has been explored with autonomous submersibles perform-
ing underwater maintenance (Cashmore et al. 2018b). Those
agents represent systems with high latency to get assistance
planning, in contrast there are systems like the CHIME ra-
dio telescope, which generates terabytes of data each sec-
ond, and as such can only buffer the data for a matter of sec-
onds while it decides what events are most worth recording
(Amiri et al. 2018).

Conclusions
Situated planning in contrast with traditional offline plan-
ning has time progress while the agent plans. Prior work in
situated planning has been mainly theoretical or domain in-
dependent. We aim to explore situated planning in three con-
trasting domains, giving us wide view of how the theory of
situated planning can be applied. Our work so far has been
focused on the grid path planning domain, which has shown
some promising initial results.

References
Amiri, M.; Bandura, K.; Berger, P.; Bhardwaj, M.; Boyce,
M.; Boyle, P.; Brar, C.; Burhanpurkar, M.; Chawla, P.;
Chowdhury, J.; et al. 2018. The CHIME fast radio burst
project: system overview. The Astrophysical Journal,
863(1): 48.
Cannon, J.; Rose, K.; and Ruml, W. 2014. Real-time Motion
Planning with Dynamic Obstacles. Ai Communications, 27:
345–362.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018a. Temporal planning while
the clock ticks. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling, volume 28.
Cashmore, M.; Fox, M.; Long, D.; Magazzeni, D.; and Rid-
der, B. 2018b. Opportunistic Planning in Autonomous Un-
derwater Missions. IEEE Transactions on Automation Sci-
ence and Engineering, 15(2): 519–530.
Cheng, C. C.; and Ruml, W. 2019. Real-time Heuristic
Search in Dynamic Environments. In Twelfth Annual Sym-
posium on Combinatorial Search.
Gaines, D.; Estlin, T.; Chouinard, C.; Casta, R.; Casta, A.;
Bornstein, B.; Anderson, R.; Judd, M.; Nesnas, I.; and Ra-
bideau, G. 2006. Opportunistic Planning and Execution for
Planetary Exploration.
Kiesel, S.; Burns, E.; and Ruml, W. 2015. Achieving goals
quickly using real-time search: experimental results in video
games. Journal of Artificial Intelligence Research, 54: 123–
158.
Koenig, S.; and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems, 18(3): 313–341.
Lorenz, R. D.; and Reiss, D. 2015. Solar panel clearing
events, dust devil tracks, and in-situ vortex detections on
Mars. Icarus, 248: 162–164.
Narayanan, V.; Phillips, M.; and Likhachev, M. 2012. Any-
time Safe Interval Path Planning for dynamic environments.
In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 4708–4715.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe interval
path planning for dynamic environments. 5628 – 5635.
Rabideau, G.; Wong, V.; Gaines, D.; Agrawal, J.; Chien, S.;
Fosse, E.; and Biehl, J. 2020. Onboard automated schedul-
ing for the mars 2020 rover.
Russell, S.; and Wefald, E. 1991. Principles of metareason-
ing. Artificial intelligence, 49(1-3): 361–395.

ICAPS Doctoral Consortium 2022

25

Shperberg, S. S.; Coles, A.; Cserna, B.; Karpas, E.; Ruml,
W.; and Shimony, S. E. 2019. Allocating planning effort
when actions expire. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, 2371–2378.
Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In Proceedings of the Inter-
national Conference on Automated Planning and Schedul-
ing, volume 31, 340–348.
Vansteenwegen, P.; Souffriau, W.; and Oudheusden, D. V.
2011. The orienteering problem: A survey. European Jour-
nal of Operational Research, 209(1): 1–10.
Yakovlev, K.; and Andreychuk, A. 2017. Any-Angle
Pathfinding for Multiple Agents Based on SIPP Algorithm.
arXiv:1703.04159.
Yakovlev, K.; Andreychuk, A.; and Stern, R. 2020. Revis-
iting Bounded-Suboptimal Safe Interval Path Planning. In
Proceedings of the 30th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 300–304. AAAI
Press.

ICAPS Doctoral Consortium 2022

26

Domain-Independent Heuristics in Probabilistic Planning – Dissertation Abstract

Thorsten Klößner
Saarland University, Saarland Informatics Campus

Foundations of Artificial Intelligence Group
kloessner@cs.uni-saarland.de

Supervisor: Jörg Hoffmann

Abstract

It has been almost two decades since MDP heuristic search
algorithms have been developed. These algorithms guaran-
tee to find an optimal partial policy for the initial state for
several optimization objectives without necessarily expand-
ing the entire state space, if provided with a heuristic that pro-
vides optimistic objective value estimates for all states. While
a large set of such domain-independent heuristic families is
available in classical planning, the same cannot be said about
probabilistic planning. So far, with the exception of occupa-
tion measure heuristics for (constrained) Stochastic Shortest-
Path Problems, most of the research on domain-independent
heuristic construction consists of using a classical heuristic
on the all-outcomes determinization of the planning problem,
in which the probabilistic effect of an action can be chosen at
will. Because this approach is agnostic to the uncertainty in
the underlying problem, these heuristics are often uninforma-
tive. In this thesis, I will develop new domain-independent
heuristics for probabilistic planning which take the proba-
bilistic nature of the problem into account. To this end, the
main focus of the thesis lies in developing the foundations of
abstraction heuristics for probabilistic planning, in particular
Pattern Database heuristics and Merge-and-Shrink heuristics.

Introduction
AI planning is a long-standing discipline in artificial intelli-
gence which deals with the automatic deduction of strategies
for autonomous agents. In classical planning, the simplest
form of planning, a single agent acts inside a fully observ-
able and deterministic environment. Probabilistic Planning
relaxes these assumptions to allow stochastic environments,
where an action leads to one of multiple possible outcomes,
each occurring with an associated probability that is known
a priori. In this thesis, I will focus on fully observable prob-
lems, where problems are commonly modelled as a Markov
Decision Process (MDP). In this setting, the behaviour of
the agent is typically specified by a function from states to
actions, called a policy.

There exist various optimization criteria can be consid-
ered to specify the desired behaviour of an agent. In this
thesis, I focus on two settings in particular. In the MaxProb
setting, we want to find a policy that maximizes the proba-
bility to reach a set of goal states when starting in the initial
state of the problem. On the other hand, Stochastic Shortest-
Path Problems (SSPs, Bertsekas and Tsitsiklis (1991)) as-

sociate each action application with a real-valued cost. The
objective of the agent is to reach a set of goal states with
probability one in the limit, while minimizing the expected
accumulated cost to do so.

There exist a plethora of algorithms to solve MDPs both
optimally and approximately for these settings. Heuristic
search algorithms for SSPs (e.g. Hansen and Zilberstein
(2001), Bonet and Geffner (2003), Trevizan et al. (2017))
have the potential to prevent the exhaustive generation of
the whole state space of the problem. These algorithms re-
quire an admissible heuristic to ensure optimality, i.e. a func-
tion which underestimates the real minimal expected cost-
to-goal of a state. These algorithms can also be extended
to MaxProb (Kolobov et al. 2011), where they require an
upper-bounding heuristic on the maximal goal probability
of a state instead.

Although substantial effort has been invested into the de-
velopment of MDP heuristic search algorithms themselves,
research regarding admissible heuristics which can be sup-
plied to these algorithms is, to this day, rather sparse. Most
of the research utilizes the all-outcomes determinization
(Yoon, Fern, and Givan 2007), in which the agent can simply
choose the probabilistic outcome of an action. With the help
of this transformation, any classical heuristic can be used to
guide the search by delegating to the determinization.

While the determinization-based approach enables the use
of a large arsenal of classical planning heuristics, these
heuristics are often not very informative, since the uncer-
tainty in the problem is completely ignored. On the other
hand, occupation measure heuristics for (constrained) SSPs
(Trevizan, Thiébaux, and Haslum 2017) actually make use
of the probabilistic information. These LP-based heuristics
can be seen as extensions of operator-counting heuristics
(Pommerening et al. 2014) to probabilistic planning. Tre-
vizan, Thiébaux, and Haslum experimental evaluations show
that these heuristics lead to greatly decreased search effort
compared to determinization-based heuristics. As of today,
these heuristics are considered state-of-the-art.

In this thesis, I develop novel domain-independent heuris-
tics for probabilistic planning which are not agnostic to
the uncertainty of the problem. To this end, I extend sev-
eral families of abstraction heuristics from classical plan-
ning to probabilistic planning, including Pattern Database
heuristics (Korf 1997; Haslum et al. 2007; Pommerening,

ICAPS Doctoral Consortium 2022

27

Röger, and Helmert 2013), and Merge-and-Shrink heuris-
tics (Helmert, Haslum, and Hoffmann 2007; Nissim, Hoff-
mann, and Helmert 2011; Helmert et al. 2014). Apart from
an experimental evaluation, I investigate the theoretical re-
lationships with previous heuristics, in particular with clas-
sical abstraction heuristics on the determinization as well as
occupation measure heuristics.

Preliminaries
I consider probabilistic planning problems with full observ-
ability in the context of different optimization objectives.
This thesis abstract focuses primarily on the MaxProb ob-
jective, which prioritizes goal probability maximization, as
well as Stochastic Shortest-Path Problems (SSPs, Bertsekas
and Tsitsiklis (1991)). To represent both settings in a uni-
form manner, the underlying probabilistic model will be
kept separate from the considered optimization objective.

MDPs and Optimization Objectives As the baseline
model, we define a Markov Decision Process (MDP) as a 4-
tuple 〈S,A, T , sI〉. S is the finite, non-empty set of states,
A is a finite, non-empty set of actions, T : S × A × S →
[0, 1] is the transition probability function and sI ∈ S is
the initial state of the problem. For any state-action pair
〈s, a〉 ∈ S × A, either

∑
t∈S T (s, a, t) = 1 (a is enabled

in s) or T (s, a, t) = 0 for all t ∈ S (a is disabled in s).
The set of actions enabled in s is denoted A(s). We assume
that A(s) 6= ∅ for all states. We can easily introduce artifi-
cial self-loops to achieve this. Finally, a policy is a mapping
π : S → A with π(s) ∈ A(s) for every state s ∈ S.

The MaxProb optimization objective is specified by a set
of goal states SG ⊆ S. The semantics of a policy in presence
of this optimization objective is given by the policy state
value function VπMP : S → [0, 1], where VπMP(s) represents
the probability to reach the goal when starting in the state s
and following policy π. It is defined as the (point-wise) least
solution of the equation system

VπMP(s) =

{
1 s ∈ SG ,∑

t∈S T (s, a, t)VπMP(t) s /∈ SG .

The optimal state value function V∗MP is defined as
V∗MP(s) := maxπ VπMP(s). A policy π? is optimal if Vπ?

MP =
V∗MP. For MaxProb, an optimal policy always exists. More-
over, we say that π is an s-proper policy, if VπMP(s) = 1. If π
is s-proper for all s, then π is proper.

The optimization objective considered for SSPs is given
by a set of goal states SG ⊆ S and an action cost function
c : A → R. This objective makes two additional assump-
tions: (i) There exists a proper policy and (ii) Every improper
policy eventually accumulates infinite cost1. The policy state
value function VπSSP : S → R is only defined for proper poli-
cies π for this objective. VπSSP(s) gives the expected accu-
mulated cost until the goal is reached when starting in state
s and acting according to π. It is the unique solution of the

1More general SSP definitions exist (Kolobov et al. 2011; Guil-
lot and Stauffer 2020), but I focus on this traditional definition for
the sake of brevity.

equation system

VπSSP(s) =

{
0 s ∈ SG

c(π(s)) +
∑
t∈S T (s, a, t)VπSSP(t) s /∈ SG

The optimal state value function V∗SSP is defined by
V∗SSP(s) := minπ proper VπSSP(s). Analogously, a policy π? is
optimal if Vπ?

SSP = V∗SSP and always exists.

Probabilistic SAS+ Tasks The planning problem is spec-
ified as a probabilistic SAS+ task (Trevizan, Thiébaux, and
Haslum 2017), except that the cost function is omitted since
it is not needed for MaxProb. A probabilistic SAS+ task is
a tuple 〈V,A, sI ,G〉. V denotes the state variables, where
each v ∈ V is associated with a finite domain D(v) of
at least two values. A partial state is a partial function
s : V ⇀

⋃
v∈V D(v) with s(v) ∈ D(v) if defined. We de-

note the variables on which s is defined by V(s). s is a state
if V(s) = V . The set of states of a probabilistic SAS+ task
Π is denoted S(Π). For a set of variables P ⊆ V and partial
state s, we denote by s[P] the projection of s onto P and
define the set S[P] := {s[P] | s ∈ S}. We say s subsumes
t, written t ⊆ s, if V(s) ⊆ V(t) and s[V(s)] = t[V(s)]. The
application of partial state e onto partial state s is defined
by appl(s, e)(v) = e(v) if v ∈ V(e) and s(v) otherwise.
A is the set of actions. An action a specifies its precondi-
tion pre(a), and a probability distribution Pra over effects,
where an effect is a partial state. The possible effects of a
are denoted Eff(a) := {e | Pra(e) > 0}. Lastly, the initial
state sI is a state and the goal G is a partial state.

A probabilistic SAS+ task Π = 〈V,A, sI ,G〉 induces the
MDP 〈S(Π),A, T , sI〉 where T (s, a, t) is defined as 0 if
pre(a) * s and by

T (s, a, t) :=
∑

e∈Eff(a) s.t.
appl(s,e)=t

Pra(e)

otherwise. The set of goal states for the MaxProb and SSP
objective is given by SG = {s | s ⊆ G}.

Heuristics A heuristic h returns an estimate h(s) for the
optimal state value V∗MP(s) or V∗SSP(s) of a state s. For Max-
Prob, a heuristic is admissible if h(s) ≥ V∗MP(s), whereas it
is admissible in the SSP setting if h(s) ≤ V∗SSP(s). For SSPs,
a heuristic is consistent if the equation

h(s) ≤ c(a) +
∑

t∈S
T (s, a, t)h(t)

is satisfied for every s ∈ S and a ∈ A(s), and goal-aware
if h(s) = 0 for goal states s ∈ SG . These properties are
convenient because a heuristic that is both consistent and
goal-aware is admissible. Also, some SSP heuristics search
algorithms like iLAO* (Hansen and Zilberstein 2001) can
be optimized for consistent, goal-aware heuristics.

Lastly, a finite family of heuristics (hi)i∈I (where I is
some index set) is additive if

∑
i∈I hi(s) ≤ V∗SSP(s) and

multiplicative if
∏
i∈I hi(s) ≥ V∗MP(s).

ICAPS Doctoral Consortium 2022

28

Abstraction Heuristics
In classical planning, abstractions heuristics are a fairly ver-
satile family of heuristics that has been studied extensively
in various forms, for example through Pattern Databases
(e.g. Korf (1997); Haslum et al. (2007); Pommerening,
Röger, and Helmert (2013)), Cartesian Abstraction (Seipp
and Helmert 2013) and Merge-and-Shrink Abstraction (e.g.
Helmert, Haslum, and Hoffmann (2007); Nissim, Hoffmann,
and Helmert (2011); Helmert et al. (2014)). In classical plan-
ning, an abstraction is typically specified by a surjective ab-
straction mapping α : S → α(S), which associates each
state with a corresponding abstract state α(s) ∈ α(S). For
a labelled transition system (LTS), the deterministic plan-
ning model usually assumed in classical planning, an ab-
straction induces an abstract LTS which overapproximates
the behaviour of the original LTS. This abstract LTS can then
be solved to obtain an admissible heuristic for the original
problem. To do the same with respect to an MDP, a defini-
tion for the abstract MDP induced by an abstraction mapping
needs to be proposed.

Projection Heuristics
In recent work (Klößner et al. 2021), we propose a defi-
nition for the specific case of projections. A projection is
an abstraction mapping s 7→ s[P] which considers a sub-
set of state variables (a pattern) P ⊆ V of the problem.
The abstract MDP for a projection with respect to P is de-
fined as 〈S[P], A, TP , sI [P]〉, where the transition probabil-
ity TP (σ, a, τ) is defined as 0 if pre(a)[P] * σ, otherwise

TP (σ, a, τ) =
∑

e∈Eff(a) s.t.
appl(σ,e[P])=τ

Pra(e).

The probabilistic projection heuristic hP (s) := V∗MP(s[P])
is an admissible heuristic for MaxProb, and the analogous
heuristic hP (s) := V∗SSP(s[P]) is even consistent and goal-
aware for SSPs, when the abstract set of goal states for
both objectives is defined as SG [P] and the cost function
for SSPs is unchanged for the abstraction. Most importantly,
these heuristics dominate the respective determinization-
based projection heuristic on the same pattern.

Pattern Database Heuristics
In classical planning, Pattern Database (PDB) heuristics are
a family of abstraction heuristics that use several projec-
tions in unison to achieve a more accurate heuristic. Given a
collection of patterns C ⊆ P(V), the corresponding pat-
tern database heuristic is constructed by precomputing a
lookup table of heuristic values for each individual projec-
tion heuristic hP for P ∈ C. When an estimate for a state s
is requested, these individual projection heuristics can then
be combined by performing the necessary table lookups and
taking the highest estimate: hmax

C (s) = maxP∈C{hP (s)}.
An even better approach is to employ additivity constraints
to find sub-collections D ⊆ C such that the heuristics
(hP)P∈D become additive (Haslum et al. 2007). Max’ing
over these sub-collections then yields and an even stronger
heuristic, called the canonical PDB heuristic hcan

C (s).

We published two papers (Klößner et al. 2021; Klößner
and Hoffmann 2021) in which we transfer these concepts to
probabilistic planning and construct pattern database heuris-
tics which exploit a collection of MDP projections instead.
In particular, we show that the well-known additivity con-
straints considered by Haslum et al. can be adapted and used
in a straightforward manner to obtain additivity constraints
for SSPs and even multiplicativity constraints for MaxProb.

In more detail, we say that an action affects a variable v
if there is a possible effect e ∈ Eff(a) with v ∈ V(e) and
e(v) 6= pre(a)(v). An action a affects a pattern P if any
variable v ∈ P is affected. We show that, for a collection of
patternsC, if every action affects at most one pattern P ∈ C,
the projection heuristics (hP)P∈C are additive for the SSP
objective, and multiplicative for the MaxProb objective.

This observation leads to a direct generalization of hcan
C (s)

for both MaxProb and SSPs. We show that construction of
this heuristic is analogous to the construction in classical
planning: Finding the maximal additive sub-collections of
C can still be accomplished by finding the maximal cliques
in the graph where nodes are the pattern P ∈ C and two pat-
terns are connected if their projections are additive, which is
easy to check for only two patterns. Our empirical evaluation
shows a substantial improvement over the determinization-
based canonical PDB heuristics.

In very recent work (Klößner et al. 2022b), we also deal
with the question of how to construct reasonably construct
the initial pattern collectionC when the problem is no longer
deterministic. We consider and extend two approaches that
have been studied in classical planning: Pattern construction
via Counter-example guided abstraction refinement (CE-
GAR, Rovner, Sievers, and Helmert (2019)) and pattern
construction as a search problem solved using hill-climbing
(Haslum et al. 2007). We reformulate both of these frame-
works to operate on MDPs, as opposed to using the classi-
cal algorithm variants on the determinization. Compared to
classical pattern construction techniques on the determiniza-
tion, both algorithms have a significant advantage in partic-
ular problem domains. However, there also exist many do-
mains in which we observe no benefit over determinization-
based pattern construction, so these algorithms can by no
means be seen as a universal answer to this research ques-
tion. We might therefore revisit this topic in the future.

Merge-and Shrink Heuristics
The Merge-and-Shrink framework (Dräger, Finkbeiner, and
Podelski 2006) is a framework that originates from model
checking but has since found use in various forms in classi-
cal planning, in particular to compute abstraction heuristics.
In a nutshell, the Merge-and-Shrink framework operates on
a factored transition system which is a tuple of labelled tran-
sition systems (LTS) F = 〈Θ1, . . . ,Θn〉 with a common set
of labels. Each Θi is called a factor. These factors implic-
itly represent the LTS that is their synchronous product. If
Θi = 〈Si,L, T i, siI〉, the synchronous product is the LTS⊗
F = 〈⊗n

i=1 Si,L, T ⊗, 〈s1
I , . . . s

n
I〉〉 where

T ⊗ := {〈〈s1, . . . , sn〉, a, 〈t1, . . . , tn〉〉
| ∀i ∈ {1, . . . , n}.〈si, a, ti〉 ∈ T i}.

ICAPS Doctoral Consortium 2022

29

At the start of Merge-and-Shrink, the tuple of atomic pro-
jections (to a single variable) of the LTS induced by the plan-
ning task yields the initial factored transition system and is
an exact implicit representation of the state space. In each
iteration, the algorithm applies one of four transformation to
the factored transition system:
1. Merge: Select two factors Θ1 and Θ2 and replace them

by their synchronous product Θ1 ⊗Θ2.
2. Shrink: Select a factor and apply an abstraction on top of

it. Replace the old factor with the abstraction.
3. Prune: Select a factor and remove states which are not

alive, i.e. which are unreachable or cannot reach the goal.
4. Label Reduction: Reduce the number of labels by aggre-

gating multiple labels into a common label.
Depending on how the framework is used, the procedure ei-
ther stops when there is only one factor left or when a mem-
ory or time limit is reached.

The algorithms has several important properties. If we ig-
nore label reduction, each factor represents an abstraction of
the original state space at any point in time in the algorithm
(modulo non-alive states). The algorithm can therefore be
used to construct abstraction heuristics. Furthermore, with-
out label reduction and if bisimulation is used as a shrinking
strategy, then each factor represents a bisimulation the fac-
tored LTS implicitly represents a bisimulation of the original
LTS at any point in time (modulo non-alive states).

As of yet, it remains an open question whether the Merge-
and-Shrink framework can be formulated for probabilistic
planning. The first approach that comes to mind is to model
each factor as an MDP and to initialize the factored repre-
sentation with all atomic (MDP) projections. A reasonable
definition of a product between MDPs should again have the
property that the product of all atomic projections yield the
original state space. Regrettably, this is impossible to accom-
plish. Consider a planning task with variables v, w ∈ {0, 1}
and a single action a with the following effects:

Pra({v 7→ 1}) = 0.25 Pra({w 7→ 1}) = 0.25

Pra({v 7→ 1, w 7→ 1}) = 0.5

Unfortunately, this planning task has exactly the same pro-
jections onto v and w as the planning task where the effect
probabilities are changed to

Pra({}) =
1

16

Pra({v 7→ 1}) =
3

16
Pra({w 7→ 1}) =

3

16

Pra({v 7→ 1, w 7→ 1}) =
9

16

Consequentially, we cannot define a merging operation that
reconstructs the original MDP of the planning task from the
atomic projections, as there are already multiple MDPs with
the same atomic projections. The problem arises because
we do no longer remember the individual action outcomes
in the atomic projections. Whereas in classical Merge-and-
Shrink we must only synchronize those transitions with the
same label when building the product, we have an additional

layer of synchronization in the probabilistic setting: We must
now also synchronize on the outcomes of an action, as every
factor must be subject to the same outcome. Therefore, the
planning model used to represent a factor must remember
the individual outcomes and their probabilities.

Regarding shrinking strategies, previous considerations in
classical planning dealt with variants of bisimulation (Nis-
sim, Hoffmann, and Helmert 2011; Katz, Hoffmann, and
Helmert 2012). Therefore, a natural candidate to investigate
for shrinking strategies in probabilistic planning is proba-
bilistic bisimulation (Larsen and Skou 1991), as well as pos-
sibly relaxed variations of this concept. Alternatively, tradi-
tional shrinking strategies are still applicable by considering
the determinization of a factor. In particular, any bisimula-
tion on the determinization is a probabilistic bisimulation,
although not necessarily the coarsest bisimulation.

Finally, label reduction is a transformation that becomes
useful when using bisimulation as a shrinking strategy. Of-
ten, using bisimulation only leads to a small reduction in the
size of a factor, making this shrinking strategy barely effec-
tive in isolation. However, collapsing multiple labels into a
common label usually has positive effects on bisimulation,
as less labels mean less restrictions for the bisimulation rela-
tion. If the label reduction is exact, i.e. it does not introduce
any spurious transitions in the represented transition system,
then this transformation can even be safely applied without
changing the cost-to-goal estimates the factors. It is there-
fore important to also consider label reduction when using a
variant of bisimulation in the probabilistic setting.

Other Contributions and Research Ideas
Although this thesis mainly focuses on abstraction heuris-
tics, any topic related to domain-independent heuristic con-
struction for MaxProb and SSPs falls into the broader scope
of the thesis. In a recent publication (Klößner et al. 2022a),
we propose a theory of cost partitioning (Katz and Domshlak
2010) for SSPs. We found out that Trevizan, Thiébaux, and
Haslum’s projection occupation measure heuristic hpom es-
sentially computes an optimal cost-partitioning over atomic
projections. This has major implications, as it means that op-
timal cost partitioning over PDB heuristics is theoretically
superior to hpom. An obvious candidate for future work is an
experimental evaluation of different cost-partitioning tech-
niques and different sets of combined heuristics.

Conclusion
Abstraction heuristics for MaxProb and SSPs are promis-
ing candidates to extend the landscape of admissible heuris-
tics for these settings and enable more effective use of
MDP heuristic search algorithms. So far, we focused in par-
ticular on Pattern Database heuristics, for which we ob-
serve a clear advantage over determinization-based heuris-
tics. When combined with cost-partitioning, these heuristics
even have the potential to outperform occupation measure
heuristics, which are the most powerful heuristics for SSPs
at present. In future work, we aim to transfer the Merge-and-
Shrink framework to probabilistic planning and take a de-
tailed look at various cost-partitioning techniques for SSPs.

ICAPS Doctoral Consortium 2022

30

References
Bertsekas, D. P.; and Tsitsiklis, J. N. 1991. An Analysis of Stochas-
tic Shortest Path Problems. Mathematics of Operations Research,
16: 580–595.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improv-
ing the Convergence of Real-Time Dynamic Programming. In
Giunchiglia, E.; Muscettola, N.; and Nau, D., eds., Proceedings
of the 13th International Conference on Automated Planning and
Scheduling (ICAPS’03), 12–21. Trento, Italy: AAAI Press.
Dräger, K.; Finkbeiner, B.; and Podelski, A. 2006. Directed Model
Checking with Distance-Preserving Abstractions. In Valmari, A.,
ed., Proceedings of the 13th International SPIN Workshop (SPIN
2006), volume 3925 of Lecture Notes in Computer Science, 19–34.
Springer-Verlag.
Guillot, M.; and Stauffer, G. 2020. The Stochastic Shortest Path
Problem: A polyhedral combinatorics perspective. European Jour-
nal of Operational Research, 285(1): 148–158.

Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A heuristic search
algorithm that finds solutions with loops. Artificial Intelligence,
129(1-2): 35–62.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig, S.
2007. Domain-Independent Construction of Pattern Database
Heuristics for Cost-Optimal Planning. In Howe, A.; and Holte,
R. C., eds., Proceedings of the 22nd National Conference of the
American Association for Artificial Intelligence (AAAI’07), 1007–
1012. Vancouver, BC, Canada: AAAI Press.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible Ab-
straction Heuristics for Optimal Sequential Planning. In Boddy,
M.; Fox, M.; and Thiebaux, S., eds., Proceedings of the 17th In-
ternational Conference on Automated Planning and Scheduling
(ICAPS’07), 176–183. Providence, Rhode Island, USA: Morgan
Kaufmann.
Helmert, M.; Haslum, P.; Hoffmann, J.; and Nissim, R. 2014.
Merge & Shrink Abstraction: A Method for Generating Lower
Bounds in Factored State Spaces. Journal of the Association for
Computing Machinery, 61(3): 16:1–16:63.
Katz, M.; and Domshlak, C. 2010. Optimal admissible composition
of abstraction heuristics. Artificial Intelligence, 174(12–13): 767–
798.
Katz, M.; Hoffmann, J.; and Helmert, M. 2012. How to Relax
a Bisimulation? In Bonet, B.; McCluskey, L.; Silva, J. R.; and
Williams, B., eds., Proceedings of the 22nd International Confer-
ence on Automated Planning and Scheduling (ICAPS’12), 101–
109. AAAI Press.
Klößner, T.; and Hoffmann, J. 2021. Pattern Databases for Stochas-
tic Shortest Path Problems. In Proceedings of the 14th Annual
Symposium on Combinatorial Search (SOCS’21), 131–135. AAAI
Press.
Klößner, T.; Pommerening, F.; Keller, T.; and Röger, G. 2022a.
Cost Partitioning Heuristics for Stochastic Shortest Path Problems.
In Proceedings of the 32nd International Conference on Automated
Planning and Scheduling (ICAPS’22), 193–202. AAAI Press.
Klößner, T.; Steinmetz, M.; Torralba, À.; and Hoffmann, J. 2022b.
Pattern Selection Strategies for Pattern Databases in Probabilistic
Planning. In Proceedings of the 32nd International Conference on
Automated Planning and Scheduling (ICAPS’22), 184–192. AAAI
Press.
Klößner, T.; Torralba, Á.; Steinmetz, M.; and Hoffmann, J. 2021.
Pattern Databases for Goal-Probability Maximization in Proba-
bilistic Planning. In Proceedings of the 31st International Confer-
ence on Automated Planning and Scheduling (ICAPS’21), 80–89.
AAAI Press.

Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011. Heuris-
tic Search for Generalized Stochastic Shortest Path MDPs. In Bac-
chus, F.; Domshlak, C.; Edelkamp, S.; and Helmert, M., eds., Pro-
ceedings of the 21st International Conference on Automated Plan-
ning and Scheduling (ICAPS’11). AAAI Press.
Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s Cube Us-
ing Pattern Databases. In Kuipers, B. J.; and Webber, B., eds.,
Proceedings of the 14th National Conference of the American As-
sociation for Artificial Intelligence (AAAI’97), 700–705. Portland,
OR: MIT Press.
Larsen, K. G.; and Skou, A. 1991. Bisimulation through proba-
bilistic testing. Information and Computation, 94(1): 1–28.
Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Computing Per-
fect Heuristics in Polynomial Time: On Bisimulation and Merge-
and-Shrink Abstraction in Optimal Planning. In Walsh, T., ed.,
Proceedings of the 22nd International Joint Conference on Artifi-
cial Intelligence (IJCAI’11), 1983–1990. AAAI Press/IJCAI.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting the
Most Out of Pattern Databases for Classical Planning. In Rossi,
F., ed., Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI’13). AAAI Press/IJCAI.
Pommerening, F.; Röger, G.; Helmert, M.; and Bonet, B. 2014. LP-
Based Heuristics for Cost-Optimal Planning. In Chien, S.; Do, M.;
Fern, A.; and Ruml, W., eds., Proceedings of the 24th International
Conference on Automated Planning and Scheduling (ICAPS’14),
226–234. AAAI Press.
Rovner, A.; Sievers, S.; and Helmert, M. 2019. Counterexample-
Guided Abstraction Refinement for Pattern Selection in Optimal
Classical Planning. In Proceedings of the 29th International Con-
ference on Automated Planning and Scheduling (ICAPS’19), 362–
367. AAAI Press.
Seipp, J.; and Helmert, M. 2013. Counterexample-guided Carte-
sian Abstraction Refinement. In Borrajo, D.; Fratini, S.; Kambham-
pati, S.; and Oddi, A., eds., Proceedings of the 23rd International
Conference on Automated Planning and Scheduling (ICAPS’13),
347–351. Rome, Italy: AAAI Press.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Occupa-
tion Measure Heuristics for Probabilistic Planning. In Proceedings
of the 27th International Conference on Automated Planning and
Scheduling (ICAPS’17), 306–315. AAAI Press.
Trevizan, F. W.; Thiébaux, S.; Santana, P. H.; and Williams, B.
2017. I-dual: Solving Constrained SSPs via Heuristic Search in
the Dual Space. In Sierra, C., ed., Proceedings of the 26th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’17),
4954–4958. AAAI Press/IJCAI.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A Baseline
for Probabilistic Planning. In Boddy, M.; Fox, M.; and Thiebaux,
S., eds., Proceedings of the 17th International Conference on Au-
tomated Planning and Scheduling (ICAPS’07), 352–359. Provi-
dence, Rhode Island, USA: Morgan Kaufmann.

ICAPS Doctoral Consortium 2022

31

Learning Hierarchical Abstractions for
Efficient Taskable Robots – Dissertation Abstract

Naman Shah
Advisor: Prof. Siddharth Srivastava

School of Computing and Augmented Intelligence (SCAI),
Arizona State University,
Tempe, AZ, USA, 85281

shah.naman@asu.edu

Abstract

Although state-of-the-art hierarchical robot planning algo-
rithms allow robots to efficiently compute long-horizon mo-
tion plans for achieving user desired tasks, these methods typ-
ically rely upon environment-dependent state and action ab-
stractions that need to be hand-designed by experts. On the
other hand, non-hierarchical robot planning approaches fail
to compute solutions for complex tasks that require reason-
ing over a long horizon. My research addresses these prob-
lems by proposing an approach for learning abstractions and
developing hierarchical planners that efficiently use learned
abstractions to boost robot planning performance while pro-
viding strong guarantees of reliability.

1 Introduction
Recent years have seen a sharp increase in the usage of
robots in various areas such as manufacturing, household
chores, and delivery. Such robots interact with their environ-
ments by moving their links around. To efficiently interact
with their environments, a robot needs to compute a trajec-
tory or a motion plan that takes the robot from its current
configuration to its desired configuration. Generally, robots
use sampling-based motion planners such as RRT (LaValle
1998) and PRM (Kavraki et al. 1996) to compute these
motion plans that excel at computing short-horizon motion
plans between pairs of configurations.

Complex tasks such as arranging a room or deliver-
ing items to different locations require robots to deal with
changing configuration spaces and complex motion plans,
requiring robots to reason over a long horizon. Typically,
sampling-based motion planners fail to perform well in rea-
soning over a long horizon to compute such complex motion
plans due to the infinite branching factor of the configuration
space. This prevents robots from autonomously solving such
complex tasks.

On the other hand, humans excel at such tasks which re-
quire extended reasoning owing to their capacity of abstract-
ing information about the task. E.g, consider a human that
has to arrange a dining table. To accomplish this task, hu-
mans would not think which joints they would move and
by how much. However, they would think in high-level ab-
stract actions such as “pick up the plate from the counter”,
“place the plate on the table”, “place glass on the table”,
etc. Similarly, a person that has to reach the kitchen from a

(a) (b)

Figure 1: (a) A 3D model of a real life house hold environ-
ment. (b) A 2D map of the 3D environment. R shows the
current position of the robot. Green rectangle shows the tar-
get position of the robot. The arrows show the hypothetical
high-level actions that the robot must take to reach its goal
from the current position that my work aims to learn auto-
matically.

room (Fig. 1) in a house would “plan” using high-level ac-
tions such as “exit the door”, “pass through the corridor”,
and “enter the kitchen”. Such abstract actions allow humans
to reason over a long horizon without considering the intri-
cacies of the domain.

Hierarchical planning systems such as combined task and
motion planning frameworks (Srivastava et al. 2014; Dan-
tam, Kingston, and Chaudhuriand L. Kavraki 2018; Garrett,
Lozano-Pérez, and Kaelbling 2020; Shah et al. 2020) use
such high-level actions to guide the low-level (concrete) mo-
tion planning. These systems use hand-coded abstractions to
generate high-level task specifications for these robot plan-
ning problems and use them to perform hierarchical plan-
ning. A domain expert is required to write these hand-coded
abstractions, which limits the scope of the domains where
these approaches can be applied.

Through my work, I aim to answer the following two cru-
cial research questions: 1) Can we automatically learn hier-
archical state and action abstractions for new environments
and 2) can we efficiently use these abstractions to perform
hierarchical robot planning? As part of my thesis, I aim to
develop a set of approaches that answer these questions by
automatically identifying hierarchical state and action ab-
stractions for new environments and using them to perform
hierarchical planning with various robots.

ICAPS Doctoral Consortium 2022

32

(a) (b) (c)

Figure 2: (a) An illustrative environment for a motion plan-
ning problem. The robot (R) is tasked to reach the kitchen
(K). Red blobs in (b) show a set of candidate critical regions
in the environment. Lastly, (c) shows an example of state
abstraction. Each colored cell represents an abstract state.
White arrows show a few abstract actions that take the robot
from one abstract state to another abstract state.

Now in the rest of the paper, I present the approach that I
would propose as part of my thesis, show preliminary results
using the approach, and discuss a few related approaches.

2 Proposed Approach
To answer the research questions outlined in Sec. 1, I pro-
pose to learn hierarchical state and action abstractions by
identifying regions in the environment that are critical for
solving the given class of motion planning problems. E.g.,
consider a household environment (Fig. 2(a)).Here, the robot
is currently in room B1. If the robot is tasked to bring a bottle
of water from the kitchen (K) to the room (B1), then every
motion plan accomplishing this task must pass through the
doors and the passage. All these motion plans must take the
robot to a configuration from which the robot is able to grasp
the bottle and also to a configuration where the robot is hold-
ing the bottle in its gripper. Fig. 2(b) shows a few candidate
critical regions for the given environment. This implies that
these regions are loosely similar landmarks in the symbolic
planning literature. But, contrary to landmarks, these regions
are not a necessary condition to reach the goal. Molina, Ku-
mar, and Srivastava (2020) define such regions as critical
regions as proposes a method for identifying critical regions
in an environment using a DNN.

I propose to learn hierarchical state and action abstrac-
tions using such automatically identified critical regions.
Precisely, abstract states can be identified by constructing
regions around these critical regions. Similarly, abstract ac-
tions can be automatically identified as transitions between
these abstract states (similar to Fig. 2(c)). Once the abstract
states and actions are identified, we can use them with a
high-level planner to compute a high-level plan that can be
refined into a motion plan using hierarchical planning.

One major technical challenge in this approach would be
that the heuristic used to perform high-level planning would
not be very informative. It would also fail to identify actions
that the low-level planner would fail to refine due to obsta-
cles in the environment. To overcome this issue, I propose to
use a multi-source algorithm for high-level planning. Now,
typically multi-source approaches can not be used with robot
planning problems as we do not have any information about

Figure 3: ABB YuMi builds Keva structures using a STAMP pol-
icy: 3π (left), twisted 12-level tower (center), and 3-towers (right).

what the intermediate states would be. But, as we are iden-
tifying high-level abstract states automatically using critical
regions, we can use these abstract states as candidate inter-
mediate states for multi-source search.

On the other hand, a probabilistically-complete inter-
leaved approach that tries to search for a high-level plan
which has low-level refinements can also be used to per-
form hierarchical planning with such imprecise and lossy
abstractions. This interleaved search approach would search
for motion planning refinements for high-level actions while
continually updating the high-level abstractions to compute
accurate high-level solutions.

Now, I discuss some of the approaches that we have de-
veloped using these methods and their preliminary results.

3 Preliminary Results
We developed two algorithms that use the methods dis-
cussed in the previous approach for solving robot plan-
ning problems. The first method (Shah et al. 2020) uses
interleaved search for performing combined task and mo-
tion planning in stochastic environments (Sec. 3.1) and the
second approach -- Hierarchical Abstraction-guided Robot
Planning (HARP) (Shah and Srivastava 2022) -- performs
hierarchical robot planning using automatically identified
abstract states and actions and a multi-source planning al-
gorithm (Sec. 3.2).

3.1 Stochastic Task and Motion Planning
Our work (Shah et al. 2020) presents an anytime probabilis-
tically complete framework using the approach outlined in
the previous section. It uses entity abstraction and stochastic
shortest path (SSP) problems to formulate a STAMP problem
for robots with stochastic actions. It performs an interleaved
search to compute a high-level policy that also has valid low-
level motion planning refinements. We use concretization
functions called generators to refine each abstract action in
the high-level solution. Our algorithm also continually up-
dates the abstraction to generate more accurate high-level
solutions if any action in the current high-level policy fails
to admit a low-level refinement.

We evaluate our work in multiple settings where com-
bined task and motion planning is necessary to compute fea-
sible solutions. Refining each possible outcome in the so-
lution tree can take a substantial amount of time. Here, we
reduce the problem of selecting scenarios for refinement to
a knapsack problem and use a greedy approach to prioritize

ICAPS Doctoral Consortium 2022

33

(a) (b) (c)

Figure 4: Critical regions and generated abstraction for a 4-
DOF hinged robot. (a) and (b) shows the CRs predicted by
the model. Blue regions in (a) show that model predicted the
robot’s base link to be horizontal while green regions show
that the model predicted the robot’s base link to be verti-
cal. Blue regions in (b) show that the network predicted the
hinge to be closer to 180◦ and green regions show that the
network predicted it to be closer to 90◦ or 270◦. (c) shows
2D projection of the state abstraction generated by our ap-
proach though our approach does not need to explicitly gen-
erate these abstractions.

more likely outcomes for refinement. Our empirical evalu-
ation shows that doing so allows the robot to start execut-
ing an action much earlier. Fig. 3 shows one of the test do-
mains where the YuMi robot uses the task and motion poli-
cies computed using our framework to construct geometric
structures using Keva planks.

3.2 Learning and Using Abstractions for Robot
Planning

In this work (Shah and Srivastava 2022), we automatically
learn hierarchical state and action abstractions and use them
with a novel probabilistically-complete hierarchical plan-
ner to solve motion planning problems. These state and ac-
tion abstractions are generated using automatically identi-
fied critical regions as described in Sec. 2. We use a cus-
tom robot-specific deep neural network to learn to identify
critical regions in unseen environments for each degree of
freedom of the robot and location of the robot’s end-effector
(base link for navigational problem) in the workspace. Our
approach automatically generates this custom architecture
using robot geometry and the number of degrees of freedom
and using UNet (Ronneberger, Fischer, and Brox 2015) as
the base architecture.

Once a set of critical regions is identified for a given con-
figuration space and a robot, our approach generates ab-
stract states by growing Voronoi cells around these critical
regions. We call this structure a region-based Voronoi dia-
gram (RBVD). Each cell in an RBVD is an abstract state and
transitions between these cells are abstract actions. We show
that the abstractions generated using this approach are sound
and fulfill the downward refinement property for holonomic
robots.

We extend Beam search (Lowerre 1976) to develop a
novel multi-source bidirectional high-level search algorithm
to compute a set of high-level plans using the generated ab-
stract states and actions. Our approach computes a set of
high-level plans using this multi-source bidirectional Beam

search and refines them simultaneously using a multi-source
multi-directional Learn and Link Planner (LLP) (Molina,
Kumar, and Srivastava 2020) while continually updating the
heuristic for high-level search. We also prove that the overall
planning algorithm is probabilistically complete.

We extensively evaluate our approach in a total of twenty
different settings with four different robots that included
holonomic as well as non-holonomic robots. Fig. 4 shows
critical regions predicted by our learned model for a hinged
robot with 4 degrees of freedom and abstract states gen-
erated by our approach. We empirically evaluate our ap-
proach against sampling-based motion planning algorithms
such as RRT (LaValle 1998), PRM (Kavraki et al. 1996),
and BiRRT (Kuffner and LaValle 2000) and learning-based
motion planner (Molina, Kumar, and Srivastava 2020). Our
exhaustive empirical evaluation shows that our approach that
combines learning with hierarchical planning not only sig-
nificantly outperforms state-of-the-art sampling-based mo-
tion planners but also outperforms learning-based LLP
which does generate hierarchical abstractions and does not
perform hierarchical planning.

This work learns state and action abstractions for motion
planning problems and robots with deterministic actions.
In the future, we plan to extend this work for robots with
stochastic action dynamics and learn high-level states and
actions for combined task and motion planning problems.
Lastly, I discuss a few approaches related to my existing
work.

4 Related Work
Combined Task and Motion Planning Hierarchical
planning with abstractions has been used in multiple ways
with automated planning to improve the efficiency of
planners in order to compute plans that achieve complex
goals. Some of the earliest planning systems such as AB-
STRIPS (Sacerdoti 1974) and ALPINE (Knoblock 1990)
used abstractions with symbolic planning problems defined
in STRIPS representations to perform hierarchical planning.
Approaches such as FF (Hoffmann 2001), HSP2.0 (Bonet
and Geffner 2001), and GraphPlan (Blum and Furst 1997)
uses abstractions to solve a relaxed problem in order to au-
tomatically synthesize heuristics for planning.

A significant number of approaches have been developed
to solve task and motion planning (TAMP) problems in re-
cent years. Major works on TAMP can be categorized into
three categories: 1) approaches that use symbolic planners to
guide motion planning (Cambon, Alami, and Gravot 2009),
2) approaches that extend high-level representations to si-
multaneously search high-level plans along with continuous
parameters (Garrett, Lozano-Pérez, and Kaelbling 2020),
and 3) approaches that use interleaved search for valid high-
level plans with low-level refinements for its actions (Sri-
vastava et al. 2014; Dantam, Kingston, and Chaudhuriand
L. Kavraki 2018). These approaches focus on solving TAMP
problems in deterministic environments where robots are ex-
pected to carry out their tasks accurately, while our approach
provides a method to consider stochastic actions while com-
puting task and motion policies to allow the robot to effi-
ciently perform its tasks in the real world.

ICAPS Doctoral Consortium 2022

34

Learning for Motion Planning Multiple approaches use
statistical learning to guide motion planning. Ichter, Harri-
son, and Pavone (2018) and Kumar et al. (2019) use CVAE
to learn sampling distributions for motion planning. Molina,
Kumar, and Srivastava (2020) use an image-based approach
to learn sampling distributions for path-planning problems.
These approaches use learning to bias the sampling distri-
bution for sampling-based motion planning, while our ap-
proach focuses on learning state and action abstractions and
using them efficiently to perform hierarchical planning.

Learning Abstractions While a lot of approaches (Blum
and Furst 1997; Bonet and Geffner 2001; Knoblock 1990;
Cambon, Alami, and Gravot 2009; Garrett, Lozano-Pérez,
and Kaelbling 2020; Shah et al. 2020) have tried using ab-
stractions to perform automated planning, not a lot of them
have tried learning it. Konidaris, Kaelbling, and Lozano-
Perez (2018) propose an approach that learns high-level ac-
tion descriptions of low-level behaviors by computing sets of
regions reachable by those behaviors. Contrary to their ap-
proach that requires a detailed description of reachability for
low-level composite actions which are extremely difficult to
obtain for complex AI agents, my thesis aims to develop an
approach that solely requires low-level observations.

Chitnis et al. (2020) use CNNs to learn context-specific
regions of the state space. Silver et al. (2020) uses GNNs
to predict importance for each object in the environment
for classical planning problems. These approaches use ab-
straction to reduce the planning space, but they still need
handcrafted action descriptions in order to perform plan-
ning. Silver et al. (2021) propose an approach that uses low-
level transitions along with high-level vocabulary to learn
the symbolic representation of these actions for combined
task and motion planning. Their approach requires an ab-
straction that is sufficient to represent low-level actions that
the proposed work aims to learn.

References
Blum, A. L.; and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial intelligence, 90(1-2):
281–300.
Bonet, B.; and Geffner, H. 2001. Heuristic search planner
2.0. AI Magazine, 22(3): 77–77.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
IJRR, 28: 104–126.
Chitnis, R.; Silver, T.; Kim, B.; Kaelbling, L. P.; and Lozano-
Perez, T. 2020. CAMPs: Learning Context-Specific Ab-
stractions for Efficient Planning in Factored MDPs. arXiv
preprint arXiv:2007.13202.
Dantam, N.; Kingston, Z.; and Chaudhuriand L. Kavraki, S.
2018. An incremental constraint-based framework for task
and motion planning. IJRR, 37(10): 1134–1151.
Garrett, C.; Lozano-Pérez, T.; and Kaelbling, L. 2020.
PDDLStream: Integrating symbolic planners and blackbox
samplers via optimistic adaptive planning. In Proc. ICAPS.
Hoffmann, J. 2001. FF: The fast-forward planning system.
AI magazine, 22(3): 57–57.

Ichter, B.; Harrison, J.; and Pavone, M. 2018. Learning sam-
pling distributions for robot motion planning. In Proc. ICRA.
Kavraki, L. E.; Svestka, P.; Latombe, J.-C.; and Overmars,
M. H. 1996. Probabilistic Roadmaps for Path Planning in
High-Dimensional Configuration Spaces. IEEE transactions
on Robotics and Automation, 12(4): 566–580.
Knoblock, C. A. 1990. Learning Abstraction Hierarchies for
Problem Solving. In AAAI, 923–928.
Konidaris, G.; Kaelbling, L. P.; and Lozano-Perez, T. 2018.
From skills to symbols: Learning symbolic representations
for abstract high-level planning. Journal of Artificial Intelli-
gence Research, 61: 215–289.
Kuffner, J. J.; and LaValle, S. M. 2000. RRT-connect: An
Efficient Approach to Single-Query Path Planning. In Proc.
ICRA, 2000.
Kumar, R.; Mandalika, A.; Choudhury, S.; and Srinivasa, S.
2019. LEGO: Leveraging Experience in Roadmap Genera-
tion for Sampling-Based Planning. In Proc. IROS.
LaValle, S. M. 1998. Rapidly-Exploring Random Trees: A
New Tool for Path Planning.
Lowerre, B. T. 1976. The Harpy Speech Recognition System.
Carnegie Mellon University.
Molina, D.; Kumar, K.; and Srivastava, S. 2020. Identifying
Critical Regions for Motion Planning using Auto-Generated
Saliency Labels with Convolutional Neural Networks. In
Proc. ICRA.
Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-Net:
Convolutional Networks for Biomedical Image Segmenta-
tion. In Proc. MICCAI, 2015.
Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction
spaces. Artificial intelligence, 5(2): 115–135.
Shah, N.; Kala Vasudevan, D.; Kumar, K.; Kamojjhala, P.;
and Srivastava, S. 2020. Anytime Integrated Task and Mo-
tion Policies for Stochastic Environments. In Proc. ICRA.
Shah, N.; and Srivastava, S. 2022. Using Deep Learning
to Bootstrap Abstractions for Hierarchical Robot Planning.
arXiv preprint arXiv:2202.00907.
Silver, T.; Chitnis, R.; Curtis, A.; Tenenbaum, J. B.; Lozano-
Pérez, T.; and Kaelbling, L. P. 2020. Planning with Learned
Object Importance in Large Problem Instances using Graph
Neural Networks. CoRR, abs/2009.05613.
Silver, T.; Chitnis, R.; Tenenbaum, J.; Kaelbling, L. P.;
and Lozano-Pérez, T. 2021. Learning Symbolic Op-
erators for Task and Motion Planning. arXiv preprint
arXiv:2103.00589.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. A Modular Approach to Task and Mo-
tion Planning with an Extensible Planner-Independent Inter-
face Layer. In Proc. ICRA.

ICAPS Doctoral Consortium 2022

35

Modeling Assistance for AI Planning
From the Perspective of Model Reconciliation

– Dissertation Abstract
1Songtuan Lin

Supervisors: 1Pascal Bercher, 2Gregor Behnke, 1Alban Grastien
1School of Computing, The Australian National University, Canberra, Australia

2Institute for Logic, Language and Computation, University of Amsterdam, Amsterdam, Netherlands
1firstname.secondname@anu.edu.au

2behnkeg@informatik.uni-freiburg.de

Abstract

Providing modeling assistance to domain modelers is a
prominent challenge in incorporating humans into planning
processes. Many efforts have been devoted to this direction
in classical planning, however, only few works have been
done in hierarchical planning. In this thesis, we will study a
methodology for providing modeling assistance in HTN plan-
ning, which is the most commonly used hierarchical planning
framework. Particularly, we will address two bottleneck prob-
lems for this purpose, namely domain model validation and
domain model refinements. For the former one, we propose
an approach based on plan verification, and for the latter, we
view it as a model reconciliation problem and will study a
novel approach for solving it.

Introduction
Human-AI interaction has evolved as the frontier of the re-
search on automated planning in the last decades for its ca-
pability of solving complex problems. One prominent chal-
lenge in this direction faced by the community is provid-
ing modeling assistance from which a domain engineer can
benefit. Designing a planning domain, also known as knowl-
edge engineering in planning and scheduling (KEPS) (Mc-
Cluskey, Vaquero, and Vallati 2017) has been shown to be a
difficult task, as evidenced by the establishment of the Inter-
national Competition on Knowledge Engineering for Plan-
ning and Scheduling (ICKEPS), whereas it is also a manda-
tory process in automated planning. Thus, providing model-
ing assistance to domain engineers is also in deep need.

Two bottleneck problems in engineering planning do-
mains are domain validations and domain refinements, that
is, deciding whether a domain is functioning correctly and
how to refine the domain if that is not the case. A signifi-
cant number of efforts have been made attempting to address
these two problems in order to provide modeling assistance
in classical planning, for example by Lindsay et al. (2020).
However, only few have been done in hierarchical planning,
e.g., by Olz et al. (2021). Consequently, in this thesis, we
intend to deal with those two problems in the context of hi-
erarchical planning for the purpose of providing modeling
assistance for hierarchical domain modeling. The hierarchi-
cal planning framework we are concerned with is Hierarchi-
cal Task Network (HTN) planning (Erol, Hendler, and Nau

1996; Geier and Bercher 2011; Bercher, Alford, and Höller
2019), as it is the most widely used one in recent years. Ad-
ditionally, although our focus is modeling assistance for hi-
erarchical planning, the approach we study here is also com-
patible with classical planning, which thus generalizes the
scope of our work.

Our approach for domain model validations is via plan
verification (Behnke, Höller, and Biundo 2015). More con-
cretely, we provide a plan to a planning problem in the do-
main we want to validate which is supposed to be a solution,
and then we verify whether this is the case. This stems from
how a software is validated in practice, i.e., via providing
test cases to see whether the software’s outputs are correct.
In our context, a provided plan serves as a test case, and the
failed verification indicates that there are some flaws within
the domain model.

For domain refinements, we are essentially investigating
the scenario where a given plan, which serves as a test
case, turns out not to be a solution to a planning problem
in a domain, and we want to refine the domain so that it
can be. This can be viewed as a model reconciliation prob-
lem (Chakraborti et al. 2017; Chakraborti, Sreedharan, and
Kambhampati 2020; Sreedharan, Chakraborti, and Kamb-
hampati 2021) where we intend to reconcile a flawed do-
main model (engineered by a domain modeler) to the ground
truth one (which is unfortunately unknown). However, the
underlying assumption of the existing model reconciliation
approaches (Chakraborti et al. 2017; Sreedharan et al. 2019;
Sreedharan, Chakraborti, and Kambhampati 2021) is that
there are two domain models given (one is a human’s mental
model, and the other is the real one used by a planner/robot).
This is however not the case in our scenario where we only
have one flawed domain model. Consequently, we will study
a new model reconciliation approach in the thesis for serv-
ing our scenario, i.e., changing the domain model so that the
given plan will be a solution.

Beyond the scope of modeling assistance, the idea of
changing a domain model to make a plan be a solution can
also serve as an approach for providing a contrastive expla-
nation (Miller 2019) about why a given plan is not a solution
and can henceforth be employed in building Explainable AI
Planning (XAIP) systems.

The objective of this paper is to outline the contents of

ICAPS Doctoral Consortium 2022

36

the thesis and give an introduction to our methodology for
providing modeling assistance. For this purpose, we will first
present the HTN formalism which we based upon and, on
top of this, give an example to illustrate how our approach
can be used to provide modeling assistance. Afterwards, we
will present theoretical foundations for our methodology and
abstractly describe how our approach will be implemented.
We start by presenting the HTN formalism employed.

HTN Formalism
Thus far there exist various HTN formalisms. Those of
major importance are the ones by Erol, Hendler, and
Nau (1996), Geier and Bercher (2011), and Bercher, Alford,
and Höller (2019), where the last two only differ in syntax,
whereas the first one features more constraints over task net-
works (which we will introduce later on). In the thesis, we
adhere to the one by Bercher, Alford, and Höller (2019), as
it is the one which most complexity investigations are based
on in the last decade.

One foundation for the HTN formalism is the concept of
task networks, which is a set of labeled task names with a
partial order defined over them. The task names in a task
network are further categorized as being primitive or com-
pound. A primitive task name, also called an action, is as-
sociated with its preconditions, add, and delete list, each of
which consists of a set of propositions. The add list together
with the delete list of an action is called the effects of the
action. On the other hand, a compound task name can be
refined (decomposed) into a task network by some method.

Another fundamental concept in the HTN formalism is
the decomposition of a task network. Informally, a task net-
work tn is said to be decomposed into another one tn′ if tn′

is obtained from tn by substituting a compound task in tn
with a task network into which this compound task is de-
composed by a method.

An HTN planning problem is constituted of three compo-
nents: a domain, an initial task network, and an initial state.
The domain consists of a finite set of propositions, a finite
set of actions, a finite set of compound tasks, a finite set of
methods, and a function mapping each action in the domain
to its preconditions and effects. A state in an HTN planning
problem is a set of propositions which describes the world.

A plan is a solution to an HTN planning problem if it
is a refinement of the initial task network and consists of
solely actions, meaning that it is a primitive task network
obtained from the initial task network by a sequence of de-
compositions. Further, this refined task network must pos-
sess a linearisation (i.e., an action sequence) which is exe-
cutable in the initial state, i.e., the plan is executable in the
initial state. In this paper, unless otherwise specified, a plan
is referred to a partially ordered primitive task network. For
formal definitions, we refer to the work by Bercher, Alford,
and Höller (2019).

Domain Validation via Verification
Having presented the HTN planning formalism used in the
thesis, now we would like to introduce more technical de-
tails about the thesis in the following sections, including the

theoretical foundations and implementation techniques. We
begin with domain model validation.

As mentioned earlier, our way to validate a domain model
is by verifying whether a plan, which serves as a test case,
is a solution to a planning problem in the domain. The core
challenge in this step is clearly solving a plan verification
problem (Behnke, Höller, and Biundo 2015). Hence, we will
also exploit a plan verifier in our implementation.

There are currently two main approaches for plan verifi-
cation in HTN planning. One is by transforming a plan ver-
ification problem into a SAT problem and exploiting a SAT
solver to solve the problem, i.e., the SAT-based approach
(Behnke, Höller, and Biundo 2017). The other one exploits
the similarities between an HTN planning problem and an
attribute grammar and regards a plan verification problem as
a parsing problem, i.e., the parsing-based approach (Barták,
Maillard, and Cardoso 2018; Barták et al. 2020). Thus far,
the empirical evaluations show that the parsing-based ap-
proach outperforms the SAT-based approach. However, the
SAT-based approach is implemented in JAVA in a depre-
cated version of the planning system called PANDA3, and
recently, a new version called PANDApi was developed in
C++. Hence, despite the underperformance of the SAT-based
approach compared with the parsing-based one, we are still
planning to reimplement it in C++, integrate it into the new
version of PANDA, and again compare its performance with
the parsing-based approach. Further, we also plan to develop
a new SAT approach for plan verification based upon solu-
tion order graphs (SOGs) proposed by Behnke, Höller, and
Biundo (2019), which are used in solving an HTN planning
problem via encoding it as a SAT formula and is proved that
such a graph can significantly reduce the number of SAT
clauses and variables required. We will also compare the per-
formance of this new SAT approach with the reimplemented
one and the parsing-based one.

Further, we will also pay extra attentions to plan veri-
fication for totally ordered (TO) HTN planning problems.
In contrast to plan verifications for partially ordered (PO)
HTN planning problems, which have been shown to be NP-
complete (Behnke, Höller, and Biundo 2015), a TOHTN
plan verification problem is computationally easy. This is
because any TOHTN planning problem can be captured by
a context-free grammar (Höller et al. 2014), and hence, a
TOHTN plan verification problem can essentially be viewed
as a membership decision problem for context-free gram-
mars. Nevertheless, the CYK algorithm for the membership
decision problem for context-free grammars cannot be di-
rectly employed in TOHTN, due to additional constraints
a TOHTN planning problem might have, e.g., method pre-
conditions. Barták et al. (2021) extended the parsing-based
approach to adapt to totally ordered planning problems,
whereas the extended approach still relies on blind search.
Consequently, we are going to improve the approach by tak-
ing advantage of the CYK algorithm and conduct empirical
evaluations to compare the performance of those two.

Domain Validations via Model Checking
Apart from providing test cases, another possible way to val-
idate a domain model is by model checking (Baier and Ka-

ICAPS Doctoral Consortium 2022

37

toen 2008) which has already been successfully used in ver-
ifying whether a system, e.g., an Information and Commu-
nication Technology (ICT) system, preserves certain prop-
erties. Hence, we can also employ this approach to check,
e.g., whether the plans produced in a domain model satisfy
certain constraints.

In model checking, properties in need of verification are
normally captured by an LTL formula. It is thus natural to
think of incorporating LTL directly into the HTN formalism,
e.g., using an LTL formula to serve as the goal description of
an HTN planning problem and using such a fusion to catch
those domains which fail to produce plans that satisfy the
LTL formula. As a starting point, we have investigated the
expressiveness power of LTL in conjunction with the HTN
formalism as well as the STRIPS (classical) formalism (Lin
and Bercher 2022). We believe those results can serve as
the theoretical foundations for applying model checking to
domain model validation.

Domain Refinements via Model Reconciliation
The major concern of the thesis is domain refinements, pro-
vided that a test case, i.e., a plan, given to an HTN plan-
ning problem built upon a domain model fails. Our goal is
to refine the domain model so that the plan can become a
solution. As mentioned in the introduction, although this is
essentially a model reconciliation problem, existing model
reconciliation approaches (Chakraborti et al. 2017; Sreedha-
ran et al. 2019; Sreedharan, Chakraborti, and Kambhampati
2021) are not applicable here, due to the inconsistency be-
tween the underlying assumption of those approaches and
our scenario where we only have a flawed domain model in
hand, but the existing approaches demand two models, i.e., a
human’s mental model and the actual model employed by a
planner/robot. Consequently, in the thesis, we will propose a
novel method for solving our model reconciliation problem.

Framework
As our ultimate goal is to change a domain model so that a
given plan will be a solution in the updated model, we shall
first specify what changes are allowed to be imposed to the
domain. We first observe that, according to the solution cri-
teria of HTN planning problems, there are mainly two rea-
sons for why a plan is not a solution to a planning problem:
1) The plan cannot be obtained from the initial task network

via decompositions, and
2) the plan is not executable in the initial state.
We can fix the first problem via refining methods in a domain
model, and for the second one, we can change actions’ pre-
conditions and effects. One might further notice that those
two classes of changes are independent of each other, be-
cause changing methods will not affect the executability of
a plan and changing actions will not affect the decomposi-
tion hierarchy as well from which a plan is obtained.

More concretely, we will define four change operations
targeted at refining methods in a domain model, namely,
1) adding an action to a method,
2) removing an action from a method,
3) adding an ordering constraint (between two actions) to a

method, and

4) removing an ordering constraint (between two actions)
from a method.

The reason for restricting ourselves to those four operations
is that we can implement other high-level changes targeted
at turning a non-solution plan to a solution, e.g., adding a
compound task to a method, in terms of those defined.

For changing actions’ preconditions and effects, we are
concerned with three operations:
1) adding a proposition to an action’s add list,
2) removing a preposition from an action’s preconditions,
3) and removing a preposition from an action’s delete list.
We do not consider any other change here, e.g., adding a
proposition to an action’s preconditions, because it can only
increase the possibility that a plan is not executable.

Theoretical Foundations – Complexity
Before developing a methodology for accomplishing do-
main refinements via the operations described above, we are
interested in finding out how hard that might be, that is, we
are going to study the computational complexity of turning
a non-solution plan into a solution via domain refinements.
For the purpose of complexity investigation, we will use de-
cision languages to describe the scenario, that is, we want to
decide, given an HTN planning problem and a plan, whether
there exist a way to refine the domain model of the plan-
ning problem via the operations described above such that
the given plan can be a solution to the planning problem.

Note that the decision problem we are studying here is
not exactly the same as the actual domain refinement (model
reconciliation) problem. The former one only demands a yes
or no answer, whereas the actual domain refinement problem
we want to solve demands an exact sequence of refinement
operations that can turn the plan into a solution as an out-
put. In spite of that, the complexity results for the decision
problem quantify the computational efficiency of the actual
domain refinement problem. Further, the complexity inves-
tigation (on the decision problem) is also a way to identify
the sources that make the actual refinement problem hard,
which can thus point out the direction of developing an ac-
tual methodology for accomplishing domain refinements.

Since changing methods and changing actions’ precondi-
tions and effects are orthogonal, it is safe for us to study
these two classes of changes independently. Concretely, we
will first study the complexity of deciding the existence of
method refinement operations that turn the plan into a solu-
tion by assuming that the plan is already executable in the
initial state. Under this assumption, the decision problem
can be rephrased as: Given an HTN planning problem and
a plan, is there a way to change the methods in the domain
of the planning problem such that the given plan can be ob-
tained from the initial task network via decompositions.

Our earlier work has shown that deciding whether such
changes exist is already NP-complete in TOHTN (Lin and
Bercher 2021a), independent of what method refinement op-
erations are allowed, and later on we extended the results
from a TO setting to a PO setting (Lin and Bercher 2021b).
Hence, unless P = NP, there exist no polynomial algo-
rithms that can solve the refinement problem in poly-time.

ICAPS Doctoral Consortium 2022

38

Thus far we restrict an input test case to one single plan.
In practice, a domain modeler may supply a plan together
with the decomposition hierarchy that is supposed to lead
to the plan as a test case. The decision problem asking for
the existence of method refinement operations with regard
to this scenario is similar to the previous one except that
now we have an additional decomposition hierarchy as the
input. Though the problem is still NP-complete in general,
we identified several special cases in P where an input de-
composition hierarchy satisfies certain constraints, e.g., ev-
ery method in the hierarchy decomposes a unique compound
task (Lin and Bercher 2021a), and by exploiting those spe-
cial cases, we were able to find all hardness sources of the
decision problem where a decomposition hierarchy is not
given (Lin and Bercher 2021b).

We have also studied the complexity of the problem of de-
ciding whether there exists a way to turn a plan into a refine-
ment of the initial task of a planning problem by applying
at most k method refinement operations, where k ∈ N is a
given number. This decision problem corresponds to the do-
main refinement problem demanding the minimum number
of change operations that turn a plan into a solution. Given
the previous results, this k-existence decision problem is un-
surprisingly NP-complete as well, independent of whether
a decomposition hierarchy is given as an additional input.

Next we introduce the complexity of deciding the exis-
tence of action refinement operations which turn a plan into
a solution, by assuming that a given plan is an action se-
quence and is a refinement of the initial task network of a
planning problem. Clearly, the answer to this decision prob-
lem is always yes, because we can at least empty the precon-
ditions of each action in the given action sequence. There-
fore, what we are really interested in here is the complexity
of the k-existence decision problem asking whether the plan
can become executable by applying at most k refinement
operations. The complexity varies in what operations are al-
lowed. The problem is NP-complete if adding propositions
to actions’ add lists is allowed, otherwise it is in P.

Implementation – A SAT-Baseed Approach
Lastly, we will develop a methodology for actually solving
the domain refinement problem. Our first attempt toward this
will be to encode the refinement problem as the SAT prob-
lem. In our previous works (Lin and Bercher 2021b), we
have shown that two main sources that make the refinement
problem NP-hard are: 1) the non-deterministic choices of
the decomposition hierarchy that leads to the given plan, i.e.,
the plan verification problem, and 2) the non-deterministic
choices of the methods that are in need of changing. The
natural properties of these hardness sources make SAT ap-
proaches the best tool to encode the non-determinism. As
an example, we can use one SAT variable xa→m to indicate
whether the action a is added to the method m. Additionally,
we can also exploit the procedure by Behnke, Höller, and
Biundo (2017) that transforms the plan verification prob-
lem into the SAT problem. Further, since both the refinement
problem and the SAT problem are both NP-complete, it is
reasonable to assume that transforming one into the other
will not add too many overheads.

Our another concern is how to do the empirical evaluation.
We are current considering two approaches. One is to use
the existing invalid plans. We will use our implementation
to alter the respective domains to make those plans become
valid. The metric for this evaluation approach will thus be
the number of successful instances in a certain time frame,
i.e., how many instances can be successfully solved (refined)
in a given time.

Alternatively, we are also considering using the existing
valid plans and randomly changing the respective HTN do-
mains to make those plans become invalid. Afterward, we
will employ our implementation to change the domains and
make those plan valid again. The metric for this evaluation
approach is to estimate, for each domain, the similarity be-
tween the original unmodified version (the ground truth) and
the version refined by our implementation.

Implementation – A Planning-Based Approach
Another implementation approach we are concerned with
is by encoding the domain refinement problem as an HTN
planning problem. The idea stems from the similarity be-
tween the plan verification problem and the domain refine-
ment problem. Höller et al. (2022) have proposed the ap-
proach of transforming a plan verification problem into an
HTN planning problem. The empirical evaluation shown
that this approach significantly outperforms others, i.e., the
SAT-based and parsing based approach. Hence, we are also
planning to extend this approach to support model refine-
ments and compare its performance with the SAT approach.

Future Work
In the thesis, we only concern grounded HTN planning mod-
els, i.e., models without variables. One straightforward ex-
tension of the thesis is generalizing our approach to lifted
models, i.e., models with variables. In fact, such an exten-
sion is of great importance because most domain descrip-
tion languages for HTN planning, e.g., HDDL (Höller et al.
2020), are designed for lifted models.

Another direction of extending our work is to take into
account negative test cases by assuming that a domain mod-
eler provides a plan which is not supposed to be a solution,
and we want to refine the domain to ensure this.

Conclusion
The thesis aims at addressing two major problems in pro-
viding modeling assistance in AI planning, namely, domain
model validation and domain model refinements. The ap-
proach for domain validation is by plan verification. We as-
sume that a plan which serves as a test case is provided
to a planning problem built on a domain model that need
to be validated, and a failed verification indicates that do-
main model is flawed. For domain refinements, we view it
as a model reconciliation problem where given a plan and
an HTN planning problem, we want to refine the domain
model such that the plan can be a solution to the planning
problem, and we will propose a novel approach for solving
this reconciliation problem,

ICAPS Doctoral Consortium 2022

39

References
Baier, C.; and Katoen, J. 2008. Principles of model checking.
MIT.
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Vali-
dation of Hierarchical Plans via Parsing of Attribute Gram-
mars. In Proceedings of the 28th International Conference
on Automated Planning and Scheduling, ICAPS 2018, 11–
19. AAAI.
Barták, R.; Ondrcková, S.; Behnke, G.; and Bercher, P.
2021. On the Verification of Totally-Ordered HTN Plans.
In Proceedings of the 33rd IEEE International Conference
on Tools with Artificial Intelligence, ICTAI 2021, 263–267.
IEEE.
Barták, R.; Ondrcková, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A Novel Parsing-based Approach for Ver-
ification of Hierarchical Plans. In Proceedings of the 32nd
IEEE International Conference on Tools with Artificial In-
telligence, ICTAI 2020, 118–125. IEEE.
Behnke, G.; Höller, D.; and Biundo, S. 2015. On the Com-
plexity of HTN Plan Verification and Its Implications for
Plan Recognition. In Proceedings of the 25th International
Conference on Automated Planning and Scheduling, ICAPS
2015, 25–33. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This Is a Solu-
tion! (... But Is It Though?) - Verifying Solutions of Hierar-
chical Planning Problems. In Proceedings of the 27th Inter-
national Conference on Automated Planning and Schedul-
ing, ICAPS 2017, 20–28. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2019. Bringing Or-
der to Chaos - A Compact Representation of Partial Or-
der in SAT-Based HTN Planning. In Proceedings of the
33rd AAAI Conference on Artificial Intelligence, AAAI 2019,
7520–7529. AAAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, IJCAI 2019, 6267–
6275. IJCAI.
Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The Emerging Landscape of Explainable Automated Plan-
ning & Decision Making. In Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2020, 4803–4811. IJCAI.
Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan Explanations as Model Reconciliation:
Moving Beyond Explanation as Soliloquy. In Proceedings
of the 26th International Joint Conference on Artificial In-
telligence, IJCAI 2017, 156–163. IJCAI.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity Results for HTN Planning. Annals of Mathematics and
Artificial Intelligence, 18(1): 69–93.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, IJ-
CAI 2011, 1955–1961. IJCAI.

Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence, ECAI 2014, 447–452. IOS.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension
to PDDL for Expressing Hierarchical Planning Problems.
In The Thirty-Fourth AAAI Conference on Artificial Intel-
ligence, AAAI 2020, 9883–9891. AAAI.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In Proceedings of the 32nd International
Conference on Automated Planning and Scheduling, ICAPS
2022. AAAI.
Lin, S.; and Bercher, P. 2021a. Change the World - How
Hard Can that Be? On the Computational Complexity of
Fixing Planning Models. In Proceedings of the 30th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2021, 4152–4159. IJCAI.
Lin, S.; and Bercher, P. 2021b. On the Computational Com-
plexity of Correcting HTN Domain Models. In Proceed-
ings of the 4th ICAPS Workshop on Hierarchical Planning,
HPlan 2021, 35–43.
Lin, S.; and Bercher, P. 2022. On the Expressive Power of
Planning Formalisms in Conjunction with LTL. In Proceed-
ings of the 32nd International Conference on Automated
Planning and Scheduling, ICAPS 2022. AAAI.
Lindsay, A.; Franco, S.; Reba, R.; and McCluskey, T. L.
2020. Refining Process Descriptions from Execution Data
in Hybrid Planning Domain Models. In Proceedings of the
30th International Conference on Automated Planning and
Scheduling, ICAPS 2020, 469–477. AAAI.
McCluskey, T. L.; Vaquero, T. S.; and Vallati, M. 2017. En-
gineering Knowledge for Automated Planning: Towards a
Notion of Quality. In Proceedings of the 9th Knowledge
Capture Conference, K-CAP 2017, 14:1–14:8. ACM.
Miller, T. 2019. Explanation in artificial intelligence: In-
sights from the social sciences. Artificial Intelligence, 267:
1–38.
Olz, C.; Wierzba, E.; Bercher, P.; and Lindner, F. 2021. To-
wards Improving the Comprehension of HTN Planning Do-
mains by Means of Preconditions and Effects of Compound
Tasks. In Proceedings of the 10th Workshop on Knowledge
Engineering for Planning and Scheduling, KEPS 2021.
Sreedharan, S.; Chakraborti, T.; and Kambhampati, S. 2021.
Foundations of explanations as model reconciliation. Artifi-
cial Intelligence, 301: 103558.
Sreedharan, S.; Hernandez, A. O.; Mishra, A. P.; and Kamb-
hampati, S. 2019. Model-Free Model Reconciliation. In
Proceedings of the 28th International Joint Conference on
Artificial Intelligence, IJCAI 2019, 587–594. IJCAI.

ICAPS Doctoral Consortium 2022

40

Neural Network Action Policy Verification via Predicate Abstraction
– Dissertation Abstract

Marcel Vinzent
Supervisor: Jörg Hoffmann

Saarland University
Saarland Informatics Campus

Saarbrücken, Germany
{vinzent, hoffmann}@cs.uni-saarland.de

Abstract
Neural networks (NN) are an increasingly important repre-
sentation of action policies. With their application for real-
time decision-making in safety critical areas, like, e.g., au-
tonomous driving, it arises the need to gain trust in the ap-
plied policies. The ultimate goal to gain this trust is through
formal verification of the policy-induced behavior. This is a
challenging endeavor as it compounds the state space explo-
sion with the difficulty of analyzing even single NN decision
episodes.
In our work, we make a contribution to cope with this
challenge. We approach safety verification through (over-
approximating) abstract reachability analysis. We compute
predicate abstractions of the policy-restricted state space; ex-
pressing the abstract transition computation as a satisfiability
modulo theories (SMT) problem, and devise a range of algo-
rithmic enhancements to avoid costly calls to SMT.
First empirical results show that our approach can outperform
competing approaches. Future work will further enhance the
technique and extend it to support probabilistic settings.

Introduction
Neural networks (NN) are an increasingly important repre-
sentation of action policies; in particular for real-time deci-
sion making in dynamic environments. The vision is elegant
and simple: The NN policy can be learned in advance and at
run-time a single (computationally efficient) call to the NN
suffices to select an action. But how to verify that such a pol-
icy is safe? Leading such a proof is potentially very hard as
it compounds the state space explosion with the difficulty of
analyzing even single NN decision episodes.

In our work, we contribute to cope with this challenge. We
tackle non-deterministic state spaces over bounded-integer
state variables. Given an NN action policy π, a start condi-
tion φ0, and an unsafety condition φU , we verify whether
a state sU |= φU is reachable from a state s0 |= φ0 under π.

We approach safety verification via the extension of pred-
icate abstraction (PA) (Graf and Saı̈di 1997; Ball et al.
2001) to deal with NN action policies. PA is defined through
a set P of predicates, where each p ∈ P is a linear con-
straint over the state variables (e.g. x ≤ 5 or y ≥ z). Ab-
stract states are characterized by truth value assignments
over P , grouping together all concrete states that induce the
same truth values. Transitions are over-approximated to pre-
serve all possible behaviors. For our purpose of policy safety

verification, we are interested in the predicate abstraction of
the policy-restricted state space Θπ , i.e., the subgraph of Θ
induced by π. We refer to the predicate abstraction of Θπ as
policy predicate abstraction (PPA) Θπ

P . We build the frag-
ment of Θπ

P reachable from φ0. If φU is not reached then
policy π is proven to be safe.

To compute PA, one repeatedly needs to decide whether
there is a transition from abstract state A to abstract state
A′ under some action a: does there exist a state s ∈ A
s.t. executing a in s results in s′ ∈ A′? This transition
problem is routinely addressed using SMT solvers such as
Z3 (de Moura and Bjørner 2008). Now, to compute the PPA
Θπ

P , one additionally needs to check whether π(s) = a, i.e.,
whether the policy selects a in s. Solving this over and over
again via calls to SMT quickly becomes infeasible due to the
complex structure of neural networks.

In our current work, we hence have devised a range of
algorithmic enhancements, leveraging relaxed tests to avoid
costly calls to SMT. Most importantly, continuous relaxation
of the discrete state variables enables to plug in state-of-the-
art SMT solvers tailored to NN (Katz et al. 2017, 2019). We
also have devised a method using branch-and-bound around
relaxed tests to avoid exact calls to SMT altogether, as well
as a method that simplifies SMT calls via information ob-
tained through NN analysis. Empirical results so far show
that our approach can outperform competing approaches and
that our algorithmic enhancements are required for practical-
ity (Vinzent, Steinmetz, and Hoffmann 2022).

Future research will investigate techniques for automatic
abstraction refinement, specifically via counter example
guided abstraction refinement (Clarke et al. 2000). Here, we
will develop refinement approaches to rule out spuriousness
related to the policy. Additionally, we will leverage further
NN analysis techniques to enhance the efficacy of our ap-
proach, e.g., symbolic propagation (Li et al. 2019) and ad-
versarial attack methods (Goodfellow, Shlens, and Szegedy
2015). We also plan to compute quantitative safety results
via value iteration (Givan, Leach, and Dean 1997) in the ab-
stract state space of probabilistic systems.

Related Work
There has been remarkable progress on analyzing individ-
ual NN decision episodes. In our work so far, we query
Marabou (Katz et al. 2019), which extends Simplex by a

ICAPS Doctoral Consortium 2022

41

lazy case splitting approach to handle piecewise-linear acti-
vation functions. Marabou utilizes a symbolic interval prop-
agation approach (Wang et al. 2018b) which leverages inter-
val arithmetic to propagate bounds on the NN input through
the network. Other related work (Ehlers 2017) leverages
non-symbolic bound propagation for linear relaxation of NN
activation nodes. Follow-up work (Wang et al. 2018a) then
combines symbolic bound propagation with linear relax-
ation. Recent work (Li et al. 2019) extends the symbolic
propagation approach to general abstract domains; e.g., also
zonotopes rather than simple interval bounds. In the context
of our work, such bound propagation techniques can be uti-
lized to over-approximate the possible NN policy behavior.
Additionally, adversarial attack methods (e.g. (Goodfellow,
Shlens, and Szegedy 2015)), can in principle be adapted to
certify transition existence.

The verification of NN decision sequences – NN policies
executed in an environment – is in its infancy. For software
verification, there is initial work on abstract interpretation of
programs with calls to NN sub-procedures (Christakis et al.
2021). Gros et al. (2020b) apply statistical model checking
to statistically verify NN action policies, but this approach
is limited to small numbers of start states as these need to be
explicitly enumerated. Tran et al. (2019) use star sets to ex-
actly compute respectively over-approximate reachable sets
of a system controlled by a neural network; focusing on lin-
ear systems however.

The verification of NN controllers through polynomial ap-
proximation has been studied in several works (e.g. (Huang
et al. 2019; Ivanov et al. 2021)). These approaches are con-
ceptually very different to our work. Specifically, Ivanov et
al. (2021) focus on NN with sigmoid/tanh activation func-
tions1 which allows to compile the NN behavior into a hy-
brid system – whose composition with the controlled system
is amenable to known verification techniques. On the one
hand, this immediately enables to perform verification for
a broad range of, possibly complex, systems. On the other
hand, such verification is bound to approximation. In con-
trast, our approach is tailored to piecewise-linear activation
functions (e.g. ReLU) and leverages NN-specific techniques
which enable for exact analysis.

In a context closer to AI sequential decision making, re-
cent work (Akintunde et al. 2018, 2019) explores the use of
MIP encodings for bounded-length verification of NN con-
trolled systems. The approach is technically rather differ-
ent to ours. While we compute individual (abstract) transi-
tions, in bounded-length verification one checks fixed-size
path existence, i.e., transition sequences, via a monolithic
MIP encoding; iteratively for paths of increasing sizes. This
requires to solve encodings of stepwise increasing cost. Em-
pirical evaluations show that for our purposes the prac-
ticability of bounded-length verification is rather limited
(Vinzent, Steinmetz, and Hoffmann 2022).

Besides verification, there are also other techniques to
gain trust in an NN action policy, e.g., safe reinforcement

1Arguably, piecewise-linear activation functions can be
smoothly approximated (e.g., ReLU via Swish (Ramachandran,
Zoph, and Le 2018)) and vice versa (e.g., (Dutta et al. 2018)).

learning (see (Garcı́a and Fernández 2015) for an overview),
especially shielding (e.g. (Alshiekh et al. 2017)); or testing
(e.g. (Steinmetz et al. 2022)); or any manner of explainable
AI that may help to elucidate the NN’s action decisions, in
particular visualization (e.g. (Gros et al. 2020a)). In fact, be-
yond verification, our policy predicate abstraction technique
might also turn out to be useful for policy visualization pur-
poses; enabling zooming in the policy-restricted state space
based on abstraction predicates.

Background
State Space Representation. A state space is a tuple
〈V,L,O〉 of state variables V , action labels L, and op-
erators O. The domain Dv of each variable v ∈ V is a
non-empty bounded integer interval. Exp denotes the set
of linear integer expressions over V (i.e., of the form
d1 · v1 + · · · + dr · vr + c with d1, . . . , dr, c ∈ Z). C de-
notes the set of linear integer constraints over V , (i.e., of
the form e1 ./ e2 with ./ ∈ {≤,=,≥} and e1, e2 ∈ Exp),
and all Boolean combinations thereof. An operator o ∈ O
is a tuple (g, l, u) with label l ∈ L, guard g ∈ C , and (par-
tial) update u : V → Exp.

A (partial) variable assignment s over V is a function
with domain dom(s) ⊆ V and s(v) ∈ Dv for all v ∈
dom(s). By s1[s2] we denote the update of s1 by s2, i.e.,
dom(s1[s2]) = dom(s1) ∪ dom(s2), where s1[s2](v) =
s2(v) if v ∈ dom(s2) and s1[s2](v) = s1(v) otherwise.
By e(s), respectively φ ∈ C , we denote the evaluation of
e ∈ Exp , respectively φ ∈ C , over s. We write s |= φ, if
φ(s) evaluates to true.

The state space of 〈V,L,O〉 is a labeled transition system
(LTS) Θ = 〈S,L, T 〉. The states S are the complete vari-
able assignments over V . For the transitions T ⊆ S×L×S
it holds (s, l, s′) ∈ T iff there exists an operator o = (g, l, u)
such that s |= g (the guard is satisfied in the source state s)
and s′ = s[u(s)] with u(s) = {v 7→ u(v)(s) | v ∈ dom(u)}
(the successor state s′ is the update of s by u evaluated over
s). We also write s |= o for s |= g and sJoK for s[u(s)].

Observe that the separation between action labels and op-
erators allows both, state-dependent effects (different oper-
ators with the same label l applicable in different states); as
well as action outcome non-determinism (different operators
with the same label l applicable in the same state).

NN Action Policies. An action policy π is a function S →
L. The policy-restricted state space Θπ is the subgraph
〈S,L, T π〉 of Θ with T π = {(s, l, s′) ∈ T | π(s) = l}.

We consider action policies represented by neural net-
works (NN). Specifically, we focus on fully connected feed-
forward NN with piecewise-linear activation functions. In
the input layer there is an input for each state variable; and
in the output layer there is an output for each action label.
The policy selects an action label by applying argmax to the
output layer.

Policy Safety. A safety property is a pair ρ = (φ0, φU),
where φ0, φU ∈ C . Here, φU identifies the set of unsafe
states that should be unreachable from the set of possible
start states represented by φ0. That is, π is unsafe with re-
spect to ρ iff there exist states s0, sU ∈ S such that s0 |= φ0,

ICAPS Doctoral Consortium 2022

42

sU |= φU , and sU is reachable from s0 in policy-restricted
Θπ . Otherwise π is safe.

Policy Predicate Abstraction
In general, it is not feasible to perform explicit reachability
analysis of φU (from φ0) in Θπ . Instead, our approach is
to perform reachability analysis in the abstract state space
obtained through predicate abstraction (Graf and Saı̈di
1997). Given a set of predicates P ⊆ C , an abstract state
sP is a (complete) truth value assignment over P . The ab-
straction of a (concrete) state s ∈ S is the abstract state
s|P with s|P(p) = p(s) for each p ∈ P . Conversely,
[sP] = {s′ ∈ S | s′|P = sP} denotes the concretization
of sP , i.e., the set of all concrete state represented by sP .
Accordingly, we say that sP satisfies a constraint φ ∈ C ,
written sP |= φ, iff there exists s ∈ [sP] such that s |= φ.

The abstract state space is then defined in a transition-
preserving manner:
Definition 1 (Predicate Abstraction of Θπ). The predicate
abstraction of Θπ over P is the LTS Θπ

P = 〈SP ,L, T πP 〉,
where SP is the set of all predicates states overP , and T πP =
{(s|P , l, s′|P) | (s, l, s′) ∈ T π}.

Due to the underlying policy π, we refer to Θπ
P as pol-

icy predicate abstraction. Due to its over-approximating
nature, safety of π can be proven via safety in Θπ

P :
Proposition 2 (Safety in Θπ

P). Let ρ = (φ0, φU) be a safety
property. If there do not exist sP , s′P ∈ SP with sP |= φ0,
s′P |= φU such that s′P is reachable from sP in Θπ

P , then π
is safe with respect to ρ.

The computation of Θπ
P necessitates to solve the tran-

sition problem for every possible abstract state transition:
(sP , l, s′P) ∈ T πP iff there exists an operator o ∈ O with
label l and a concrete state s ∈ [sP] such that s |= o,
sJoK ∈ s′P , and π(s) = l. We can check this via individ-
ual tests for each l-labeled operator:
Definition 3 (Transition Test of Θπ

P). Let sP , s′P ∈ SP ,
and let o = (g, l, u) be an operator. The transition test of
Θπ

P , denoted TSatπ(sP , o, s′P), is fulfilled iff there exists
s ∈ [sP] such that s |= o, sJoK ∈ [s′P] and π(s) = l.

Transition tests are routinely addressed as satisfiability
modulo theories (SMT) (Barrett et al. 1994) problems. Pred-
icate abstraction is applicable in principle so long as any
method for solving these is available. Compared to standard
predicate abstraction approaches, the dominating source of
complexity in computing policy predicate abstraction is that,
in addition to the standard transition condition, one needs to
check whether the policy π actually selects l in s ∈ [sP].

Algorithmic Enhancements
An exact SMT solution of TSatπ(sP , o, s′P) is computation-
ally very expensive – specifically due to the large num-
ber of disjunctions encoding every (piecewise-linear) acti-
vation function in the NN representation of π. In our cur-
rent work, we address this via a range of algorithmic en-
hancements, leveraging relaxed tests that over-approximate
TSatπ(sP , o, s′P). If such a relaxed test is violated, then
TSatπ(sP , o, s′P) is violated as well.

Necessary Conditions. One relaxation technique is
through tests on necessary conditions of TSatπ(sP , o, s′P).
Necessary condition that we check are: label selection (∃s ∈
[sP] : π(s) = l; short l ∈ π(sP)), operator applica-
bility (sP |= o), respectively their combination (∃s ∈
[sP] : π(s) = l ∧ s |= o), and the non-policy-restricted tran-
sition condition (∃s ∈ [sP] : s |= o ∧ sJoK ∈ [s′P]).

These conditions essentially check different parts of
TSatπ(sP , o, s′P) in isolation. Tests on these conditions have
the decisive advantage that, if one such test is violated, one
can skip all corresponding transition tests. For instance, if
we find l /∈ π(sP), then TSatπ(sP , o, s′P) is violated and
can thus be skipped for all l-labeled operators o and all ab-
stract successor states s′P . Additionally, tests ignoring the
NN selection condition are usually much cheaper to answer.

Continuous Relaxation. Another relaxation technique is
through continuous relaxation. Each test (TSatπ(sP , o, s′P)
as well as tests on necessary conditions) can be relaxed by
interpreting the integer state variables as continuous vari-
ables (with real-valued interval domains). The advantage of
this relaxation is the applicability of existing SMT solvers
specialized to NN analysis. Specifically, in our work so far,
we query Marabou (Katz et al. 2019), an SMT solver tai-
lored to NN with piecewise-linear activation functions.

If a relaxed test is violated, the corresponding exact test is
violated too (and can be skipped). However, continuously-
relaxed tests can be utilized even further: If the solution
found to a relaxed test happens to be integer, the correspond-
ing exact test is derived to be fulfilled as well. While this
will in general not be the case, we can iterate relaxed tests
in a branch & bound (B&B) search for such a solution. In
each iteration, if there exists a state variable v assigned to
a non-integer value α in the relaxed solution found by the
solver, we pick one such v and create two search branches,
restricting v to be less equal bαc respectively greater equal
dαe. A branch is terminated once the relaxed tests is found
to be violated, or when an integer solution is found. If no
integer solution is found during the search, the exact tests is
violated. The advantage of this approach is the applicability
of existing SMT solvers dedicated to NN analysis to answer
not only relaxed but also exact tests.

Fixing Activation Cases. Additionally to the enhance-
ment trough relaxed tests, there are further techniques from
NN analysis that can be utilized. One such option is fixing
activation cases in the NN. That is, given value bounds on
the neurons in the network one can potentially prune some
or even fix one of the (piecewise-linear) activation cases of
the respective neuron. For instance, for the prominent ReLU
activation function ReLU(x) := max(x, 0) the idea works
as follows: If the activation-function input x is known to be
less equal 0, then one can fix ReLU(x) = 0; if x is known
to be greater equal 0, one can fix ReLU(x) = x.

There is a broad range of NN analysis techniques that can
be utilized to compute such bounds (e.g. (Wang et al. 2018b;
Li et al. 2019)) given constraints on the input of an NN (in
our case sP). Towards transition tests – relaxed or exact –
activation case fixing as well as the derived bounds them-
selves can be used to simplify the resulting SMT encodings

ICAPS Doctoral Consortium 2022

43

and to prune the SMT search space. This idea has been de-
ployed in other work before (e.g. (Mohammadi et al. 2020;
Katz et al. 2019)). Specifically, Marabou (Katz et al. 2019),
which we query for relaxed tests, fixes activation cases based
on bounds implied by individual constraints, respectively
derived through symbolic interval propagation on the net-
work topology (Wang et al. 2018b). In our work, we then
also extract these bounds towards activation case fixing in
exact tests.

Experimental Results
In our experiments so far (Vinzent, Steinmetz, and Hoff-
mann 2022), we evaluated our approach on a collection of
benchmarks that involve action outcome non-determinism.
As competing approaches, we implemented an explicit-
search approach enumerating all states the policy can reach,
as well as a bounded-length verification approach following
the ideas of Akintunde et al. (2018; 2019). The results show
that our algorithmic enhancements – in particular relaxed
tests answered by leveraging dedicated NN analysis tech-
niques – are required for practicality, and that our approach
can outperform its competitors.

Future Work
We distinguish three research lines that we plan to cover in
our future work: technical enhancements, adaption to other
settings, and automatic abstraction refinement. We also note
that there are many more approaches from formal meth-
ods that (when adapted to the the NN policy setting) can
in principle serve as competing verification approaches (e.g.
(Tonetta 2009; Cimatti et al. 2016)).

Technical Enhancements. There remains a broad range
of NN analysis techniques that can be utilized to improve
performance. For instance, techniques to derive tight neuron
value bounds (e.g. (Li et al. 2019)) can be leveraged to en-
hance activation case fixing. In principle, our approach can
profit from any progress in the analysis of single NN deci-
sion episodes.

Furthermore, we also plan to leverage adversarial attack
methods for under-approximation purposes (e.g. (Goodfel-
low, Shlens, and Szegedy 2015)). In essence, if an attack
finds a solution to a transition test, the call to SMT can
be skipped. If not, there still may exist a solution and we
call SMT. That said, robustness guarantees on adversarial
attacks (e.g. (Hein and Andriushchenko 2017)) might even
be used to prove that a solution does not exist.

On the technical level there is also a vast potential for par-
allelization – running several transition tests at once (differ-
ent (solver) techniques, different transitions); as well as in-
cremental solving – e.g., preserving the solver-internal state
between selection and transition tests.

Adaption to Other Settings. In our current setting,
we consider non-probabilistic state spaces with non-
deterministic action outcomes. A natural extension to make
our approach amenable to probabilistic systems is by per-
forming value iteration (e.g. (Givan, Leach, and Dean 1997))

in the abstract state space; obtaining quantitative safety re-
sults. The abstraction computation itself remains unchanged.

Currently, we allow π to select inapplicable actions, i.e.,
there may exist s ∈ S such that π(s) does not label any
outgoing transition and the policy execution stalls. Here, as
potential future work, we plan to extend our approach to en-
able stalling detection. Alternatively, a prominent option is
also to super-impose applicability on π, restricting its selec-
tion to the applicable actions. Again, we plan to adapt our
approach to such settings as part of future work. In princi-
ple, both adaptions are straight-forward; resulting in signifi-
cantly more expensive SMT problems tough.

Abstraction Refinement. In our work so far, we assume
the predicate set P to be provided as input. Yet, the converse
of Proposition 2 does not hold, i.e., unsafety in Θπ

P does not
imply unsafety in Θπ . Depending on P , the abstraction may
contain spurious paths without correspondence in the con-
crete state space. Hence, automatic abstraction generation
(respectively refinement) remains key future work towards a
complete verification procedure.

Here, counter example guided abstraction refinement
(CEGAR) (e.g. (Clarke et al. 2000)) is a common procedure
to refine P , iteratively removing spurious (unsafe) paths un-
til either the abstraction is proven safe, or a non-spurious un-
safe path is found – proving unsafety of the concrete system.
The adaption of CEGAR to NN policy verification is non-
trivial since refinement predicates must reflect NN selection
behavior; a path s1P , l

1, . . . , siP , l
i, . . . , snP may be spurious

due to li ∈ π(siP) while π(si) 6= li in the path concretiza-
tions. Our future research will address this challenge. One
idea is to approximate (state-dependent) “selection guards”
via constraints that split siP based on NN behavior, e.g., with
respect to si in a path concretization. The selection guards
can then be fed into standard refinement procedures based
on weakest precondition computation.

In the context of CEGAR, we also plan to investigate
the potential of incremental abstraction computation, i.e.,
reusing (transition) information of coarser abstractions when
computing the refined abstract state space. Most importantly
such information can be used to prune the potential tran-
sition space as well as to witness existing transitions. An-
other technique of interest is lazy abstraction, i.e., refining
the abstraction only locally respectively checking (abstract)
policy-restriction only once an abstract unsafe path has been
found. Moreover, the search for counter examples may also
be sped up using heuristics, e.g., again based on information
from coarser (non-policy-restricted) abstractions.

Conclusion
In our work, we provide policy predicate abstraction as a
new method to address NN policy verification. Our experi-
ments so far have shown that it can outperform competing
approaches and that our algorithmic enhancements are re-
quired for practicality. An important future task is to address
the automatic selection of the abstraction predicates.

Overall, we believe that NN policy verification is impor-
tant, and we hope that our work provides one basic building
block for this huge endeavor.

ICAPS Doctoral Consortium 2022

44

References
Akintunde, M.; Lomuscio, A.; Maganti, L.; and Pirovano, E.
2018. Reachability Analysis for Neural Agent-Environment
Systems. In KR.
Akintunde, M. E.; Kevorchian, A.; Lomuscio, A.; and
Pirovano, E. 2019. Verification of RNN-Based Neural
Agent-Environment Systems. In AAAI.
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2017. Safe Reinforcement Learn-
ing via Shielding. CoRR, abs/1708.08611.
Ball, T.; Majumdar, R.; Millstein, T. D.; and Rajamani, S. K.
2001. Automatic Predicate Abstraction of C Programs. In
Prog. Lang. Design and Implementation (PLDI).
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
1994. Satisfiability modulo theories. In Handbook of Satis-
fiability, 825–885.
Christakis, M.; Eniser, H. F.; Hermanns, H.; Hoffmann, J.;
Kothari, Y.; Li, J.; Navas, J.; and Wüstholz, V. 2021. Auto-
mated Safety Verification of Programs Invoking Neural Net-
works. In CAV.
Cimatti, A.; Griggio, A.; Mover, S.; and Tonetta, S. 2016.
Infinite-state invariant checking with IC3 and predicate ab-
straction. Formal Methods Syst. Des., 49(3): 190–218.
Clarke, E. M.; Grumberg, O.; Jha, S.; Lu, Y.; and Veith, H.
2000. Counterexample-Guided Abstraction Refinement. In
CAV.
de Moura, L.; and Bjørner, N. 2008. Z3: An Efficient SMT
Solver. In TACAS.
Dutta, S.; Jha, S.; Sankaranarayanan, S.; and Tiwari, A.
2018. Output Range Analysis for Deep Feedforward Neural
Networks. In Dutle, A.; Muñoz, C. A.; and Narkawicz, A.,
eds., NFM.
Ehlers, R. 2017. Formal Verification of Piece-Wise Linear
Feed-Forward Neural Networks. In D’Souza, D.; and Ku-
mar, K. N., eds., Automated Technology for Verification and
Analysis.
Garcı́a, J.; and Fernández, F. 2015. A comprehensive survey
on safe reinforcement learning. JMLR, 16: 1437–1480.
Givan, R.; Leach, S. M.; and Dean, T. L. 1997. Bounded Pa-
rameter Markov Decision Processes. In Steel, S.; and Alami,
R., eds., ECP.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and Harnessing Adversarial Examples. In Learning Rep-
resentations (ICLR).
Graf, S.; and Saı̈di, H. 1997. Construction of Abstract State
Graphs with PVS. In CAV.
Gros, T. P.; Groß, D.; Gumhold, S.; Hoffmann, J.; Klauck,
M.; and Steinmetz, M. 2020a. TraceVis: Towards Visual-
ization for Deep Statistical Model Checking. In Proceed-
ings of the 9th International Symposium On Leveraging Ap-
plications of Formal Methods, Verification and Validation
(ISoLA’20).
Gros, T. P.; Hermanns, H.; Hoffmann, J.; Klauck, M.; and
Steinmetz, M. 2020b. Deep Statistical Model Checking.
In Formal Techniques for Distributed Objects, Components,
and Systems (FORTE).

Hein, M.; and Andriushchenko, M. 2017. Formal Guaran-
tees on the Robustness of a Classifier against Adversarial
Manipulation. In NIPS.
Huang, S.; Fan, J.; Li, W.; Chen, X.; and Zhu, Q. 2019.
ReachNN: Reachability analysis of neural-network con-
trolled systems. ACM Trans. Emb. Comp. Sys., 18: 1–22.
Ivanov, R.; Carpenter, T. J.; Weimer, J.; Alur, R.; Pappas,
G. J.; and Lee, I. 2021. Verifying the Safety of Autonomous
Systems with Neural Network Controllers. ACM Trans.
Emb. Comp. Sys., 20: 7:1–7:26.
Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In CAV.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus,
C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.; Dill,
D. L.; Kochenderfer, M.; and Barrett, C. 2019. The Marabou
Framework for Verification and Analysis of Deep Neural
Networks. In CAV.
Li, J.; Liu, J.; Yang, P.; Chen, L.; Huang, X.; and Zhang, L.
2019. Analyzing deep neural networks with symbolic prop-
agation: Towards higher precision and faster verification. In
Static Analysis (SAS).
Mohammadi, K.; Karimi, A.; Barthe, G.; and Valera, I.
2020. Scaling Guarantees for Nearest Counterfactual Ex-
planations. CoRR, abs/2010.04965.
Ramachandran, P.; Zoph, B.; and Le, Q. V. 2018. Searching
for Activation Functions. In ICLR Workshop Track Proceed-
ings.
Steinmetz, M.; Fiser, D.; Eniser, H.; Ferber, P.; Gros, T.;
Heim, P.; Höller, D.; Schuler, X.; Wüstholz, V.; Christakis,
M.; and Hoffmann, J. 2022. Debugging a Policy: Automatic
Action-Policy Testing in AI Planning. In Proceedings of the
32nd International Conference on Automated Planning and
Scheduling (ICAPS).
Tonetta, S. 2009. Abstract Model Checking without Com-
puting the Abstraction. In Cavalcanti, A.; and Dams, D.,
eds., Formal Methods.
Tran, H.; Cai, F.; Lopez, D. M.; Musau, P.; Johnson, T. T.;
and Koutsoukos, X. D. 2019. Safety Verification of Cyber-
Physical Systems with Reinforcement Learning Control.
ACM Trans. Embed. Comput. Syst., 18(5s): 105:1–105:22.
Vinzent, M.; Steinmetz, M.; and Hoffmann, J. 2022. Neural
Network Action Policy Verification via Predicate Abstrac-
tion. In Proceedings of the 32nd International Conference
on Automated Planning and Scheduling (ICAPS).
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018a. Efficient Formal Safety Analysis of Neural Net-
works. In Bengio, S.; Wallach, H. M.; Larochelle, H.; Grau-
man, K.; Cesa-Bianchi, N.; and Garnett, R., eds., NeurIPS.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018b. Formal Security Analysis of Neural Networks us-
ing Symbolic Intervals. In USENIX Security Symposium.

ICAPS Doctoral Consortium 2022

45

Plan Recognition – Dissertation Abstract

Kristýna Pantůčková
Supervisor: Roman Barták

Charles University, Faculty of Mathematics and Physics
Ke Karlovu 3, 121 16 Praha 2, Czech Republic

pantuckova@ktiml.mff.cuni.cz

Abstract

The topic of the dissertation is plan recognition. Plan recog-
nition is the task of recognizing the goal of an agent based
on the observed actions. The aim of the current research is
to develop an efficient approach to plan recognition in hierar-
chical task networks (HTN). We intend to improve the perfor-
mance of existing parsing-based approach by heuristics based
on landmarks.

Introduction
Plan recognition is relevant to many fields of artificial intelli-
gence. For instance, plan recognition is related to behaviour
recognition, which can be used to recognize suspicious be-
haviour in public space (Niu et al. 2004). In the field of com-
puter security, plan recognition can be used to predict cy-
bernetic attacks (Li et al. 2020). Other applications include
multi-agent systems (Kaminka, Pynadath, and Tambe 2002),
or artificial intelligence in computer games (Ha et al. 2011).

We focus on plan recognition in hierarchical task net-
works (HTN), which allow to express a natural hierarchy
of tasks. A domain model of HTN planning consists of a set
of abstract tasks, actions and methods. Abstract tasks can
be decomposed into subtasks via methods. The aim of hier-
archical planning is to decompose the given goal task into
a sequence of actions (indecomposable tasks). In hierarchi-
cal plan recognition, we intend to find the goal task whose
decomposition covers all of the observed actions. In contrast
to plan verification, we do not expect that the sequence of
observed actions given on input is a complete plan; the goal
task will be decomposed into a sequence of actions which
contains the set of observed actions as a subset.

Currently there appear to be only two approaches to
recognition of hierarchical plans. The first of these ap-
proaches is based on compilation to HTN planning (Höller
et al. 2018). The second approach (Barták, Maillard, and
Cardoso 2020) was inspired by parsing of grammars. As
the approach of (Barták, Maillard, and Cardoso 2020) per-
forms worse than the approach of (Höller et al. 2018) on
instances with a high number of missing (unobserved) ac-
tions, the aim of our current research is to improve the per-
formance of the approach of (Barták, Maillard, and Cardoso
2020) by using landmarks. Our algorithm is based on com-
posing tasks from subtasks until a goal task is found, and we

intend to use method landmarks to guide the search. A fact
landmark of a decomposition method m is a fact that must
be true at some point in all plans created by decomposing
the root task ofm viam; a task landmark ofm is an abstract
task or an action which must be contained in all such plans.

Background on HTN plan recognition
Hierarchical planning focuses on planning problems where
goals (tasks) can be hierarchically decomposed into sub-
goals (subtasks). Indecomposable (primitive) tasks are
called actions. A planning problem can be described by a hi-
erarchical task network (HTN).

An HTN is described by a pair w = (T,C), where T
is a set of tasks and C is a set of constraints over tasks.
There are four types of constraints: t1 ≺ t2 is a precedence
constraint over tasks t1 and t2, before(T ′, p) indicates that
the proposition p must be true in the state before execut-
ing tasks in the set of tasks T ′, after(T ′, p) indicates that
p must be true in the state after executing tasks in T ′ and
between(T ′, T ′′, p) indicates that pmust be true in all states
between the sets of tasks T ′ and T ′′. Task decomposition is
described by methods, where a method m = (t, w) decom-
poses a task t to a hierarchical task network w.

A planning problem can be defined as P =
(F,C,A,M, s0, w0), where F is a set of fluents describing
states, C is a set of compound (decomposable) tasks, A is
a set of actions (primitive tasks), M is a set of decomposi-
tion methods, s0 is an initial state and w0 is the initial task
network which represents the goal. Actions in A are defined
by preconditions and positive and negative effects. Precon-
dition of an action a is a proposition that must be true in
order to execute a, positive effect is a proposition that will
be true after executing a and negative effect is a proposition
that will be false after executing a. The task of a planner
is to decompose the tasks in the initial network to primitive
tasks. If w = (T,C) is a task network obtained from w0

using methods from M , all abstract tasks in w are decom-
posed, and π =< a1, ..., ak > are all actions in w, where
the ordering of actions in π corresponds to the ordering of
nodes in w and a1 is executable in the state s0, then π is
a solution to the HTN planning problem P .

An HTN plan recognition problem is defined as R =
(F,C,A,M, s0, O,G), where O =< o1, ..., ok > is an ob-
served plan prefix. The aim of plan recognition is to decide

ICAPS Doctoral Consortium 2022

46

whether there is a goal g ∈ G and a sequence of actions
< ok+1, ..., on > such that < o1, ..., on > is a valid plan for
the goal g applicable in s0.

Related work
(Höller et al. 2018) developed an HTN plan recognition al-
gorithm inspired by the “plan recognition as planning” ap-
proach of Ramı́rez and Geffner (Ramı́rez and Geffner 2009),
who leveraged compilation to planning to recognize clas-
sical sequential plans. This compilation-based hierarchical
plan recognition algorithm requires only one run of a hierar-
chical planner in a modified hierarchical task network. For
an instance of an HTN plan recognition problem, (Höller
et al. 2018) define a new goal, which can be decomposed
into the initial network of one of the candidate goals, and in-
troduce new constraints to ensure that the resulting plan will
contain all observed actions.

(Barták, Maillard, and Cardoso 2020) proposed a differ-
ent approach, which was inspired by parsing of grammars.
Their algorithm firstly tries to find a goal task whose de-
composition tree can cover all observations. If the task is
not found, the algorithm guesses missing observations by
adding all possible actions after the observed action se-
quence. Plan length is iteratively extended until a goal task
is found. In this paper, the authors extended their older algo-
rithm for HTN plan verification (Barták, Maillard, and Car-
doso 2018), which described decomposition rules of an HTN
planning domain by rewriting rules of attribute grammars.

(Barták, Maillard, and Cardoso 2020) also presented
an empirical comparison of the two HTN plan recognition
approaches. In contrast to (Höller et al. 2018), their algo-
rithm does not require the initial state to be specified as
part of the input as it can be computed during plan recog-
nition. According to the empirical comparison presented in
(Barták, Maillard, and Cardoso 2020), the parsing-based al-
gorithm (Barták, Maillard, and Cardoso 2020) was faster
than the compilation-based algorithm (Höller et al. 2018)
on problem instances with only few missing observations.
However, the authors of (Barták, Maillard, and Cardoso
2020) go on to observe that as the number of missing ob-
servations grows, the solving time of the parsing-based al-
gorithm grows exponentially, while the compilation-based
algorithm (Höller et al. 2018) performs significantly better.

Other hierarchical plan recognition approaches work with
models weaker than HTN. For instance, there are approaches
based on manipulations with tree-based structures, pars-
ing or rewriting of strings (e.g. (Avrahami-Zilberbrand and
Kaminka 2005), (Mirsky, Gal, and Shieber 2017), or (Geib,
Maraist, and Goldman 2008)).

Currently, we aim to develop a landmark-based HTN plan
recognition approach. Landmarks have already been used
for classical plan recognition. The algorithm of (Pereira,
Oren, and Meneguzzi 2017) finds the most likely goal by
observing the landmarks that were achieved in the plan and
comparing them with known landmarks of candidate goals.
In comparison to an older approach based on compilation
to planning (Ramı́rez and Geffner 2009), this landmark-
based approach is significantly faster with a similar accu-
racy. (Pereira, Oren, and Meneguzzi 2017) proposed two

heuristics for comparing candidate goals based on achieved
landmarks. The basic heuristic computes the proportion of
all landmarks and achieved landmarks, while the second
heuristic, which leads to a better efficiency, takes into ac-
count “uniqueness” of landmarks among all goals.

(Vered et al. 2018) used landmarks combined with com-
pilation to planning to develop an algorithm for on-line
classical plan recognition, where time efficiency is crucial.
Nevertheless, the authors utilize landmarks differently than
(Pereira, Oren, and Meneguzzi 2017). After each new obser-
vation arriving in an on-line setting, they recompute optimal
plans consistent with the observations. Compilation to plan-
ning is used to compute the probability distribution of candi-
date goals; landmarks are used to rule out improbable goals,
for which this expensive computation is not necessary.

Current research
Previously we focused on survey of work related to the topic
of the thesis – classical and hierarchical plan recognition.
Currently we aim to develop an efficient algorithm for HTN
plan recognition. Our approach is based on the algorithm of
(Barták, Maillard, and Cardoso 2020). Instead of systemat-
ically generating all possible plans and composing abstract
tasks from the available subtasks, we try to guess suitable ab-
stract tasks which can be decomposed into some of the avail-
able tasks. We generate partial plans, which consist of ac-
tions, abstract tasks whose decomposition covers some of
the observed actions, and extra tasks ordered after the ob-
servation sequence, which were generated by the abstract
tasks. However, the implementation has not been finished
yet. The idea of the algorithm is shown in Figure 1.

The procedure is described in Algorithm 1. The set S
contains all generated partial plans. A partial plan contains
the sequence of the observed actions and some abstract
tasks that decompose into tasks in the partial plan. Addi-
tionally, abstract tasks may add some extra tasks which are
not mapped to tasks in the plan. These tasks are ordered after
the observed actions. The root task of a partial plan is a goal
task if all observed actions are covered (all observed actions
are contained in decomposition trees of some abstract tasks
from the plan) and the new tasks after the plan can be or-
dered and decomposed to create a valid plan. For the valida-
tion of the latter condition, we need to call an HTN planner
to decompose the new abstract tasks.

For a partial plan P , appP denotes the set of methods that
are applicable to P . A method m is applicable to a plan P
if one of the potential first subtasks of m (one of the tasks
that can be ordered as the first subtask in decomposition)
is contained in the set of available (uncovered) tasks in P .
Application of m to P is mapping of some of the subtasks
of m to some of the available tasks in P . For each possible
application, there will be one new partial plan. Each new
partial plan will add the root task of m into the set of its
available tasks. Some of the tasks available in P will become
unavailable and m may add some new tasks which will not
be mapped to tasks in P .

We intend to select the pair (P,m) based on a heuristic
value. The heuristic function will depend on the proportion
of landmarks of m achieved in P and the total number of

ICAPS Doctoral Consortium 2022

47

Figure 1: This figure describes the idea of our algorithm.
In the first picture, there is an initial partial plan contain-
ing only the observed actions o1, ...o6. The second partial
plan is the result of application of a decomposition method
with the root task t1. This method covers observations o3
and o5 and adds a new action a1 after the plan. Application
of the next method with the root task t2 creates a partial plan
with a new action a2 and a new abstract task t3. At this point,
the order of a1, a2 and t3 is not decided and t3 is not decom-
posed; we try to resolve these problems only after a potential
goal task covering all observations is found.

landmarks of m. For extracting landmarks of methods, we
use the algorithm proposed by (Höller and Bercher 2021).
In our settings, we expect a set of possible goal tasks as part
of the input. For these tasks, we create AND/OR graphs and
find landmarks of tasks, methods, actions and facts. Never-
theless, we will need only method landmarks in our heuristic
function.

After creating a new partial plan, we use the procedure
described in (Barták, Maillard, and Cardoso 2020) to check
if all conditions of m are satisfied in the new plan. Our al-
gorithm is clearly sound as if it returns a goal task t, t can
be decomposed such that all observed actions are covered
and the resulting plan is valid. However, the algorithm is not
complete. We may move towards completeness for example
by interleaving heuristic selections and random selections of
plan-method pairs. Moreover, the solution will not be opti-
mal (with respect to plan length). Quality of solutions may
be improved by introducing a more complex heuristic func-
tion, which could depend for instance on length of a plan,
number of uncovered actions, and number of new abstract
tasks.

Future directions
Currently, we are working on implementation of our ap-
proach. We will compare our approach with the existing al-
gorithms for HTN plan recognition ((Barták, Maillard, and
Cardoso 2020) and (Höller et al. 2018)). Based on the re-
sults, we will focus on the heuristic function to improve
the performance of the algorithm. In the future, we plan to
deal with missing or incorrect observation, as our current ap-

Algorithm 1: Landmark-based HTN plan recognition
Input: a sequence of observed actions
Output: a corresponding goal task
Variables: S – a set of partial plans, appP for each
partial plan P – a set of all methods applicable to
P

1: P0 = initial partial plan containing observed actions
2: S = {P0}
3: while true do
4: P = argmaxP∈Smax{h(m,P)|m ∈ appP }
5: m = argmaxm{h(m,P)|m ∈ appP }
6: for all possible applications of m to P do
7: P1 = apply m to P
8: if P1 is consistent with all conditions then
9: if P1 covers all observations and a valid plan can

be generated from P1 then
10: return the root task of P1

11: else
12: add P1 to S
13: end if
14: end if
15: end for
16: end while

proach requires a complete and correct plan prefix as an in-
put.

Acknowledgements
Research is supported by the Charles University, project GA
UK number 156121.

References
Avrahami-Zilberbrand, D.; and Kaminka, G. A. 2005. Fast
and Complete Symbolic Plan Recognition. In Proceedings
of the Twenty-Fourth International Joint Conference on Ar-
tificial Intelligence, 653–658.
Barták, R.; Maillard, A.; and Cardoso, R. 2018. Validation
of hierarchical plans via parsing of attribute grammars. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 28.
Barták, R.; Maillard, A.; and Cardoso, R. C. 2020. Parsing-
based Approaches for Verification and Recognition of Hi-
erarchical Plans. In Plan, activity and intent recognition
workshop at the thirty-fourth AAAI Conference on Artificial
Intelligence.
Geib, C. W.; Maraist, J.; and Goldman, R. P. 2008. A New
Probabilistic Plan Recognition Algorithm Based on String
Rewriting. In Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling, 91–98.
Ha, E.; Rowe, J.; Mott, B.; and Lester, J. 2011. Goal recogni-
tion with Markov logic networks for player-adaptive games.
In Proceedings of the seventh AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment, vol-
ume 6.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2018.
Plan and goal recognition as HTN planning. In 2018 IEEE

ICAPS Doctoral Consortium 2022

48

Thirtieth International Conference on Tools with Artificial
Intelligence, 466–473.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In Proceedings of the thirty-fifth AAAI Con-
ference on Artificial Intelligence (AAAI), 11826–11834.
Kaminka, G. A.; Pynadath, D. V.; and Tambe, M. 2002.
Monitoring teams by overhearing: A multi-agent plan-
recognition approach. Journal of Artificial Intelligence Re-
search, 17: 83–135.
Li, T.; Liu, Y.; Liu, Y.; Xiao, Y.; and Nguyen, N. A. 2020. At-
tack plan recognition using hidden Markov and probabilistic
inference. Computers & Security, 97: 101974.
Mirsky, R.; Gal, Y.; and Shieber, S. M. 2017. CRADLE: an
online plan recognition algorithm for exploratory domains.
ACM Transactions on Intelligent Systems and Technology,
8(3): 1–22.
Niu, W.; Long, J.; Han, D.; and Wang, Y.-F. 2004. Human
activity detection and recognition for video surveillance. In
Proceedings of the 2004 IEEE International Conference on
Multimedia and Expo (ICME), volume 1, 719–722.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2017. Landmark-
based heuristics for goal recognition. In Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence,
3622–3628.
Ramı́rez, M.; and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the twenty-first International
Joint Conference on Artifical Intelligence, 1778–1783.
Vered, M.; Pereira, R. F.; Kaminka, G.; and Meneguzzi, F. R.
2018. Towards online goal recognition combining goal mir-
roring and landmarks. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and Multiagent
Systems, 2112–2114.

ICAPS Doctoral Consortium 2022

49

Probabilistic Replanning with Guarantees – Dissertation Abstract

Johannes Schmalz
School of Computing, Australian National University

johannes.schmalz@anu.edu.au
Supervisor: Felipe Trevizan

Abstract

State-of-the-art probabilistic replanners are solvers for prob-
abilistic planning problems that offer a very efficient means
to generate a suboptimal solution quickly, and in an anytime
fashion improve on it. Unfortunately, current approaches do
so at the cost of guarantees, i.e. the solution may not be opti-
mal, and it can not guarantee its solution will lead to the goal
with certainty. To address this issue we introduce CoGNeRe,
a novel probabilistic replanner that uses techniques from op-
erations research to provide guarantees and flexibility that
previous replanners can not offer.

Overview
Probabilistic replanners are a category of planners for
Stochastic Shortest Path Problems (SSPs) (Geffner and
Bonet 2013, 79, 81), which iteratively work on improving
a candidate policy, and are able to return this candidate as a
potentially partial policy when prompted for a solution in an
anytime manner. Most replanners use the following method:
relax the probabilistic effects of the problem (determinisa-
tion), solve the ensuing subproblem with strong determinis-
tic solvers, append this plan as part of the candidate policy,
and iterate these steps on undefined states to fill in the pol-
icy. FF-Replan (Yoon, Fern, and Givan 2007) and its exten-
sion Robust-FF (Teichteil-Königsbuch, Infantes, and Kuter
2008) have demonstrated the effectiveness of this approach
winning the International Probabilistic Planning Competi-
tions in 2004 and 2008 respectively. In terms of generating
solutions quickly they are still considered state-of-the-art.
However, these algorithms are not able to provide guaran-
tees of solution quality, in particular, they can not guaran-
tee that their policy has the highest possible probability of
reaching a goal, and if they do manage to find such a policy,
they can not guarantee the minimal expected cost.

In response, we present our column generation network
flow replanner (CoGNeRe), a novel algorithm that combines
this replanning approach with the column generation tech-
nique from operations research (Desrosiers and Lübbecke
2005). The aim is to exploit the speed of replanning and the
mathematical guarantees of column generation. CoGNeRe
can indeed provide guarantees of optimality, now we are
filling in remaining theoretical gaps and refining the im-
plementation to obtain an efficient planning algorithm. Pre-
liminary results suggest that usually CoGNeRe is slower to

min
flow

∑

X∈Q∪W
flowX · cost(X) (LP 1)

s.t. flowX ≥ 0 ∀X ∈ Q ∪W (C1)
∑

Q∈Q
flowQ = 1 (C2)

regrouping constraints (C3)

output its first useful policy than Robust-FF, but is quickly
able to overtake Robust-FF in terms of solution quality. We
expect that CoGNeRe will generally converge to the opti-
mal policy slower than state-of-the-art optimal planners like
LRTDP (Bonet and Geffner 2003); CoGNeRe sacrifices fast
convergence in favour of strong anytime performance.

To describe CoGNeRe, first consider the linear pro-
gram (LP) that computes the optimal policy for an SSP by
minimising a network flow problem (d’Epenoux 1963). A
theorem from network flow (Ahuja, Magnanti, and Orlin
1993, 80–81) lets us decompose flow across a deterministic-
planning-problem graph into a combination of paths and cy-
cles; we generalised this to probabilistic-problem graphs.
With this result we can find an SSP’s cheapest flow and
therefore its optimal policy as a combination of plans and
cycles across the SSP’s all-outcomes determinisation, that
is, a class of planning problem that relaxes the SSP by map-
ping each probabilistic effect to a single deterministic ac-
tion (Yoon, Fern, and Givan 2007). So, we can compute an
SSP’s optimal policy with LP 1. In LP 1 we consider the set
of plans and cycles over the all-outcomes determinisation,
Q and W respectively; and we introduce variables flowX

for each X ∈ Q ∪ W to denote the amount of flow being
pumped through the plan or cycle X . Constraint C1 forces
flow to be non-negative; the convexity constraint C2 forces
a flow of 1 to pass from the initial state to goals, which can
be interpreted as the requirement that the corresponding pol-
icy reaches goal with probability 1; and the regrouping con-
straints C3 force the flow to respect the probability distribu-
tion of action effects in the SSP.

In LP 1 there is a variable for each plan and cycle in the
all-outcomes determinisation, which is intractable to enu-

ICAPS Doctoral Consortium 2022

50

merate explicitly for any interesting problem, so solving this
LP directly is impractical. This is where column genera-
tion can help us: given the specification of an LP with in-
tractably many variables, referred to as the master problem,
column generation works with a smaller LP, the reduced
master problem (RMP), which contains a subset of the mas-
ter problem’s variables. The algorithm solves the reduced
master problem, and iteratively adds variables as needed to
converge to a solution that is optimal for the master problem.
The intuition for this approach is that not all variables — and
in fact most variables — are not relevant to the optimal so-
lution, so we focus on reduced master problems which are
sufficiently small to solve, but still lead us to the optimal so-
lution of the master problem. Column generation is able to
determine which variables need to be added to the RMP to
converge to the master problem’s optimal solution by con-
structing a series of pricing problems, which are relaxations
of the original problem. A pricing problem’s solution yields
the new variables we need to add, and an absence of a solu-
tion informs us that column generation has converged.

CoGNeRe applies column generation to the LP for finding
the optimal policy as a combination of plans and cycles on
the all-outcomes determinisation as follows:
1. we start with a small set of plans and cycles,
2. solve the reduced master problem,
3. construct and solve the corresponding pricing problem

to find a plan or cycle whose addition to the RMP will
improve the RMP’s objective in the next iteration,

4. if we find such a plan or cycle: add it, and repeat from
step 2; if not, we have an optimal solution and can termi-
nate.

In CoGNeRe, the pricing problem turns out to be a determin-
istic shortest path problem; so, as with other replanners, we
repeatedly solve deterministic planning problems to obtain
a policy for the original problem.

Unfortunately, the devil is in the details: the pricing prob-
lem is given by the all-outcomes determinisation with poten-
tially negative action costs determined by the column gener-
ation framework with respect to each state. A solution to the
pricing problem is a negative cost plan, or negative cycle,
or confirmation that neither exist. So, we are dealing with
a deterministic shortest path problem with state-dependent
costs, negative costs, and crucially, potentially with negative
cycles.

Note that the dynamics of pricing problems remain iden-
tical across iterations except for action costs, which get up-
dated at every step, i.e. the states, action, effects, etc. remain
unchanged, only the costs of some actions are updated in a
state-dependent manner.

Current Work
Dealing With Conditional Negative Costs And
Negative Cycles
Recall that to solve the pricing problem we must return a
negative plan or cycle if it exists with the updated costs, oth-
erwise we terminate column generation. We were able to
get relatively strong performance on small problems using

a variant of Bellman-Ford with an early-stop mechanic, i.e.
once a negative plan or cycle has been detected it returns it
straight away. However, this approach and others described
by a survey of similar problems (Cherkassky and Goldberg
1999) are uninformed and polynomial with respect to the
state space, so they do not scale to larger problems. So, the
challenge is to find an informed algorithm that can cope with
negative, state-dependent costs, and can detect negative cy-
cles. In fact A∗ with minor modifications can solve such
problems, as long as the heuristic is admissible; so the issue
now is that getting an informative and admissible heuristic
with negative state-dependent costs is difficult, and even un-
defined in the presence of negative cycles.

Negative cycles are particularly difficult to deal with,
since they can appear anywhere in the state space, without
any indication of their presence from surrounding states or
transitions — as long as the negative cycle is reachable, it is
an optimal solution. For now we avoid the issue by focusing
on acyclic problems. This is a limitation, but still leaves us
with a large class of problems, notably any SSPs with the no-
tion of monotonically increasing or decreasing timesteps or
resources, e.g. finite-horizon SSPs and vehicle routing with
fuel consumption.

Even in the absence of negative cycles, negative costs
make it difficult to use state-of-the-art heuristics. As a case
study, consider disjoint action landmarks (in the determinis-
tic setting), i.e. a set of actions L such that any plan must use
at least one action from L. With non-negative cost actions
we can give an admissible heuristic by minl∈L cost(l) since
the cheapest possible way to pass through the landmark is by
applying the cheapest action once. This argument falls apart
with negative costs, since the cheapest way to pass through
a landmark may collect multiple negative cost actions in the
landmark. This issue makes it non-trivial to adapt landmark-
based heuristics to pricing problems e.g. LM-cut (Helmert
and Domshlak 2009).

Generating heuristics for state-dependent problems is an
actively studied research question. One approach uses edge-
valued multi-valued decision diagrams to compactly encode
cost functions (Geißer, Keller, and Mattmüller 2015, 2016).
Unfortunately this doesn’t work for us, since we do not have
neat algebraic expression for expressing costs, but rather dif-
ferent costs on a per-state basis, as determined by the pricing
problem.

We are still exploring which heuristics are most suitable
to be adapted to our use-case.

Exploiting Similarity Between Pricing Problems
Each pricing problem is identical in terms of dynamics, i.e.
each pricing problem is similar to the original problem’s all-
outcomes determinisation, except action costs, which are de-
termined in a state-dependent manner by the column gener-
ation algorithm. More formally, the transition systems in-
duced by each pricing problem is identical, up to cost and
labels of particular transitions. Our current approach for ex-
ploiting this is a variant of the Lifelong Planning A∗ algo-
rithm (Koenig, Likhachev, and Furcy 2004). The idea is that
we run A∗, but upon returning a solution we do not discard
the frontier and current best costs, but store it, and for the

ICAPS Doctoral Consortium 2022

51

next pricing problem we analyse what cost changes have
been made:
• if an edge cost has been decreased then reinsert the af-

fected vertex into the frontier with the new cost, to en-
sure that the change is propagated to the optimal path if
relevant;

• if an edge cost has been increased, then all paths that re-
lied on that edge must be re-evaluated, i.e. descendants
of that edge have their current best cost reset to ∞, and
they are re-inserted into the frontier.

In the worst case an edge close to the initial state has its
cost increased, and we have to recompute the entire search
graph, and thus we are running regular A∗ with the overhead
of processing edge updates and the frontier. In practice how-
ever, we have found that this approach reduced computation
time substantially.

Lower Bound For Policy Cost
The relationship between primal and dual LPs allows us to
provide upper and lower bounds for the problem. A novel
feature of our approach is that we can leverage the column
generation framework to provide a lower bound for the op-
timal policy cost which becomes tighter as CoGNeRe pro-
gresses.

Consider the objective of the optimal solution for the mas-
ter problem z∗MP. A well-known theorem from column gen-
eration (Desrosiers and Lübbecke 2005, 8–9) gives us the
bound z̄ + κc̄∗ ≤ z∗MP ≤ z̄ where
• z̄ is the objective value of the optimal solution for our

current RMP;
• c̄∗ is the smallest reduced cost for our current RMP, i.e.

the cost of the most negative plan or cycle in our pricing
problem;

• κ is an upper bound for the sum of all variable assign-
ments in the master problem’s optimal solution. In an
acyclic problem, thanks to the constraint that ensures a
flow of one through the network (convexity constraint
C2), we can set κ = 1.

The value of z̄ corresponds to the cost of the current pol-
icy, which clearly gives an upper bound to the cost of the
optimal policy, hence z∗MP ≤ z̄. In the lower bound for z∗MP,
c̄∗ denotes the most we can possibly decrease the current
solution’s objective by adding the variable corresponding to
the most negative plan or cycle. In the acyclic case we can
assign the new variable a value of at most 1 (due to convex-
ity constraint C2), and so the most we can reduce the objec-
tive is indeed c̄∗. In the presence of cycles it gets a bit more
complicated since a cycle’s variable is not bounded by the
convexity constraint. Note that z̄ is monotonically decreas-
ing since solutions can only improve with the introduction
of new columns, so the upper bound is only getting tighter;
the lower bound has no such guarantee and may fluctuate,
but we can take the maximum across all RMPs and thereby
get a monotonically increasing lower bound as well.

Lower bounds are not by themselves novel, since heuris-
tics can provide lower bounds; but especially in a probabilis-
tic setting these tend to be very loose, and the lower bounds

from column generation can be tighter. This technique en-
ables our anytime solver to give a more precise optimality
gap.

Future Work
Here we outline some potential directions of future research
that CoGNeRe and more generally, operations research in
planning can take.

Dealing with Cyclic Problems
CoGNeRe is able to solve cyclic problems by running an
algorithm that can detect negative cycles e.g. Bellman-Ford
on the pricing problems, and then adding any found negative
cycles as columns, just like with plans. As discussed before,
the issue is that we need admissible heuristics to scale up
to larger problems. First, we need to redefine what it means
for a heuristic to be admissible in the presence of negative
cycles, and there are two options: (1) an admissible heuristic
must still underestimate the actual cost, so if a negative cycle
is reachable from state s then h(s) = −∞; (2) we only
require the heuristic to reason about plans, so an admissible
heuristic must underestimate the cost of the cheapest plan,
and may ignore negative cycles.

Approach (1) has the potential of destroying a lot of infor-
mation about negative plans, and in a sense prioritises nega-
tive cycles. Approach (2) suggests that cycle and plan search
should be separated, e.g. we run a plan finding algorithm
with some cycle detection mechanisms, as in (Cherkassky
and Goldberg 1999), which can prioritise plans over nega-
tive cycles. In both cases the issue is that CoGNeRe is sensi-
tive to the order in which columns are added so prioritising
cycles or plans tends to perform well on some problems, but
poorly on others. A strong solution needs to balance these is-
sues, either by intelligently deciding whether a cycle or plan
are more useful, or by adding both.

Solving Pricing Problems as Diverse Plans
Problems
In column generation, for some problems, it is very efficient
to extract multiple solutions from a single pricing problem,
and add all of them as columns to the reduced master prob-
lem at once. The idea is that a column that is guaranteed to
improve the RMPs solution at one step, is likely to be use-
ful later as well; it is also a way to deal with the property
of column generation that the column with most negative re-
duced cost may not correspond to the column that lets us
converge most quickly. So by adding multiple columns we
increase the chances of adding columns that lead to a solu-
tion quicker, and potentially allows us to reuse the results of
the pricing problem in future iterations. Often this approach
relies on the columns being sufficiently diverse. As motiva-
tion, in CoGNeRe, if we add multiple plans that share an
action with an undesirable probabilistic effect, then that ac-
tion’s determinisation will receive a high cost in future iter-
ations, which indicates to us that the columns are not useful.

These requirements can be expressed as a bounded quality
diverse planning problem (Katz and Sohrabi 2020), where a
solution is a set of plans, where the plans are sufficiently

ICAPS Doctoral Consortium 2022

52

diverse, and each plan’s cost is bounded by some constant
value. For CoGNeRe, the bound is 0 so that we only consider
negative-cost plans in the pricing problem; diversity can be
defined in terms of how many actions are shared. Katz and
Sohrabi (2020) propose a flexible method for this style of
problem which works by forbidding certain plans at the level
of the planning task, which is not amenable to our method
for exploiting similarity between pricing problems. So the
challenge becomes how to combine these concepts.

Generalising CoGNeRe To More Problems
The LP approach endows CoGNeRe with a lot of flexibil-
ity with respect to objective functions and additional con-
straints. For instance, we can search for a policy that max-
imises the probability of reaching a goal; or, we can even
stop CoGNeRe once it has reached some measurement of
quality, e.g. return the partial policy as soon as the probabil-
ity of reaching goal is > 0.9.

SSPs can be extended to constrained shortest path prob-
lems (CSSPs) which allows us to bound the expectation
of different cost functions. More complex constraints are
also possible, for instance using probabilistic linear tempo-
ral logic (PLTL) formulae. Such constraints can be compiled
into constraints over expectations (Baumgartner, Thiébaux,
and Trevizan 2018), i.e. of the form E[cost(φ)] ≥ ρ where
φ is a linear temporal logic formula, ρ ∈ [0, 1], and the cost
function is very similar to the reward function for maximis-
ing probability: it is zero everywhere except for a subset of
the goal states. It is difficult to generate informative heuris-
tics for this kind of problem. The upshot is that there are
currently no strong heuristics, and so informed CSSP plan-
ners suffer.

This motivates that CoGNeRe may be a strong candidate
for this type of problem, since it does not require heuristics
for probabilistic problems, only heuristics for the determin-
istic pricing problem.

Another complex variant of probabilistic problems re-
quires the solver to take into consideration the variance of
trajectories as defined by the candidate policy. This is diffi-
cult for current solvers because they are designed around the
construction and improvement of policies, and information
about the possible trajectories needs to be extracted after-
wards. CoGNeRe on the other hand, natively reasons about
all possible trajectories in a compact, finite way, so it should
offer a clean solution.

Heuristics For Planning Under Uncertainty Models
Rather than directly solving extensions of SSPs and CSSPs
like MDPIPs (Shirota Filho et al. 2007), PLTL-constrained
CSSPs, etc. we can explore the idea of solving relaxations
with CoGNeRe in order to obtain heuristics for the original
problem. We have already discussed CoGNeRe’s ability to
generate lower bounds; this combined with different pricing
problem heuristics and techniques for reusing partial solu-
tions may set CoGNeRe up as a good method for obtain-
ing heuristics. CoGNeRe with its guarantees of optimality
is likely to be too slow for this, so we can explore how to
generate potentially non-admissible, informative heuristics
using relaxation techniques from operations research, based

on approaches like Dantzig-Wolfe decomposition and Ben-
ders decomposition.

Acknowledgments
Thanks to J. Christopher Beck for his feedback.

References
Ahuja, R.; Magnanti, T.; and Orlin, J. 1993. Network flows
: Theory, Algorithms, and Applications. Englewood Cliffs,
N.J: Prentice Hall.
Baumgartner, P.; Thiébaux, S.; and Trevizan, F. 2018.
Heuristic Search Planning With Multi-Objective Probabilis-
tic LTL Constraints. In Proc. of 16th Int. Conf. on Principles
of Knowledge Representation and Reasoning (KR).
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improving
the Convergence of Real-Time Dynamic Programming. In
Proc. of 13th Int. Conf. on Automated Planning and Schedul-
ing (ICAPS).
Cherkassky, B. V.; and Goldberg, A. V. 1999. Negative-cycle
detection algorithms. Mathematical Programming.
d’Epenoux, F. 1963. A probabilistic production and inven-
tory problem. Management Science.
Desrosiers, J.; and Lübbecke, M. E. 2005. A Primer in Col-
umn Generation, 1–32. Boston, MA: Springer US.
Geffner, H.; and Bonet, B. 2013. A Concise Introduction
to Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning.
Geißer, F.; Keller, T.; and Mattmüller, R. 2015. Delete Re-
laxations for Planning with State-Dependent Action Costs.
Proc. of the Int. Symposium on Combinatorial Search.
Geißer, F.; Keller, T.; and Mattmüller, R. 2016. Abstrac-
tions for Planning with State-Dependent Action Costs. Proc.
of 26th Int. Conf. on Automated Planning and Scheduling
(ICAPS).
Helmert, M.; and Domshlak, C. 2009. Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?
Proc. of 19th Int. Conf. on Automated Planning and Schedul-
ing (ICAPS).
Katz, M.; and Sohrabi, S. 2020. Reshaping Diverse Plan-
ning. Proc. of the AAAI Conference on Artificial Intelli-
gence.
Koenig, S.; Likhachev, M.; and Furcy, D. 2004. Lifelong
planning A∗. Artificial Intelligence.
Shirota Filho, R.; Cozman, F. G.; Trevizan, F.; de Campos,
C. P.; and Barros, L. N. 2007. Multilinear and Integer Pro-
gramming for Markov Decision Processes with Imprecise
Probabilities. In Proc. of 5th Int. Symposium On Imprecise
Probability: Theories And Applications.
Teichteil-Königsbuch, F.; Infantes, G.; and Kuter, U. 2008.
RFF: A robust, FF-based MDP planning algorithm for gen-
erating policies with low probability of failure. Sixth Inter-
national Planning Competition at ICAPS.
Yoon, S. W.; Fern, A.; and Givan, R. 2007. FF-Replan: A
Baseline for Probabilistic Planning. In Proc. of 17th Int.
Conf. on Automated Planning and Scheduling (ICAPS).

ICAPS Doctoral Consortium 2022

53

la VIDA: A System for Value and Identity Driven Autonomous Agent Behavior in
Virtual World Scenarios – Dissertation Abstract

Ursula Addison
supervisor: John-Thones Amenyo

Graduate Center
City University of New York

Abstract
There are a great variety of systems that control agents using
models of human behavior. However, often times agent ac-
tion is still a reflection of the system designer’s expectations
and desired outcome. But, how would agents behave if they
had an identity similar to a human? What goals would be
formed and how would those goals be realized as actions?
We would like to produce agent behavior using these ques-
tions as guidance for our work. To this end we investigate
how long-term autonomy is influenced by an agent’s identity
and how these findings can be used to direct the behavior of
artificial agents. For our system la VIDA, first we will create
a model for human identity and ultimately integrate it with a
Goal-Driven Autonomy (GDA) system at the drive level.

Introduction
There are a wide range of approaches and frameworks used
to generate behavior for autonomous agents. One such ap-
proach is called Goal-Driven Autonomy (GDA). GDA sys-
tems use drives, which are more abstract than goals and en-
capsulate a general purpose or direction for the agent’s ac-
tions (Muñoz-Avila 2018). Many GDA systems are devel-
oped to address highly specialized problems and thus sim-
ply formulate and manage goals from pre-assigned drives.
We are interested in GDA systems from the perspective
of agents that are autonomous and develop their drives in-
ternally from experiences, memories, impressions, and so
forth. In short, our interests lie with agents that are intrinsi-
cally motivated to fulfill goals according to an inner sense of
purpose. For this research we will design and build an iden-
tity profile, i.e. a representation of a mental identity taking
inspiration from the human psyche. We will also investigate
the connection between long-term autonomy and identity in
humans. Our findings will be implemented in the Value and
Identity Driven Autonomy system, i.e. la VIDA, to gener-
ate the behavior of artificial agents.

Motivation
Our work has a wide application scope. To test our system,
la VIDA, we have developed the use-case which involves
an interactive virtual reality (VR) scenario between a non-
player character (NPC) and human agent. The NPC’s behav-
ior should be consistent with its identity profile and aid in the

scenario’s immersive experience. However, it is not difficult
to imagine other situations in which our research could be
useful. It might be used for generating agent behavior in sim-
ulations for video games, space exploration mission critical
training, development and preparations in medicine, and ed-
ucation and virtual workplaces. Other applications include
modeling the goals and actions of agents with a particular
identity profile.

Current Behavior Approaches
There are a myriad of techniques for generating agent behav-
ior, much more than could be covered in this short review.
This summary will only produce a non-exhaustive list of
broad categories in which many techniques fall into. These
categories include: goal-directed, behavior trees, automaton,
domain-independent planners, and hybrid systems.

An agent whose behavior is goal-directed is one who de-
termines the goals it would like to achieve and the state of the
world where those goals will be true (Muñoz-Avila 2018).
The motivation to bring the world to a specific state is the
drive of the agent. An agent may have a certain overarch-
ing goal that can be decomposed into to many simpler goals.
These simpler goals may be fixed, but in a dynamic world
new goals will need to be generated and achieved over time.
Examples of this system type include the Goal Generation
Management framework (GGM) (Hanheide 2010) and Goal
oriented action planning (GOAP) (Orkin 2004).

A behavior tree (BT) is a data structure which arose from
the gaming community’s need for structures that were intu-
itive and robust (Iovino et al. 2020). BTs provide a direct
and simple way of describing actions that a agent is capa-
ble of doing. The structure is a graph with compound tasks
that decompose into smaller task subtrees (Winter, Hayes,
and Colvin 2010). Task execution is processed bottom-up,
completing component tasks to achieve the compound task.
The Component Reasoner (Dill 2011) and an evolutionary
behavior tree system (Nicolau et al. 2017) fall into this cate-
gory.

Finite State Machines (FSM) are one of the earlier tech-
niques used to control agent behavior and are ubiquitous in
video game development. To execute an action and transi-
tion to a new state, an FSM must know its current state, this
is accomplished by continually monitoring the environment.
FSM are very useful for their highly reactive nature and the

ICAPS Doctoral Consortium 2022

54

degree of control they give designers over the action and
state space (Antimirov 1996). An environment may poten-
tially have an infinite number of states, but a finite subset
of those states are encoded as nodes of the FSM. When one
of those states is recognized, a finite set of actions may be
performed when in that state. Examples are classic deter-
ministic FSM and a system using behavioral programming
with probabilistic automata and personality by Chittaro et al.
(Chittaro and Serra 2004).

Planning is a popular technique for controlling agents,
particularly characters in video games. Most techniques
used by game developers are some variation on search plan-
ners. The planners will normally be paired with a heuristic
function that can incorporate some important consideration,
e.g. plan construction time, as a way of ordering plans from
least to most desirable (Wilkins 1984). A wide variety of
STRIPS style and HTN planners have successfully been ap-
plied to agent control.

The last category is reserved for techniques that don’t fit
neatly into the above groups. One such system is the hier-
archical task network and behavior tree hybrid planner de-
veloped by Neufeld et al. (Neufeld, Mostaghim, and Brand
2018). This planner combines the reactivity of behavior trees
(BT) with the long-term strategizing of hierarchical task net-
works (HTN).

Research Goals
This paper describes early conceptual work, and our thesis
is to implement preliminary work for la VIDA. Following is
a discussion of our current research goals.

1. Can la VIDA use its input to formulate
non-trivial, decomposable, relevant, and achievable
goals?

This research goal describes the requirement that the goals
generated are both non-trivial and relevant within context
and a sequence of such goals can lead to the scenario be-
ing completed. For example, if one of the agent’s drives is
to ”stay alive”, it could be a correct but trivial goal to re-
main standing in a safe starting location. The goals should
be achievable in that it is possible to plan for and execute
them in the given environment. Finally, goals should be ab-
stracted i.e. they shouldn’t be terminal actions such as those
sequenced by the planner.

2. If la VIDA generates a behavior sequence from
a la VIDA formulated goal, can an agent
autonomously execute the behavior sequence to
achieve the goal?

This research goal is related to the first one, but emphasizes
that goals should not be strictly theoretical; there must be
a problem definition and environment for which the goals
can actually be executed action by action. In addition, this
action sequence should be achievable by the agent without
any external interference.

3. Is the behavior sequence when executed by an
agent realistic and consistent with its identity
profile?
The final research question relates to the quality of the be-
havior sequence. Assuming it is valid and achievable, is it
also believable? Meaning, is it consistent with norms and
expectations that humans have regarding behavior result-
ing from certain beliefs, roles, and personalities? This re-
search goal is not considering the correctness of the action
sequence, but instead how it might be perceived by other
agents and if those perceptions are in line with the agent’s
identity profile.

System Overview
la VIDA is made up of a collection of sub-systems, its chief
functionality is to produce behavior sequences for a single
agent via goal reasoning and planning in response to its iden-
tity profile and environment. la VIDA departs from other au-
tonomy frameworks in that it focuses on the agent’s mental
and personality profile opposed to arbitrary drives specified
by a system operator.

The first phase of processing involves the goal formu-
lation module where drives and core goals are identified.
The next phase involves interleaved planning and goal man-
agement. This planning includes strategic planning and also
planning for each of the abstracted goals. The final phase
determines how the terminal goals will be performed in the
environment, executes those goals, and returns state infor-
mation to la VIDA. Processing is not necessarily sequential
and phases can be revisited as necessary. Following is a brief
explanation of each system component. Figure 1 shows the
basic components and how they interact with each other.

Figure 1: la VIDA Overview

Core Goal Formulation From a structured scenario and
agent description la VIDA will formulate one or more core
goals. Where a core goal is related to fulfilling an integral
drive of the agent. As an example, if an agent is working
for an airline in the new flight reservations department as a
booking agent, a core goal could be to help each customer
reserve new flights while behaving in a professional manner.
Using the description which will include a role for the agent

ICAPS Doctoral Consortium 2022

55

with la VIDA’s commonsense knowledge base, one or more
core goals will be identified.

Goal Management While core goals should change very
little, because they are integrally linked to the agent’s men-
tal and personality profile, subgoals may change often. Sub-
goals may change as a result of feedback from the envi-
ronment or replanning. It is the goal management compo-
nent’s job to decompose core goals into subgoals and order
those subgoals for the planner. Subgoals may be eliminated,
added, deactivated or activated; each subgoal is given a pri-
ority value that also is subject to modification. The subgoals
are eventually sent to the planner to be assigned a solution
sequence. The solution sequence is an ordered list of actions
that can transform the initial state into the goal state.

Strategic Plan The strategic plan also called a long-term
plan is responsible for achieving goals over a sequence of
actions. It is capable of making plans for subgoals that will
be achieved in the somewhat distant future. Typically strate-
gic plans aren’t concerned with minute details and instead
are are more abstracted than a reactive plan.

Reactive Plan The reactive plan is made of low-level ac-
tions assigned by the planner as the agent interacts in the
world. By low-level actions we mean actions that can not
be further decomposed and may directly be executed. These
actions exist within the context of the strategic plan.

Augmenting Plans with Personality Traits and Emotions
The agent has a mental and personality profile which is taken
into account in the formulation of core goals and the reac-
tive plan. Actions of the reactive plan may be augmented
with tags that impact which animation, voice, or facial ex-
pression is ultimately selected when the action is being exe-
cuted. We classify emotions according to the Ekman model
of emotions which include: happy, sad, angry, fearful, dis-
gusted, and surprised (Ekman 1993).

Common Sense Knowledge Base la VIDA will have ac-
cess to a knowledge base similar to the commonsense
knowledge graph (CSKG) ATOMIC-LIGHT knowledge
base (Ammanabrolu et al. 2021). This knowledge base is
a vast collection of common sense information and non-
specialty knowledge that many humans may have. This will
allow la VIDA to put the structured scenario and agent de-
scription into context. For instance, if the knowledge for a
role is absent from the knowledge base, then la VIDA may
not be able to formulate a core goal, and ultimately will not
be able to generate any agent behavior. We may consider in-
tegrating functionality to add to the knowledge base or oth-
erwise extending la VIDA dependence on a CSKG for this
research or future work.

Virtual World Feedback The scenario is unfolding in
real-time, as are the actions of the agents within it. To take
actions that are effective and realistic, the feedback from the
scenario must be used to update the world state information.
This information is used by the strategic planner as it’s plan
is executed. For instance, if at some point the world state
information deviates too much from the expected state, re-
planning may be necessary. The reactive planner is online

and will constantly use scenario feedback in combination
with the strategic plan to decide its own action sequence.

Agent The agent acts independently in the scenario, i.e.
it’s behavior sequence will be created via single agent plan-
ning. The agent will be able to interact with and respond to
the environment and agents within it, but its actions will not
require coordination. The agent will have one or more goals
that can be decomposed into two or more top level goals.
The agent’s top level subgoals should be independent; those
subgoals will need to be further decomposed so they can be
planned for.

Identity Profile An identity profile is a data structure im-
plemented as a container holding elements of type value,
role, and personality. It is a summary of the most salient
components of an agent’s identity that are relevant to goal
formulation. We will go into further detail about the identity
profile in a system paper.

Usage

To use la VIDA, some assumptions, its input, and its out-
put should be understood. The subsequent sections touch on
each of these topics.

Preconditions

1. The structured scenario and agent description input has
sufficient information for la VIDA to formulate a core
goal.

2. A parent framework or environment manager creates and
maintains the scenario returning accurate world state in-
formation to la VIDA.

3. Input has agent identity profile, scenario keywords, and
planning problem definition.

Input We will determine the input structure and represen-
tation as our system is developed. This representation should
minimally include partitioned elements for the Agent and
Scenario, figure 2 is an example of one approach for struc-
turing the input and the type of data it should hold. Some
element types should only have a single instance such as
Agent, Scenario, and Role; in future work we may increase
the possible number of roles an agent may have. The other
elements can have multiple occurrences, each with their row
number within the parent element appended to their type.
The agent may have multiple personality traits that consti-
tute it’s psychological profile, as well as multiple values that
make up its mental behavior paradigm. Similarly, Scenario
is expected to require multiple elements of each child type
to sufficiently capture its theme and context.

ICAPS Doctoral Consortium 2022

56

Figure 2: Sample la VIDA XML input file

Output la VIDA output is a plan that consists of two sub-
plans, one is the strategic plan and the other is the reactive
plan. Both plans are a sequence of actions, where any action
may be augmented with realism tags. The strategic plan is
at a much higher level of abstraction than the reactive plan,
and each action must be further decomposed before it can
be executed. Each element of the reactive plan is a terminal
action and may be executed directly. The strategic plan is
typically generated offline, and modified online in the case
of replanning. The reactive plan is generated fully online as
the agent exists and interacts within the scenario.

References
Ammanabrolu, P.; Urbanek, J.; Li, M.; Szlam, A.;
Rocktäschel, T.; and Weston, J. 2021. How to Motivate
Your Dragon: Teaching Goal-Driven Agents to Speak and
Act in Fantasy Worlds. Proceedings of the 2021 Confer-
ence of the Association for Computational Linguistics: Hu-
man Language Technologies, 807–833.
Antimirov, V. 1996. Partial derivatives of regular expres-
sions and finite automaton, constructions. Theoretical Com-
puter Science, 155(2): 291–319.
Chittaro, L.; and Serra, M. 2004. Behavioral programming
of autonomous characters based on probabilistic automata
and personality. Computer Animation And Virtual Worlds
Comp. Anim. Virtual Worlds, 15: 319–326.
Dill, K. 2011. A Game AI Approach to Autonomous Con-
trol of Virtual Characters. Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC).
Ekman, P. 1993. Facial expression of emotion. American
Psychologist, 48: 384–392.
Hanheide, M. 2010. A Framework for Goal Generation and
Management. Proceedings of the AAAI Workshop on Goal-
Directed Autonomy.
Iovino, M.; Scukins, E.; Styrud, J.; Ögren, P.; and Smith,
C. 2020. A Survey of Behavior Trees in Robotics and AI.
Elsevier.
Muñoz-Avila, H. 2018. Adaptive Goal Driven Autonomy.
Case-Based Reasoning Research and Development. ICCBR,
11156: 3–12.
Neufeld, X.; Mostaghim, S.; and Brand, S. 2018. A Hy-
brid Approach to Planning and Execution in Dynamic En-
vironments Through Hierarchical Task Networks and Be-

havior Trees. Proceedings of the Fourteenth Artificial Intel-
ligence and Interactive Digital Entertainment Conference,
14(1): 201–207.
Nicolau, M.; Perez-Liebana, D.; O’Neill, M.; and Brabazon,
A. 2017. Evolutionary Behavior Tree Approaches for Nav-
igating Platform Games. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 9(3): 227–238.
Orkin, J. 2004. Symbolic Representation of Game
World State: Toward Real-Time Planning in Games.
https://www.aaai.org/Papers/Workshops/2004/WS-04-
04/WS04-04-006.pdf.
Wilkins, D. 1984. Domain-independent planning Represen-
tation and plan generation. Artificial Intelligence, 22(3):
269–301.
Winter, K.; Hayes, I.; and Colvin, R. 2010. Integrating Re-
quirements: The Behavior Tree Philosophy. 2010 8th IEEE
International Conference on Software Engineering and For-
mal Methods, 41–50.

ICAPS Doctoral Consortium 2022

57

	Title Page
	Involved People
	Preface
	Invited Talk
	List of Papers
	A Generalization of Automated Planning Using Dynamically Estimated Action Models
	Action Model Learning based on Grammar Induction
	Application of Neurosymbolic AI to Sequential Decision Making
	Counter-Example Based Planning
	Data Efficient Paradigms for Personalized Assessment of Taskable AI Systems
	Domain Specific Situated Planning
	Domain-Independent Heuristics in Probabilistic Planning
	Learning Hierarchical Abstractions for Efficient Taskable Robots
	Modeling Assistance for AI Planning From the Perspective of Model Reconciliation
	Neural Network Action Policy Verification via Predicate Abstraction
	Plan Recognition
	Probabilistic Replanning with Guarantees
	la VIDA: A System for Value and Identity Driven Autonomous Agent Behavior in Virtual World Scenarios

