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Abstract

Goal recognition is an important problem in many applica-
tion domains (e.g., pervasive computing, intrusion detection,
computer games, etc.). In many application scenarios it is im-
portant that goal recognition algorithms can recognize goals
of an observed agent as fast as possible and with minimal do-
main knowledge. Hence, in this paper, we propose a hybrid
method for online goal recognition that combines a symbolic
planning landmark based approach and a data-driven goal
recognition approach and evaluate it in a real-world cook-
ing scenario. The empirical results show that the proposed
method is not only significantly more efficient in terms of
computation time than the state-of-the-art but also improves
goal recognition performance. Furthermore, we show that the
utilized planning landmark based approach, which was so far
only evaluated on artificial benchmark domains, achieves also
good recognition performance when applied to a real-world
cooking scenario.

1 Introduction
Goal recognition is the task of recognizing the goal(s) of
an observed agent from a possibly incomplete sequence of
actions executed by the observed agent. This task is rel-
evant in many real-world application domains like crime
detection (Geib and Goldman 2001), pervasive computing
(Wilken and Stuckenschmidt 2021), (Geib 2002), or traffic
monitoring (Pynadath and Wellman 1995). State-of-the-art
goal recognition systems often rely on the principle of Plan
Recognition As Planning (PRAP) and hence, utilize classi-
cal planning systems to solve the goal recognition problem
(Ramı́rez and Geffner 2009), (Ramı́rez and Geffner 2010),
(Sohrabi, Riabov, and Udrea 2016), (Amado et al. 2018).
Recently, a hybrid goal recognition method that combines a
PRAP approach and a data-driven approach for goal recog-
nition (Wilken and Stuckenschmidt 2021) was proposed and
it was shown that this hybrid method is able to outperform
both, the single PRAP approach and the single data-driven
approach.

Nevertheless, a major obstacle of the proposed hybrid
method is that it requires large amounts of computation time
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to solve goal recognition problem instances of real-world
complexity (in the range of hours). This is a significant prob-
lem when this approach should be used in a near real-time
online recognition setting in which fast goal recognition is
key. Moreover, as the utilized data-driven approach is, once
it is trained, able to perform goal recognition in near real-
time, the planning based approach is the main bottleneck of
the hybrid method. As a solution, we propose to use an ap-
proach that based on so called planning landmarks, which
are widely used in classical planning research to structure
the search during the planning process (Hoffmann, Porteous,
and Sebastia 2004), instead. This landmark based approach
was first introduced by (Pereira, Oren, and Meneguzzi 2020)
and requires significantly less computation time to solve
goal recognition problem instances and hence, reduces the
computation time of the entire hybrid method. More explic-
itly, the contributions of this paper are:

• In Section 4, we discuss some extensions and adaptions of
the existing landmark based approach that are necessary
so that it can be applied to more complex planning do-
mains that are not restricted to the STRIPS part of PDDL
which is required by the domain used in the evaluation.

• Also in Section 4, we propose to ignore trivial landmarks
for goal recognition as this is expected to improve goal
recognition performance.

• In Section 5, we discuss how the planning landmark based
approach can be used in a hybrid goal recognition ap-
proach.

• Finally, we empirically evaluate the proposed changes and
extensions to the landmark based method, which was so
far only evaluated on standard benchmarks from the goal
recognition literature, and the landmark based hybrid goal
recognition method on a real world cooking scenario in
Section 6.

The empirical evaluation shows that the landmark based ap-
proach requires dramatically less computation time than the
so far used planning based approach, which, as a conse-
quence, also reduces the computation time required by a
planning landmark based hybrid goal recognition method.



2 Problem Definition
In this work, we investigate a possible solution method for
the online probabilistic goal recognition problem in a real-
world scenario. Before we formally define the online prob-
abilistic goal recognition problem, we start by defining the
probabilistic goal recognition problem.

Definition 1 (Probabilistic Goal Recognition)
Probabilistic goal recognition is the problem of infer-
ring a probability distribution over a set of intended goals
of an observed agent, given a possibly incomplete sequence
of observed actions and a domain model D = 〈F, s0, A〉,
where F is a set of facts, s0 is the initial state, and A is a
set of actions. More details on the background of symbolic
planning domains is explained in Section 3. More formally,
the aim of goal recognition approaches is to find a posterior
probability distribution P (G|ooo) for all goals g ∈ G given a
sequence of observed actions ooo.

The online probabilistic goal recognition problem is an ex-
tension to the previously defined probabilistic goal recog-
nition problem that additionally introduces the concept of
time:

Definition 2 (Online Probabilistic Goal Recognition) We
define online probabilistic goal recognition as a special
variant of the probabilistic goal recognition problem. In
online goal recognition, we assume that the observation
sequence ooo is revealed incrementally. More explicitly, we
introduce the notion of time t ∈ {0, . . . , T}, where T = |ooo|.
For every value of t, one probabilistic goal recognition
problem R(t) can be induced as R(t) = 〈D,G,ototot, P (G)〉
where ototot = {oi|1 ≤ i ≤ t, oi ∈ ooo}, P (G) is a prior
distribution over the set of goals. A solution to the online
probabilistic goal recognition problem are the conditional
probabilities Pt(G = g|ototot);∀g ∈ G, t ∈ [0, T ].

Hence, solving an online probabilistic goal recognition
problem is similar to solving a sequence of probabilistic goal
recognition problems, where for each problem instance in
this sequence the utilized observation sequence is extended
by the next observed action.

3 Background
In the context of classical planning systems, planning land-
marks are usually utilized to guide the heuristic search
through the search space that is induced by a planning prob-
lem (Hoffmann, Porteous, and Sebastia 2004). However, in
this work, we study the utilization of a planning landmark
based goal recognition approach (PLR), which was origi-
nally introduced by (Pereira, Oren, and Meneguzzi 2020), in
a hybrid goal recognition method. The basic idea of PLR is
to use the structural information that can be derived from
planning landmarks, which can be - informally - seen as
way-points that have to be passed by every path to a pos-
sible goal. Hence, when we have observed that such way-
points were passed recently by an agent, this indicates that
the agent currently might follow a path to the goal(s) for
which the observed way-point is a landmark.

Classical Planning
Classical planning is usually based on a model of the plan-
ning domain that defines possible actions, their precondi-
tions, and effects on the domain. More formally, in this
work, we define a (STRIPS) planning problem as follows:
Definition 3 (Planning Problem) A Planning Problem is a
tuple P = 〈F, s0, A, g〉 where F is a set of facts, s0 ⊆ F
and g ⊆ F are the initial state and a goal and A is a
set of actions with Preconditions Pre(a) ⊆ F and lists
of facts Add(a) ⊆ F and Del(a) ⊆ F that describe the
effects of an action a in terms of facts that are added and
deleted from the current state. Actions have a non-negative
cost c(a). A state is a subset of F . A goal state is a state s
with s ⊇ g. An action a is applicable in a state s if and only
if Pre(a) ⊆ s. Applying an action a in a state s leads to
a new state s′ = (s ∪ Add(a) \ Del(a)). A solution for a
planning problem (i.e., a plan) is a sequence of applicable
actions π = a1, · · · an that transforms the initial state into a
goal state. The cost of a plan is defined as c(π) =

∑
i

c(ai).

A plan is optimal if the cost of the plan is minimal.

Extracting Planning Landmarks
Planning landmarks are typically defined as facts that must
hold or actions that must be executed at some point dur-
ing the execution of a valid plan starting at s0 that achieves
the goal g (Hoffmann, Porteous, and Sebastia 2004). In this
work, we only focus on fact landmarks. More precisely, fol-
lowing (Hoffmann, Porteous, and Sebastia 2004), we define
fact landmarks as follows:
Definition 4 (Fact Landmark) Given a planning problem
P = 〈F, s0, A, g〉, a fact f ∈ F is a fact landmark if for all
plans π = 〈a1, . . . , an〉 that reach g: ∃si : f ∈ si; 0 ≤ i ≤
n, where si is the planning state that is reached by applying
action ai to state si−1.
(Hoffmann, Porteous, and Sebastia 2004) further divide this
set of fact landmarks into trivial and non-trivial landmarks.
They consider all landmarks that are either contained in the
initial state (i.e., f ∈ s0) or are part of the goal description
(i.e., f ∈ g) as trivial landmarks because they are trivially
given by the planning problem definition. All other land-
marks are considered to be non-trivial. As an example, con-

Figure 1: Exemplary Smart Home Layout.

sider the smart home scenario depicted in Figure 1. For this



example, we assume, that the corresponding planning do-
main uses a predicate (is-at ?x) to describe the current po-
sition of the agent (e.g., in the depicted state the grounded
fact (is-at k2) is true). For this example, one potential goal of
the agent is defined as g = {(is-at ba3)}. When we assume
that the agent can carry out movement actions from one cell
to any adjacent cell, then the facts (is-at h3) and (is-at ba1)
would be non-trivial fact landmarks because these cells have
to be visited by every valid path from the initial position k2
to the goal position ba3 but are not part of the initial state
or the goal. Moreover, (is-at k2) and (is-at ba3) would be
trivial landmarks because they also have to be true on every
valid path but they are given in the initial state and the goal
definition respectively.

To extract landmarks, we use an algorithm that was pro-
posed by (Hoffmann, Porteous, and Sebastia 2004). How-
ever, the original version of the extraction algorithm is de-
signed to only work on the STRIPS (Fikes and Nilsson 1971)
subset of the Planning Domain Definition Language (PDDL)
(McDermott et al. 1998). As the real-world planning do-
main that is used in the evaluation requires some more ad-
vanced parts of PDDL, we had to slightly adjust the origi-
nal algorithm. The original algorithm (Hoffmann, Porteous,
and Sebastia 2004) generates a directed landmarks genera-
tion graph (LGG). When the algorithm is finished, all nodes
in the LGG represent the detected landmarks and the edges
in the graph represent an ordering relation between the ex-
tracted landmarks. Landmarks at the tail of an edge have to
be achieved before the landmark at the head of this edge can
be achieved. The original algorithm has two phases. First,
landmark candidates are generated and added to the LGG.
Then, in a second step, all landmark candidates are evaluated
to check whether they are actually landmarks.

Generation of Landmark Candidates. Landmark candi-
dates are generated using a back-chaining procedure that
loops backwards through the layers of an Relaxed Plan-
ning Graph (RPG) (Hoffmann and Nebel 2001). An RPG
is a relaxed representation of a planning graph that ignores
all delete effects. An RPG is structured into two alternating
types of layers (i.e., fact layers and action layers). Fact lay-
ers contain all facts that might be true after the execution
of at least l action steps, where l is the level of the corre-
sponding fact layer. Action layers have the same properties
unless they contain all actions that might be executed after
at least l action steps. The back-chaining procedure starts
with considering all facts that are part of g, which are all
part of the last layer of the RPG if the considered planning
problem is solvable. For each of these facts f , the intersec-
tion of preconditions for all actions a that achieve f (i.e.,
f ∈ Add(a)) and that are part of the previous action layer is
calculated. All facts that are part of this intersection are then
considered to be landmark candidates and added to the LGG
because they are a precondition of all actions that achieve f
and hence, are potentially relevant to achieve f . After this
procedure is completed for all facts that are part of the goal
description, the back-chaining process continues with loop-
ing through all landmark candidates that were added during
the previous iteration and performing the same check. Note
that the extracted set of landmark candidates that is gener-

ated by this algorithm is not exhaustive (Hoffmann, Porte-
ous, and Sebastia 2004).

Nevertheless, as already mentioned, this algorithm is de-
signed to only work for planning problems that solely use
the STRIPS subset of PDDL. The main differences, rele-
vant in the context of this landmark extraction algorithm are
that in STRIPS problems, action preconditions can, by def-
inition, only be a conjunction of facts.Hence, in a STRIPS
problem it is quite straightforward to determine the inter-
section of several action preconditions. Once more complex
constructs (e.g., disjunctions, existance quantors, etc.) are
used in the preconditions, computing an intersection of en-
tire preconditions is not easily possible anymore. As a so-
lution, we decided to treat also more complex preconditions
as if they were a conjunction of all facts that are part of it.
Hence, we add the intersection of all facts that are part of
the preconditions, which is basically the same as (Hoffmann,
Porteous, and Sebastia 2004) do. However, as a consequence
of this procedure, the ordering information that is generated
by the original algorithm is lost as not all facts in the consid-
ered preconditions have to be necessarily true to execute an
action.

Evaluation of Landmark Candidates. After the generation
of landmark candidates, each generated candidate is evalu-
ated to check whether it is actually a landmark or not. This
check is done through the generation of an RPG for a slightly
modified planning problem which is determined by remov-
ing all actions that have the currently considered landmark
candidate lc as an effect (i.e., {a ∈ A|lc ∈ Add(a)}). In the
case that the modified planning problem is not solvable any-
more, the examined landmark candidate is proofed to be a
landmark. This is because in this case there is no alternative
action sequence, which does not contain an action that has
lc as an effect, that reaches the goal and hence, lc has to be
true in all plans that achieve this goal.

4 Landmark Based Goal Recognition
To perform goal recognition based on the information that
can be gained from extracted planning landmarks, we use
an adjusted version of the approach that was proposed by
(Pereira, Oren, and Meneguzzi 2020). The main reasons for
the adjustments are that we think that considering trivial
landmarks provides no additional benefit to solve the goal
recognition problem and might even have a negative impact
on the recognition performance and, in addition, that the do-
main used for the evaluation does not only use the STRIPS
subset of PDDL.

Computing Achieved Landmarks
The two heuristics to estimate P (G|O) both reason over the
set of landmarks that were already achieved by a given ob-
servation sequence ooo for each goal g ∈ G, which is ref-
ered to as ALg . To determine the set of achieved landmarks
for each goal, we use the algorithm which is described in
Algorithm 1. This algorithm is inspired by the original al-
gorithm proposed by (Pereira, Oren, and Meneguzzi 2020).
Nevertheless, it substantially differs in two points. First, it
is not able to consider the predecessor landmarks for each



Algorithm 1 Compute achieved landmarks for each goal.
Input: I initial state, G set of candidate goals, ooo obser-
vations, and a set of extracted landmarks Lg for each goal
g ∈ G.
Output: A mapping MG between each goal g ∈ G and the
respective set of achieved landmarks ALg .

1: function COMPUTE ACHIEVED LANDMARKS(I , G, ooo,
LG)

2: MG ← 〈〉
3: for all g ∈ G do
4: Lg ← all fact landmarks from Lg s.t.
5: ∀l ∈ Lg : l /∈ I
6: L← ∅
7: ALg ← ∅
8: for all o ∈ ooo do
9: L← {l ∈ Lg|l ∈ Pre(o)∪Add(o)∧ l /∈ L}

10: ALg ← ALg ∪ L
11: end for
12: MG(g)← ALg
13: end for
14: return MG

15: end function

landmark that was detected to be achieved by the given ob-
servations. The reason for this is that ordering information
between landmarks would be necessary to do this. How-
ever, such information are not generated by the adjusted
landmark extraction procedure. As a consequence, the ad-
justed algorithm to compute achieved landmarks will very
likely have more difficulties dealing with missing observa-
tions compared to the original algorithm. Second, in con-
trast to the original algorithm, Algorithm 1 does not con-
sider trivial landmarks that are part of the initial state to be
actually achieved by the given observation sequence ooo. In-
stead, these landmarks are simply ignored during the goal
recognition process. We propose this adjustment because we
think that landmarks which are part of the initial state do not
provide any valuable information for goal recognition but
might potentially even have a misleading effect. This is be-
cause using initial state landmarks for goal recognition in
fact means that information which is not derived from the
observed agent behaviour is used for recognition. Although,
the initial state (and hence all initial state landmarks) are the
same for all possible goals, due to how the two recognition
heuristics and the utilized planning domain are defined, us-
ing initial state landmarks introduces a bias towards consid-
ering goals with smaller numbers of non-trivial landmarks
as more probable. As a consequence, the goal(s) that have
the largest fraction of their landmarks in the initial state are
considered to be most probable in the initial state. However,
this is only caused by how the domain and goal descriptions
are defined and not by actually observed agent behaviour.

Estimating Goal Probabilities
To estimate the goal probabilities from the sets of all ex-
tracted landmarks (i.e., Lg) and landmarks already achieved
by ooo (i.e., ALg) for each g ∈ G, we use slightly adjusted

versions of the heuristics introduced by (Pereira, Oren, and
Meneguzzi 2020). One heuristic considers the percentage
of completion in terms of the fraction of all landmarks that
were already identified as achieved by the given observation
sequence. The second heuristic computes a uniqueness score
for each landmark and uses these scores for the computation
of the heuristic scores.

Goal Completion Heuristic. The original version of this
heuristic estimates the completion of an entire goal as the
average of completion percentages of the sub-goals (i.e., all
facts sg ∈ g, where g ∈ G) of a goal. More precisely, the
original heuristic is computed as follows (Pereira, Oren, and
Meneguzzi 2020):

hgc(g,ALg, Lg) =

(∑
sg∈g

|ALsg|
|Lsg|

|g|

)
(1)

However, to which of the sub-goals each of the identified
achieved landmarks contributes can again only be deter-
mined if ordering information between the landmarks is
available. Hence, as the landmark extraction method that is
used in this work does not generate such information, the
completion was slightly adjusted to be computed as:

hgc(g,ALg, Lg) =

(
|ALg|
|Lg|

)
(2)

This adjustment, in some cases, has a significant impact
on the resulting heuristic scores. For example, consider the
case that g = {sg0, sg1, sg2, sg3, sg4}, |Lsgi | = 1 and
|ALsgi | = 1, ∀sgi ∈ g; 0 ≤ i ≤ 3, |ALsg4 | = 0, and
|Lsg4 | = 30. In this case, the result of Equation 1 would
be 4/5, whereas the result of Equation 2 would be 4/34.
Thus, the more unevenly the number of landmarks is dis-
tributed over the sub-goals, the larger the difference between
the original heuristic calculation and the adjusted calculation
becomes. Nevertheless, it is not fully clear which of the two
options achieves better goal recognition performance.

Landmark Uniqueness Heuristic. The second heuristic
that was proposed by (Pereira, Oren, and Meneguzzi 2020)
does not only consider the percentage of completion of
a goal in terms of achieved landmarks but also considers
the uniqueness of the landmarks. The intuition behind this
heuristic is that it is quite common that several goals share
a common set of fact landmarks. Hence, landmarks that are
only landmarks of a small set of potential goals (i.e., land-
marks that are more unique) provide us with more informa-
tion regarding the most probable goal than landmarks that
are landmarks for a larger set of goals. For this heuristic,
landmark uniqueness is defined as the inverse frequency of
a landmark among the found sets of landmarks for all poten-
tial goals. More formally the landmark uniqueness is com-
puted as follows (Pereira, Oren, and Meneguzzi 2020):

Luniq(l, LG) =

(
1∑

Lg∈LG
|{l|l ∈ Lg}|

)
(3)

Following this, the uniqueness heuristic score is computed



as:

huniq(g,ALg, Lg, LG) =

(∑
al∈ALg

Luniq(al, LG)∑
l∈Lg

Luniq(l, LG)

)
(4)

To determine the set of most probable goals, for both
heuristics, we calculate the heuristic values for all potential
goals and then consider the set of goals that are assigned
with the highest heuristic score as most probable goals.

5 Hybrid Landmark Based Goal Recognition
Recently, a hybrid method for goal recognition was pro-
posed by (Wilken and Stuckenschmidt 2021) to overcome
some identified shortcomings of purely symbolic methods.
However, as already mentioned, one major shortcoming of
the proposed hybrid method is that the so far used plan-
ning based method, which was first proposed by (Ramı́rez
and Geffner 2010) (we will refer to this approach as “RG”
from here on), requires a tremendous amount of computa-
tion time. This is a major issue, especially when these meth-
ods should be applied to online goal recognition scenarios
of real-world complexity. To overcome this shortcoming,
we propose to use the PLR method in the hybrid method.
This significantly reduces the required computation time, as
the PLR method no longer requires to actually solve sev-
eral planning problems for each step in time for an online
goal recognition problem (see Definition 2) but only has to
extract the fact landmarks once at time step t = 0 and after-
wards, only has to update the sets of achieved landmarks for
each goal.

To combine the estimate of the PLR approach with an esti-
mate of a data-driven method to obtain a hybrid estimate, we
follow the approach of (Wilken and Stuckenschmidt 2021).
They have investigated two different combination schemes
to combine the goal probability estimates of the RG method
and a Bayesian Network (BN) model. In this work we only
use the weighted sum combination scheme, as it was found
that it achieves better performance.

Probabilistic Goal Recognition Model

To model probabilistic knowledge about the environment,
we use a Bayesian Network (BN) model with the same topol-
ogy as in (Wilken and Stuckenschmidt 2021). Essentially,
the topology of the used BN equals a Naive Bayes Model
(NBM) that treats the goal recognition problem as a classifi-
cation problem. The NBM, in general, has one random vari-
able for each observable planning fact (i.e., Fi) and another
random variable that represents the possible goals. Hence,
it estimates the probability of a goal g given an observation
sequence ooo as follows:

P (ooo|g) = P (F1, . . . , Fn|g) =
n∏
i=1

P (Fi|g) (5)

Where F1, . . . , Fn is the set of observable planning facts that
are defined in the planning domain.

6 Evaluation
To evaluate the performance and efficiency of the adjusted
methods discussed in the previous sections, we conducted
several empirical experiments on a real-world data set (i.e.,
CMU Grand Kitchen Challenge 1). More precisely, the goals
of the evaluation are:
• Show that ignoring trivial landmarks that are part of the

initial state during the goal recognition process improves
the recognition performance.

• Show that the PLR method achieves significantly better
goal recognition performance than the RG method when
applied to a goal recognition scenario of real-world com-
plexity.

• Show that the PLR approach, and in consequence also the
hybrid recognition approach, requires significantly less
computation time than the RG method.

• Show that a PLR and NBM based hybrid goal recognition
method outperforms both single approaches.

Experimental Setup
We conducted several empirical experiments with the pro-
posed adjusted hybrid method as well as the PLR method,
the RG method, and the NBM on a real-world dataset to
achieve the previously mentioned evaluation goals. In all
experiments of this evaluation, the online goal recognition
problem is considered (see Definition 2). All experiments
of this evaluation were carried out on machines that have
24 cores with 2.60GHz and at least 386GB RAM. The re-
mainder of this subsection describes the utilized dataset and
different experimental setups.

Dataset. As a real-world data set, we used the CMU-
MMAC Kitchen Dataset (De la Torre et al. ). This dataset
contains data from different sources (e.g., video, motion cap-
ture, etc.) that were recorded by observing different persons
while cooking one out of five different recipes. We will con-
sider reaching the end of the cooking process for each of the
recipes as possible goals. We first had to transform the ex-
isting “raw” data into a suitable format for our purpose. As
a starting point for this transformation, we used the results
of a semantic annotation project at the University of Ros-
tock (Yordanova, Krüger, and Kirste 2018). In this project,
planning domains in PDDL format and annotated observa-
tion sequences were created for three of the five recipes
(i.e., brownies, eggs, and sandwich). In addition, we cre-
ated annotations for the remaining two recipes (i.e., pizza
and salad). Consequently, the set of possible goals is defined
as GCMU = {brownies, eggs, sandwich, pizza, salad}.
In total, the dataset contains 148 full observation sequences.

PLR and RG Setup. We implemented the PLR and RG
approaches in Java using the PPMAJAL 2 library for PDDL
related functionalities. To solve the planning problems for
the RG approach, we used the MetricFF (Hoffmann 2003)
planner. MetricFF is a satisficing planner that supports met-
ric facts, which is required by the planning domain utilized

1http://kitchen.cs.cmu.edu/index.php
2https://gitlab.com/enricos83/PPMAJAL-Expressive-PDDL-

Java-Library



in this evaluation. We use the planner in a “greedy” mode
which means that the planner always returns the first found
plan as the solution. In addition, we used a timeout of 360
seconds. Problems for which no solution was found after
this time are considered to be unsolvable. During the exper-
iments, this happened regularly especially for the planning
problems that require to determine a plan that does not ful-
fill the observation sequence. Moreover, we assume equal
costs of one for all actions and set the β parameter of the
RG approach to 1. The β parameter is a measure of the as-
sumed rationality of the observed agent, where a value of 0
represents completely irrational and a value of 1 completely
rational.

NBM Setup. The NBM used for this evaluation contains
one random variable (RV) for the possible user goals and
one RV for each fact in the planning domain. We define the
sample space of RV Xgoal as SXgoal

= G. For all other
RVs Xf , we assume that the sample space SXf

is defined
as SXf

= {true, false}. This corresponds to the nature of
planning facts.

Combining PLR and NBM Methods. For the weighted
sum, we compute the weight for the NBM as wNBM (n) =

a
1+e−b(n−c) , where a, b, and c are fitting parameters. For this
evaluation, we set the parameters to a = 0.7, b = 0.45, and
c = 11.5. The weight for the PLR approaches is then calcu-
lated as wPLR = 1− wNBM (n).

K-Fold Like Cross Validation Procedure. To evaluate the
performance of the hybrid approach in dependence on the
size of the training set that is used to train the NBM, we
performed several experiments following a k-fold cross-
validation like procedure. However, we slightly adjusted the
typical cross-validation procedure to fit our requirements:
From now on, we will refer to the number of training ex-
amples in the training set as n, where one training example
corresponds to one complete observation sequence from the
data set. To evaluate the performance of an approach for a
distinct value of n, we splitted the complete data set into
k partitions, where k = |D|/n and |D| is the size of the
complete data set (i.e., the number of complete observation
sequences). Then, k models were trained, but in contrast to
the typical cross-validation procedure, we always used only
one of the partitions as the training set and the remaining
partitions for validation. For this procedure, it is important
to ensure that the size of the straining set is always equal
to n. However, for some values of n and |D|, the data set
cannot be splitted into k partitions with equal size. In such
cases, we randomly sampled examples from the other parti-
tions to complete the training set which is constructed from
the partition that has a size smaller than n.

Computation of Mean Accuracy. All recognition perfor-
mance results presented in the remainder of this section are
reported as the mean accuracy over all recognition prob-
lems in the dataset for a relative number of observations
λ ∈ [0, 1]. The mean accuracy Acc is calculated as follows:

Acc(λ,D) =
∑
R∈D [R(bTRλc) = g̃R]

|D|
(6)

Here, D is a set of online goal recognition problems R, g̃R
denotes the correct goal of goal recognition problem R, TR
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Figure 2: Comparison of the average recognition accuracy
on the CMU Kitchen Dataset for the PLR approach when
two different heuristics (i.e., goal completion (PLRc) and
uniqueness (PLRu)) are used for goal recognition and ini-
tial state landmarks are ignored (dotted lines). Additionally,
the performance of the goal completion heuristic is shown
for the case when initial state landmarks are used (dashed
line).

is the maximum value of t for online goal recognition prob-
lem R (i.e., length of observation sequence that is associ-
ated with R), and [R(t) = g̃R] equals 1 if the correct goal
is recognized for R(t) and 0 otherwise. To calculate the re-
ported average accuracy, in contrast to the reported results of
(Pereira, Oren, and Meneguzzi 2020), we only consider the
true goal as correctly recognized if the true goal is the only
goal that is assigned with the maximum heuristic score.

Experimental Results and Discussion
Investigating the Effect of Ignoring Initial State Landmarks.
Figure 2 shows the average recognition accuracy of the PLR
approach on the CMU Kitchen Dataset for both heuristics
when no initial state landmarks are used to compute the
achieved landmarks (dotted lines). In addition, the recogni-
tion performance when initial state landmarks are used for
this computation is depicted (dashed lines). The results show
that the goal completion heuristic clearly outperforms the
uniqueness heuristic on the CMU Kitchen dataset. The ma-
jor reason for this is most probably that all goals share many
landmarks especially early in the observation sequences. As
these goals have not many landmarks with high uniqueness
scores, they might be always undervalued compared to other
goals that have several landmarks with higher uniqueness
scores. This leads to an overestimation of goals for which
the uniqueness scores are very evenly distributed over all
landmarks. As a consequence, when the uniqueness heuris-
tic is used on the CMU Kitchen Dataset, the PLR approach
requires a larger fraction of observations to estimate the cor-
rect goal compared to when the goal completion heuristic is
used. In addition, the results show that when no initial state
landmarks are used, the performance is significantly better
than when initial state landmarks are used for both heuris-
tics. The main reason for this, as already discussed in Sec-
tion 4, is that initial state landmarks provide no information
regarding the most probable goal of an agent that can be de-
rived from observed agent behaviour.



As these results show, that the goal completion heuristic
performs much better on the CMU Kitchen Dataset, all ex-
perimental results that are presented hereafter do only report
the recognition performance for the goal completion heuris-
tic without using initial state landmarks.
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Figure 3: Comparison of average required computation time
in seconds between the planning landmark based approach
(PLR) and the so far used planning based approach (RG)
for online goal recognition per goal g ∈ G over different
relative numbers of observation steps.

Comparison of Required Computation Time. Figure 3
shows the average computation time in seconds that is re-
quired per goal g ∈ G when solving the online goal recog-
nition problems in the CMU Kitchen Dataset. The computa-
tion time is displayed for different relative sizes of the obser-
vation sequence. This means that when an entry in the figure
is located at point (1%, 254.2), the average required compu-
tation time to solve the corresponding goal recognition prob-
lem that uses an observation sequence that contains the first
1% of observations of the complete observation sequence
was 254.2 seconds. The results show that the PLR approach
requires significantly less computation time than the RG ap-
proach, especially once the landmarks were extracted which
happens only for t = 0 in online recognition and takes on
average 169.5 seconds. Once the landmarks were extracted,
the PLR approach only requires around 10ms to compute
the heuristic score for each goal for all t ≥ 1. In contrast,
the RG approach requires high amounts of computation time
for all values of t. The reason for this is that it does not reuse
already computed information when solving an online goal
recognition problem but solves 2|G| planning problems for
each value of t. Interesting to note is also that the RG ap-
proach requires rather high amounts of computation time for
small values of t and large values of t. The main reason for
this is the transformation of the planning domain that the
RG approach uses to ensure that the resulting plans fulfill or
respectively not fulfill the observation sequence ooo.

In summary, the results show that using the PLR approach
instead of the RG approach dramatically reduces the amount
of computation time that is required to solve an online goal
recognition problem. As a consequence, the PLR approach
enables the hybrid goal recognition method to produce goal
probability estimates in an online recognition scenario in
near real-time, once the landmarks are extracted. It is also
important to note again that the displayed times are per po-

tential goal of the observed agent. Hence, the PLR approach
also scales much better in terms of required computation
time when larger sets of potential goals are used.

Evaluating Hybrid Goal Recognition Performance. Fig-
ure 4 shows the average accuracy for different sizes of the
training data set that is used to train the NBM (i.e., n) on
the CMU Kitchen Dataset. The results are displayed for the
PLR, RG, and NBM approaches as well as for the hybrid
method (HPLR) that uses the PLR method instead of the RG
approach. The results show that the PLR approach consis-
tently outperforms the RG approach when more than 25% of
the observations were seen. The main reason for the decrease
in performance of the RG approach for a relative number of
observations larger than 25% is that the used planner timed
out for a large fraction of the involved planning problems.
This shows, once again, that the computation time required
by the RG approach is a significant issue when applied to
increasingly complex recognition scenarios. Further, the re-
sults show that the hybrid method constantly outperforms or
performs similarly well as the two single methods (i.e., PLR
and NBM). Especially when between 5% and 35% of the
observations are used for the prediction, the hybrid method
significantly outperforms both single approaches. Also in-
teresting to note is that already for rather small training set
sizes n ≥ 3, the NBM always outperforms the PLR for low
values of t and the PLR always outperforms the NBM for
high values of t. Hence, as the hybrid method always per-
forms at least equally well as the best of the two single ap-
proaches, the hybrid method clearly outperforms the PLR
approach for low values of t because it can leverage on the
strength which the NBM achieves in this area even for small
amounts of training data. Similarly, it clearly outperforms
the NBM approach for large values of t because it can lever-
age on the strength of the PLR approach which performs
much better than the NBM approach in this area. Thus, the
hybrid method is able to leverage on the strengths of both
single methods and achieves a performance that is superior
compared to the performance of both single methods.

7 Related Work
Existing approaches to goal- and plan recognition can be di-
vided into model-based and model-free approaches. Model-
based approaches typically reason over handcrafted sym-
bolic domain models to solve the recognition task. In con-
trast, model-free approaches consider the recognition prob-
lem as a classification problem and learn to predict the cur-
rent user goal from data and, thus, are data-driven.

Early model-based approaches to plan recognition relied
on complete plan libraries that encode possible user behav-
ior to recognize the current plan from observed user actions
(Kautz and Allen 1986; Charniak and Goldman 1993). How-
ever, these approaches require a large manual modeling ef-
fort, which is infeasible in large domains. To overcome this
issue, a new class of approaches to plan recognition that no
longer require complete plan libraries, but only a domain
model that defines possible states and actions, was proposed.
The symbolic approaches considered in this work (i.e., RG
and PLR) (Ramı́rez and Geffner 2010),(Pereira, Oren, and
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Figure 4: Comparison of evaluation results between the PLR, RG, NBM, and landmark based hybrid (HPLR) approaches. Re-
sults are displayed for different sizes of the training set n. For each n the average accuracy for different fractions of observations
that are used for goal recognition is displayed.

Meneguzzi 2020) belong to this class. Another example ap-
proach, that relies on the use of classical planning systems,
is the approach by (Sohrabi, Riabov, and Udrea 2016). They
propose to use a top-k planner to generate the top-k plans
for all possible goals in order to obtain which goal an ob-
served agent currently intents to achieve. Nevertheless, most
of these approaches have, so far, only been evaluated on rel-
atively small, artificial domains, and hence, it is not clear
whether they are also applicable to real-world scenarios.
Moreover, it was recently shown that these approaches have
some problems in capturing relations between observations
and user goals that cannot be properly modeled manually
(Wilken and Stuckenschmidt 2021).

In contrast, model-free approaches do not need a domain
model but learn from data how to recognize the most proba-
ble user goal directly from an observation sequence. Hence,
they have the potential to learn the relations between actions
and user goals that are not properly captured by model-based
approaches. In (Albrecht et al. 1997), the authors propose
to use a BN model to predict the current quest of an ob-
served player of a computer game. Recently, also some ap-
proaches that applied deep learning methods to goal recog-
nition problems appeared (Min et al. 2016), (Amado et al.
2018). For example, (Min et al. 2016) applied a LSTM for
player goal recognition in digital games. However, model-
free approaches usually require large amounts of training
data, which are usually not easily available for real-world
scenarios, to produce reasonable results. Regarding this as-
pect, model-based approaches have a clear advantage be-
cause they can rely on handcrafted domain knowledge.

8 Conclusion
In this work we showed that the PLR approach does not only
require dramatically less computation time to solve an on-
line goal recognition problem than the originally used RG

approach but also significantly improves the goal recogni-
tion performance when applied to a real-world goal recog-
nition scenario. In fact, the PLR approach, once the plan-
ning landmarks were initially computed, is able to perform
near real-time goal recognition. Consequently, as the com-
putation time requirements of the RG approach was the ma-
jor limitation in this regard of the state-of-the-art hybrid
method, a PLR based hybrid goal recognition method is also
able to perform near real-time goal recognition. This dra-
matically improves the applicability of a hybrid goal recog-
nition method in goal recognition scenarios in which reason-
ing quickly about possible goals is important. Moreover, the
results showed that, similarly to the RG method, the PLR
approach has more difficulties to recognize the correct goal
early in an observation sequence than a data-driven NBM.
Hence, a hybrid method, which combines the PLR approach
and a data-driven NBM, is able to recognize the correct goal
more reliably based on a fewer number of observations than
the two single approaches.Nevertheless, we still see some
potential to improve the proposed landmark based hybrid
recognition approach in future work. As already mentioned,
one limitation of the adjusted landmark extraction algorithm
is that ordering information between landmarks is lost. In-
vestigating this issue is an important path for future work.

Acknowledgments
The data used in this paper was obtained from
kitchen.cs.cmu.edu and the data collection was funded
in part by the National Science Foundation under Grant No.
EEEC-0540865.

References
Albrecht, D. W.; Zukerman, I.; Nicholson, A. E.; and Bud,
A. 1997. Towards a Bayesian Model for Keyhole Plan



Recognition in Large Domains. In Jameson, A.; Paris, C.;
and Tasso, C., eds., User Modeling. Vienna: Springer Vi-
enna. 365–376.
Amado, L.; Aires, J. P.; Pereira, R. F.; Magnaguagno,
M. C.; Granada, R.; and Meneguzzi, F. 2018. Lstm-
based goal recognition in latent space. arXiv preprint
arXiv:1808.05249.
Charniak, E., and Goldman, R. P. 1993. A bayesian model
of plan recognition. Artificial Intelligence 64(1):53––79.
De la Torre, F.; Hodgins, J.; Montano, J.; Valcarcel, S.; For-
cada, R.; and Macey, J. Carnegie mellon university multi-
modal activity (cmu-mmac) database. http://kitchen.cs.cmu.
edu/index.php\#tech. Accessed: 2020-10-09.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3-4):189–208.
Geib, C. W., and Goldman, R. P. 2001. Plan recognition
in intrusion detection systems. In Proceedings DARPA In-
formation Survivability Conference and Exposition II. DIS-
CEX’01, volume 1, 46–55. IEEE.
Geib, C. W. 2002. Problems with intent recognition for elder
care. In Proceedings of the AAAI-02 Workshop “Automation
as Caregiver, 13–17.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. JAIR 14:253–
302.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
landmarks in planning. Journal of Artificial Intelligence Re-
search 22:215–278.
Hoffmann, J. 2003. The Metric-FF planning system: Trans-
lating “ignoring delete lists” to numeric state variables. JAIR
20:291–341.
Kautz, H. A., and Allen, J. F. 1986. Generalized plan recog-
nition. In Proceedings of the Fifth AAAI National Confer-
ence on Artificial Intelligence, AAAI’86, 32––37. AAAI
Press.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. Pddl-the
planning domain definition language.
Min, W.; Mott, B. W.; Rowe, J. P.; Liu, B.; and Lester, J. C.
2016. Player goal recognition in open-world digital games
with long short-term memory networks. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI’16, 2590–2596. AAAI Press.
Pereira, R. F.; Oren, N.; and Meneguzzi, F. 2020. Landmark-
based approaches for goal recognition as planning. Artificial
Intelligence 279:103217.
Pynadath, D. V., and Wellman, M. P. 1995. Accounting
for context in plan recognition, with application to traffic
monitoring. In Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, 472–481.
Ramı́rez, M., and Geffner, H. 2009. Plan recognition as
planning. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI’09, 1778–1783.

Ramı́rez, M., and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, 1121––1126. AAAI Press.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan
recognition as planning revisited. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI’16, 3258–3264. AAAI Press.
Wilken, N., and Stuckenschmidt, H. 2021. Combining sym-
bolic and statistical knowledge for goal recognition in smart
home environments. In 2021 IEEE International Conference
on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops), 26–31.
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