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Abstract

Real-world deployment of new technology and capabilities
can be daunting. The recent DARPA Subterranean (SubT)
Challenge, for instance, aimed at the advancement of robotic
platforms and autonomy capabilities in three one-year devel-
opment pushes. While multi-agent systems are traditionally
deployed in controlled and structured environments that al-
low for controlled testing (e.g., warehouses), the SubT chal-
lenge targeted various types of unknown underground envi-
ronments that imposed the risk of robot loss in the case of
failure. In this work, we introduce a video game-inspired
interface, an autonomous mission assistant and test and de-
ploy these using a heterogeneous multi-agent system in chal-
lenging environments. This work leads to improved human-
supervisory control for a multi-agent system reducing over-
head from application switching, task planning, execution,
and verification while increasing available exploration time
with this human-autonomy teaming platform.

Introduction
Autonomous Exploration and SubT: Robotic exploration
and the advancement of autonomy offer new ways to ex-
plore potentially dangerous and hard-to-access underground
environments. Multi-agent systems have matured in con-
trolled and structured environments like warehouses, facto-
ries, and laboratories, while current robotic challenges seek
to advance these technologies for search and rescue sce-
narios, planetary prospecting, and subsurface exploration
(Asada et al. 2019; Hambuchen et al. 2017; Link and Lamb-
oray 2021). Motivated by the search for life on other plan-
ets, NASA JPL’s team CoSTAR (Agha et al. 2021) took
part in the Defense Advanced Research Projects Agency’s
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(DARPA) Subterranean Challenge (SubT) seeking to ad-
vance robotic multi-agent systems and their technology
readiness for potential future missions. If brought to other
planets (e.g. Mars), subsurface missions could bring new in-
sights into their geologic past as well as on their potential
for supporting life in the environmentally protected under-
grounds (Titus et al. 2021). In contrast to traditional ex-
ploration missions where a team of operators and scien-
tists controls one rover, SubT introduced the challenging re-
quirement that only a single human supervisor can directly
interface with the deployed multi-agent team in real-time
and when a communication link is established. SubT is di-
vided into three, one year development pushes with major
field testing demonstrations. This work focuses on the ad-
vancements in our supervisor autonomy and game-inspired
user interface that were developed under the restrictions of
a worldwide pandemic and deployed during the SubT final
competition comprising two preliminary missions (P1 and
P2) and the final prize run (F).

Human-Robot Collaboration: Achieving man-
computer symbiosis (Licklider 1960) has been a long-time
goal of the community to promote a close coupling of
human and machine capabilities and ultimately inspire the
evolving field of human-robot interaction (Chen and Barnes
2021). This work improves collaborative human multi-robot
exploration and search performance fusing our extended
autonomy assistant Copilot (Kaufmann et al. 2021) that
uses automated planning techniques with a game-inspired
interface design for effective robot deployment, operations,
and single operator supervision to create a more symbiotic
interaction.

We present key design choices that are breaking away
from common robot interfacing strategies that were de-
ployed in similar challenge contexts (Kohlbrecher et al.
2015; Tranzatto et al. 2022) and used interfaces based on the



Figure 1: Team CoSTAR’s Mission Control user interface
(A). (B) a subset of CoSTAR’s ground robots showing four
customized Boston Dynamic’s Spot and Clearpath Husky
powered by JPL’s autonomy platform NeBULA. Typically
a deployment of 4 to 6 ground vehicles was targeted during
SubT, but the number of agents is extendable (e.g., see A
with 11 robots).

Robot Operating System’s (ROS) visualization tool RViz.
Further, we leverage human-robot interdependencies to in-
form the design and development of supervised autonomy
and interaction paradigms to achieve our set interaction ob-
jectives. The latest results from the SubT competition “Fi-
nals” are compared to a baseline from previous compe-
tition runs, namely the “Urban Circuit”, which deployed
earlier interface and system implementations and interac-
tion paradigms that we improve with our combined game-
inspired interface and enhanced supervisory autonomy.

Related Work
Human-Robot Interaction and Interface Design: More
than sixty years after the introduction of man-computer sym-
biosis by Licklider (Licklider 1960), Chen and Barnes (Chen
and Barnes 2021) conclude that the boundaries of long-term
human-robot symbiosis are still to be pushed by interdisci-
plinary collaborations. Szafir and Szafir (Szafir and Szafir
2021) have identified best practices in the field of data visu-
alization as a key driver to advance both HRI and data vi-
sualization. Complex visualizations and renderings have be-
come achievable with off-the-shelf hardware, which allows
the integration of visualization principles such as sensemak-
ing (Szafir and Szafir 2021) that helps a human digest in-
formation. In human-space systems Rahmani et al. (Rah-
mani et al. 2019) identified that interface technologies are
currently in development, but their technology readiness
levels are not very mature. Multiple design methods have

been introduced in the literature, for instance, Coactive De-
sign (Johnson et al. 2014) which is a structured approach to
analyze human and robot requirements and was used in the
context of the 2015 DARPA Virtual Robotics Challenge that
aimed at advancing disaster response capabilities. Roundtree
et al. (Roundtree et al. 2019) found that abstract interface
designs that visualize collective status over single agent in-
formation could increase performance; however such de-
signs depend on the task at hand, team size and mission
goals (Chen and Barnes 2021). A common testing strat-
egy in computer game development is Playtesting (Wall-
ner, Halabi, and Mirza-Babaei 2019), which is comparable
to simulation and field testing in the multi-robot domain.
The game-inspired development technique RITE, which was
introduced in the context of interface development for the
computer game Age of Empires (Medlock et al. 2002), was
used and adapted for fast development sprints. Additionally,
we drew inspiration from real-time strategy games like Age
of Empires, which guided the design of the 3D portion of the
interface.

Robot Challenge Interfaces: During 2013’s DARPA
Robotics Challenge, team ViGIR leveraged ROS to control a
humanoid robot. The team decided to implement their inter-
faces using RViz and built an Operation Control Center con-
sisting of at least six screens. Robot challenges are found
to typically influence human-robot interaction design and
interfaces (Szafir and Szafir 2021) and for DARPA’s SubT
teams, the common design practice was based on RViz and
ROS plugins ((Hudson et al. 2021; Ohradzansky et al. 2021;
Scherer et al. 2021; Roucek et al. 2021; Tranzatto et al.
2022)). Even our team started off using RViz as a quick way
to prototype interfaces (Otsu et al. 2020) and used it as the
main way to interact with the robot agents due to its tight
integration with ROS and ability to access robot data for de-
bugging purposes. We shifted away from this approach for
the final competition, and the resulting HRI modalities and
supervisory interface are presented in this work.

Background and Objectives
Challenge Requirements: The overall SubT goals are two
common problems faced by real-world multi-agent systems:
first, the autonomous exploration of unknown environments,
and second, the search for objects of interest hidden within.
While exploration and search provide a need for specific ca-
pabilities, DARPA further introduced a set of guidelines and
rules to motivate higher levels of autonomy for the deployed
systems: (i) only a single human operator is allowed to in-
teract, supervise, and interface with the robots; (ii) each mis-
sion is bound by a fixed setup time limit of 30 minutes and
an exploration time limit between 30 and 60 minutes; (iii) a
pit crew of four (Finals) or nine (Urban Circuit) can sup-
port the supervisor by setting up hardware in a designated
area without access to wireless data streams, robot control,
or interface; (iv) there is a limited number of attempts to
submit discovered objects of interest; (v) the final challenge
environment comprises tunnel, urban, and cave terrains to be
explored.

Objectives: Deploying and operating large teams of
robots like Team CoSTAR’s robot fleet, shown in Figure



1B, are complex real-world problems. Addressing this set of
problems creates the need for a resource-efficient and robust
human and multi-agent system to i) not overwhelm the sin-
gle human supervisor, ii) meet the timing requirements, and
iii) increase the performance of both exploration and search
tasks.

To tackle this challenge and develop a system that can de-
ploy reliably even beyond the SubT challenge, we embed
the following interaction objectives into our system design:
(1) Reducing overhead and human workload (e.g., from ap-
plication switching and manual task execution) (2) Creating
and maintaining situational awareness (3) Managing large
teams of robots (from setup, deployment to exploration)
while allowing for a flexible configuration (4) Accessing
critical information in a single unified interface (5) Main-
taining an enjoyable performance that can visualize the com-
plete robot team (6) Collaborating with autonomy and trust-
ing automation.

Supervised Autonomy
Copilot
Motivation: After SubT’s “Urban Circuit”, the allowed per-
sonnel in the competition staging area was reduced from ten
to five team members which includes the main supervisor.
This required a shift in how robots were strategically and
physically handled (minimum 2 people are needed to lift and
stage a single robot). Task coordination was done by a pit
crew member directing the operator and influencing their ac-
tions while following static paper checklist procedures. De-
veloping and deploying a computerized assistant that could
take over this role was soon desired.

Original Implementation: A first version of Copilot, “an
autonomous assistant for human-in-the-loop multi-robot op-
erations” was introduced in (Kaufmann et al. 2021). This
early Copilot was only tested in realistic cave simulations or
during preparatory missions with one deployed robot. Copi-
lot supports a single human supervisor in monitoring robot
teams, aids with strategic task planning, scheduling, and ex-
ecution, and communicates high-level commands between
agents and a human supervisor if a communication link ex-
ists. The autonomy assistant aims at keeping workload ac-
ceptable while maintaining high situational awareness that
allows rapid responses in case system failures are observed.

Task Interaction: Copilot takes over the decision-
making processes regarding planning and scheduling, which
reduces the need to memorize tasks and task sequences
or the need to delegate a team member to take over such
checklist-like tasks. Some tasks were implemented with
higher autonomy levels and automatically executed limited
actions, but most required the human to start the task, man-
ually execute parts of it, and confirm that the task had been
completed successfully or unsuccessfully while monitoring
the system. On one hand, it reduced the need to remember
tasks; on the other hand, more interactions with the newly
introduced system were needed.

Scalability Limitations: Due to computational limita-
tions, a full mission simulation could not be achieved with
more than three robots at reduced real-time and not more

Figure 2: Copilot’s task management architecture. Auto-
generator, Planner, and Executor have been added or updated
and access a centralized task database which stores pending,
active, successful, or failed tasks.

than two in real-time. However, upon tightly integrating
Copilot with multiple real robot platforms, we noticed that
the current concept of operations didn’t scale well when
adding more robots to a mission. We learned that task exe-
cution on the real hardware requires different timing and in-
troduces many sources for machine and human errors (e.g.,
if cables are loose, sensors don’t power up, or unknown un-
knowns occur).

Visualization Limitations: In robotics interfaces,
scheduling, and timeline views are often presented in a
robot- or task-centric way, focusing on who or which agent
is scheduled for a certain task and when, respectively (Bae
et al. 2020). The main task-centric approach that was used
in early Copilot tests showed a vertical list view with a
scrollable timeline. This timeline showed the four tasks
closest in time on top. As the number of tasks scaled linearly
with the number of deployed robots this list view became
inefficient — especially when tasks had to be deferred and
worked on in a non-sequential order.

Improved Copilot
The identified shortcomings motivated a redesigning and re-
thinking of Copilot’s back-end and front-end to reduce and
not just shift workload; thus, we implemented higher levels
of automation.

Architecture Changes: Figure 2 provides a simplified
overview of Copilot’s updated task management architec-
ture. A multi-robot task auto-generator and verifiable task
executor have been added to the system, and the underly-
ing planner has been replaced. All modules access a central-
ized task database which stores pending, active, successful,
or failed mission tasks for setup, deployment, and during ex-
ploration.

Task Dependency Graph: A robot mission can be fairly
complex, even when looking at the deployment of a single
robot. In Figure 3 such a single robot mission is shown as a
directed graph indicating the temporal constraints and exe-
cution dependencies with arcs between the nodes that repre-
sent a pre-defined set of mission tasks. Each task is defined
by its duration, earliest start time, latest end time, and its
dependency relations with other tasks.

To deploy multiple robots without the need to hard-coding
all possible agent combinations and graphs, we use a scal-
able auto generator. The preceding superscript O in the
graph (see Figure 3) indicates that human inputs or actions
are required for the task. In the case of the Launch base
software task, this means that the operator has to initiate
the software launch as a pre-condition and is prompted to



Figure 3: Pre-defined Copilot tasks for a single robot mission
indicating task dependencies. The number of tasks scales
linearly with the number of deployed robots. Spot1 related
tasks are depicted in blue and operator tasks in orange. A
superscript O or P at the beginning of a task indicate that
the operator or pit crew has to manually fulfill some pre-
condition. A superscript at the end indicates that a human
sign-off is implemented before proceeding with the next
task. For instance “Power on robot platform” requires a
physical push of the robot platform startup button.

select the robots that they would like to deploy for the up-
coming mission. Similarly, superscripts at the end of a task
indicate that human action is needed before the next task
can begin. Tasks without either have been fully automated
for nominal cases in this newer Copilot version.

Task Planning and Scheduling: The aforementioned
task dependency graph for the selected robots forms the in-
put for Copilot’s task planner and is stored in the MongoDB
task database. The generation of a task plan for setting up,
deploying, and assisting the operator during exploration is
framed as an automated temporal planning problem. In the
first version of Copilot, we formulated such problem as a
Simple Temporal Network (STN), encoded as a linear pro-
gram. In the improved version of Copilot, deployed in the
final events of SubT, we moved to a PDDL temporal plan-
ning formulation to allow 1) flexibility on task representa-
tion with respect to state constraints, resources, and plan-
ning, and 2) use the body of planners available in the lit-
erature. Herein we integrated the OPTIC planner (Benton,
Coles, and Coles 2012), a PDDL temporal planner that han-
dles time window specification (timed initial literals), and
discrete and continuous resources.

To perform planning, OPTIC uses both a PDDL domain
file and a problem file. The domain file has been designed to
represent tasks (modelled as operators) and its dependencies
(preconditions). The problem file is generated prior to call-
ing the planner, and it is built based on the current state of
mission and tasks execution. For example, if a task is ongo-
ing, the PPDL file would represent the task as ongoing and
add constraints to ensure it continues the execution to meet
the necessary constraints. As a notional example of the scale

of the planning problem, a mission with four robots would
have approximately 60 tasks to be scheduled during setup
and deployment. Planning is performed at a predefined ca-
dence (e.g., every 1.5 seconds), but it also follows an event-
based approach when task execution is late, or the human-
in-the-loop changes their strategy — this helps mitigate ex-
ecution uncertainty. The generated plan is parsed and stored
in a Task Database (for logging and visualization across the
system); each task is then dispatched for execution.

If a plan is not found by OPTIC due to temporal constraint
violations (e.g., delays in task execution), Copilot will at-
tempt to increasingly relax some of the key temporal con-
straints, such as the latest end time of certain activities (e.g.,
allowing setup tasks to end a few minutes after the setup
time, overlapping with the beginning of the exploration time
window). In critical scenarios, Copilot would notify the op-
erator of a schedule relaxation to allow for further strategy
changes.

Task Verification and Execution: A verifiable and
generic task framework is introduced to Copilot, allowing
for quick implementations and standardized task automa-
tion. Each task follows a strict precondition, execution, and
post-condition template. Condition checks and execution
can be triggered across agents, including the base station at
which the human can oversee all automated processes at a
high level in the new Copilot interface, which is described in
Section: Game-Inspired Interface. The task template execu-
tion covers both fully automated tasks and semi-automated
tasks where an operator’s confirmation is required (e.g. de-
ploying a robot into a cave requires a Go/No-go decision
from the supervisor — deploying itself is an automated
process). If a task fails during execution or post-condition
checking, Copilot will try to resolve the issue by retrying
tasks several times and allowing for more execution time.
Failed tasks will be reported to the supervisor, who can
choose to debug the issue at hand or trigger another auto-
mated retry. Retries and resets are possible at all levels, and
completed tasks can be reset during an active mission in case
a robot platform has to be rebooted.

Game-Inspired Interface
Game Inspiration: Inspiration for multi-agent interaction
and interface design is partially drawn from real-time strat-
egy games such as Age of Empires, StarCraft, and Com-
mand & Conquer. When played competitively, these games
require a high sense of micro and macro-management of
units and their environment and the ability to efficiently
switch between these two ways of managing a team. Mi-
cromanagement involves short-term strategy and decision-
making, where individual units may require critical attention
to win a battle, overcome an obstacle, or navigate to the next
point of interest, while macromanagement refers to longer-
term strategizing that involves resource gathering, unit pro-
duction over time, and overall exploration and control of the
map (Khan et al. 2018). Parallels can be applied to the man-
agement of a robot team in the SubT competition. Even au-
tonomous robots can benefit from or require human inter-
vention and commanding, especially if critical attention to-
wards failing subsystems is needed. Supervised multi-agent



Figure 4: An overview of the major UI components. (A) The Robot and associated Copilot task cards. (B) The split-screen 3D
visualization view with view controls, WiFi signal strength overlay, and an artifact card showing on the map. (C) The artifact
drawer. (D) The robot health systems component.

control draws from the human’s situational awareness re-
garding the environment and robot states to effectively co-
ordinate multi-agent behaviors, successfully locate artifacts,
and score points.

Mission Phases: The user interface is designed to be
adaptable to the overall mission and two major phases of an
individual robot’s competition run in particular:1) setup and
deployment, and 2) mission execution with its exploration
and search components. Across these phases, the visibility
and abstraction of information need to be flexible to facil-
itate focus on the anticipated operator interactions. In de-
ployment, the user interface uses the Copilot-generated tasks
and status information to guide the sole operator through
the multitude of individual tasks while allowing them to
maintain their situational awareness, manage the entire robot
team, and coordinate with the pit crew.

Three Column Layout: The Mission Control interface is
organized into different view components. Figure 4 shows
the main split-screen with three columns aiming at creating
reliable locations for the operator to look at when needing to
accomplish functionally distinct tasks (A). The aim here is
to reduce the amount of visual scanning, application switch-
ing, and to parse robot needs on an individual or team level
swiftly. Individual robot information pertinent to monitor-
ing health systems is available on the left, planned and ac-
tively re-scheduled Copilot tasks for individual robots are
placed alongside each agent in the middle, and a 3D inter-
active visualization of the robots in their environment is an-
chored to the right. During mission execution, the primary
goal of the user interface is to keep the operator situationally

aware of a multitude of individual robot health systems and
data sensed from the surrounding environment while pre-
senting the most important information and thus reducing
their cognitive workload. In Figure 1 the 3D visualization is
expanded, and robot sensor and status information is mini-
mized to select mission-critical information.

Health Systems and Robot Status: In order to effec-
tively survey the status of any individual robot in the team,
visibility into over 30 unique sensors and statuses needed to
be surfaced to the operator per robot. This required identi-
fying which indicators were critical to display at all times,
which could be hidden within a sub-view, which were good
candidates to be combined and abstracted, and which would
be prioritized across either the deployment (split) or mission
execution (split and expanded visualization) modes of the
user interface. In addition to sensors visible at an individ-
ual level, an additional view was created to organize sensors
compactly across the team, providing easy visual scanning
for the operator during macro-management and deployment,
as shown in Figure 4D. An abstraction of robot behaviors
(e.g., exploring, dropping a communications node) and mo-
bility states presents an overall status of each robot to the
operator by color and a high-level description. This status
is prioritized based on criticality to ensure the operator’s at-
tention will be requested for the most important issue at any
given time.

Previously, Copilot tasks resided in an entirely separate
module of the interface with limited screen estate, requir-
ing the operator to move other related and necessary sensor
and status information out of physical view. A reorganiza-



tion where Copilot tasks are paired alongside their respec-
tive robots is utilized to reduce context loss and pair nec-
essary information to complete the tasks together, as shown
in Figure 4A. Over time during the development roll-out,
this pairing of health, sensor, and status indicators alongside
Copilot tasks facilitated a level of trust from the operator
where focus on a particular robot was not necessary unless a
critical task requiring operator intervention appeared.

3D Visualization View: A 3D interactive visualization
leveraging React Three Fiber (a React-based renderer for
three.js) was created within the UI with the aim of achiev-
ing a significant reduction in operator task and application
switching. Prior to this version of the interface, the opera-
tor was required to switch between a web browser to view
robot health systems and status information and RViz (a vi-
sualizer for ROS) to view the robots within the 3D environ-
ment and command them. In the split view of the UI, the
operator can have the full context of robot sensors and sta-
tus information along with any outstanding Copilot tasks.
When in the expanded visualization view, the layout shares
similarities with layouts of traditional Real-Time Strategy
(RTS) games, where content is functionally organized from
the corners of the view and leave the center-most screen
real estate where the operator will primarily interact with
robots and information unobstructedly. From this view, the
operator can take on any of the following tasks: surveying
the mapped environment and robot positions for locations
to scout, locating, and submitting object or signal artifacts,
directing or course-correcting robot autonomy with manual
navigation commands, viewing signal strength of the com-
munications backbone within the environment, and assign-
ing robots to drop communication nodes manually. The vi-
sualization allows the operator to navigate the 3D environ-
ment through panning, zooming, and filtering points of inter-
est categories. To effectively manage the switching between
micro and macro-level interactions, a single-click shortcut
was implemented on each robot status card for the operator
to quickly focus on any robot that requires attention. An ad-
ditional shortcut is provided to zoom back out to an overview
of the map.

Improvements over traditional RTS commanding controls
were also made to minimize the amount of mouse con-
trol and coordination necessary. Instead of requiring to se-
lect or drag a bounding box prior to commanding a robot,
the operator could simply interact with the visualized in-
formation roadmap (IRM) — a breadcrumb trail used for
safely navigating the environment constructed by the team
of robots (Kim et al. 2021) — and assign any robot with a
high priority navigation point or communications node drop
location through a context menu, regardless of whether the
particular robots are currently in view or not.

To help with artifact management, the locations of de-
tected artifacts are visualized and interactivity is added to al-
low the operator to quickly hover into a thumbnail and click
to navigate to the dedicated Artifact Drawer Figure 4C for
deeper analysis and submission. Additional interactions are,
for example, manually adding and manipulating detected ar-
tifact locations within the 3D space, by dragging its location
across a plane for fine-tuning if a submission location was

deemed incorrect and needed adjustment.

While in the expanded visualization view, compressed
versions of the robot status modules are shown horizontally
in the bottom left of the view with the mission status indi-
cator made more prominent and placed above each module.
These overall status indicators were given visual priority to
ensure grabbing the operator’s attention. For instance, the
indicator would flash red when a robot had fallen over, was
low on battery, or required assistance. The operator could
immediately click the respective robot module and be ori-
ented over it for micromanagement.

Artifact Drawer: Artifact submission was a critical part
of SubT that also has many real-world parallels, for instance,
in search and rescue. Especially under time constraints, it is
necessary to quickly identify artifacts of interest in the envi-
ronment, whether these be human survivors or other objects
of interest. Detecting and localizing artifacts automatically
is done using a state-of-the-art image processing pipeline
(Terry et al. 2020), but no AI system is infallible, especially
in unknown environments, so having a system for an opera-
tor to manually review artifacts efficiently was critical con-
sidering mission time and submission attempts.

In the old system (Terry et al. 2020), a manual artifact re-
view system did exist, but it was built with a focus on only
basic functionality and a high reliance on initially accurate
artifact detections. Each artifact report took roughly 90 sec-
onds to review. In redesigning this component, we wanted
to focus on improving the review process from an ease of
use perspective and decrease the time spent to confidently
review an artifact report down to 15 seconds. Beyond sim-
ply making the system more intuitive for the operator, this
actually had a major functional benefit from a trustability
standpoint in that it allowed us to decrease the confidence
threshold for flagging artifact detections and have the op-
erator go through and verify nearly 6 times more potential
artifact reports while not increasing total time spent.

To better design the new system for speed, it was impor-
tant to understand which areas of the old one were slowing
the process down the most. Testing the old system in simu-
lation and conducting operator interviews revealed that the
artifact review process needed too many clicks. Then, time
had to be spent zooming in on and reviewing images and
checking with RViz separately to verify that artifact coordi-
nates were correct. No visual aid was given if corrections
were necessary, and coordinates had to be updated by man-
ually entering them for each axis in IR3. Borrowing from
game interface design, integrating the 3D visualization view
directly into the web UI removed the need for application
switching, and drag controls were added to adjust locations
providing correctly scaled coordinate updates from the 3D
environment. A minified list that provides an overview of
all artifact reports by confidence levels, plus maximizing the
screen real estate of a single selected artifact helped increase
efficiency. Finally, adding keyboard shortcuts as commonly
used in gaming made meeting our target goal of 15 seconds
possible.



Results
Over the course of the last challenge year, we conducted a
limited series of field tests in three testing locations, includ-
ing the abandoned tunnels at the Los Angeles Subway Ter-
minal building, the Lava Bed National Monument in North-
ern California, and the Kentucky Underground lime-stone
cave for which we applied our rapid development and test-
ing strategy. We experimented with different robot configu-
rations and in different stages of readiness as our system’s
capabilities matured. We deployed up to 11 vehicles simul-
taneously during these tests stressing the overall system (in-
cluding Copilot and all the UI elements) and learning about
its technical limitations like bandwidth and computing re-
sources which will be presented in upcoming work.

We deployed the presented game-inspired user interface
and supervised autonomy system during the SubT challenge
using four to six ground robots nominally. While we could
have exceeded the number of six robots using the newly
designed interface and autonomy, six became the preferred
number of agents to explore large-scale environments while
allowing reliable communication links that would not ex-
ceed bandwidth limitations when robots disseminated infor-
mation from autonomously explored out-of-comms areas.
This allowed meeting the set interaction objectives, espe-
cially maintaining an enjoyable performance that can visu-
alize the complete robot team while contributing to a lower
workload due to fewer deployed agents.

In what follows, we analyzed screen recordings and log
files collected during the SubT final competition, for which
we extracted time-to-task information, robot deployment
times, mouse locations, and application usage from runs P1,
P2, and F that consist of a setup-time and mission phase of
30+30 and 30+60 minutes, respectively. Robots were only
allowed to leave the setup area and enter the course when
the mission time began. Readying the team of robots and not
bleeding into the mission time was a crucial effort to maxi-
mize available mission and exploration time. The results are
compared to an earlier state of the system that did not im-
plement Copilot and used different interfaces, namely the
SubT “Urban Circuit” similar to (Otsu et al. 2020). During
the “Urban Circuit” task, coordination was done by humans
only.

Robot Deployment: Figure 5 shows the robot deploy-
ment times that were achieved by deploying Copilot and
compares them to the baseline. We can see that during run
P1, we achieved sending one robot in less than 60 seconds
each, deploying a total of 6 ground vehicles in 5 minutes
and 31 seconds. In runs P2 and F, we achieved staying be-
low the one minute mark for the first three robots. Deploying
the robots without Copilot and the new interface in the ‘Ur-
ban Circuit” runs A1, B1, and B2 took more than 5.5 min
per robot on average, thus significantly reducing the time
available for exploration and consequently reducing ground
coverage and information gain regarding the search task.

Application Usage: The new interface resulted in a shift
in application usage and reduced switching between differ-
ent applications and computers with a second set of periph-
erals, as RViz was running on a second device during the
“Urban Circuit”. Figure 6 presents the relative usage of ap-

Figure 5: Robot deployment times per game run measured
upon entering the course. The black dotted line (∼1min/r)
indicates the team’s internal goal for robot deployment and
represents a deployment of one robot per minute. F backup
marks insertion points of 2 robots that were not part of the
initial deployment strategy but were added ad-hoc to com-
pensate for robot failures during run F.

plications for six SubT runs. Designing a unified interface
resulted in a shift in application usage that reduced the use
of RViz significantly. While more than 50% of time was
spent on RViz during the “Urban Circuit” runs, we were
able to unify user interactions and situation awareness in
a single Mission Control interface. Only run F uses RViz
for some time as a debugging tool that gave access to the
robot’s cost maps depicting the perceived risks around them.
This information was not visualized by the new interface,
but presents valuable key information in case of unexpected
and off-nominal operations.

UI Feature Usage: With the main Mission Control inter-
face being the main interaction point for human supervisory
control, we then look at the feature usage within the inter-
face itself. Figure 7 shows the relative interaction times with
the split-screen view, the 3D full-screen console view, the
sensor health overview, artifact submission drawer, and the
BPMN modal that gives a detailed overview of a robot’s in-
ner state machine (which was relied upon during the “Ur-
ban Circuit”). We see that, especially during runs P2 and F,
large amounts of time were spent on the artifact drawer and
thus performing the search task analyzing the artifact reports
that were generated by the multi-agent system. To gain sit-
uational awareness and potentially interact with the robot
team, the human supervisor primarily relied on the split-
screen view of the Mission Control app that is shown in the
background of Figure 8 overlaid by a heat map that indicates
the most active areas derived from mouse cursor positions
sampled at 1.5 Hz. In this analysis, an area is deemed inac-
tive if the mouse has been stationary for more than ten sec-
onds. Huang et al. (Huang, White, and Buscher 2012) found
that the median difference between human gaze and mouse
position during an active task is 77 pixels with a standard
deviation of 33.9 pixels at 96 dpi screen resolution. A Gaus-
sian kernel with µ = 98 and σ = 43 adjusting for 122 dpi
is used to derive our heat maps. Figure 8 indicates that the
robot cards, Copilot tasks and the 3D view were all crucial
tools while overseeing the robotic system and performing
the exploration and search tasks.



Figure 6: Application usage (foreground application) for six
SubT mission runs in percent. A1, B1, and B2 represent the
usage before the redesign that integrated 3D visualization
and interactions for P1, P2, and F in a single Mission Control
application using only one computer and screen. Note that
node manager and terminal usage are underrepresented in
runs A1, B1, and B2 because the initial setup phase of up to
10 minutes was not recorded for these runs due to different
logging procedures.

Conclusions and Future Work
In this work we (i) create a game-inspired user interface for
multi-agent robot missions (ii) integrate an automated plan-
ner for task planning and scheduling, (iii) add a verifiable
task framework for increased reliability, and (iv) present re-
sults on how the overall system performed over the course of
several real-world deployments, including the DARPA SubT
Challenge final. In future work, we plan to deploy our inter-
face and Copilot during scientific exploration missions to au-
tonomously map and identify geological features and assess
exploration strategies in lava tubes. This will lead to further
validation of the subsystems and a structured assessment
of a supervisor’s workload outside the realm of the SubT
challenge with experts and potentially non-expert users. Ul-
timately, we would like to assess operator workload from
wearable sensors in real time and consider such constraints
in Copilot’s task planning.
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