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Abstract

Deep learning (DL) methods have gained popularity in re-
cent years. However, it is well known that training this class
of models is often computationally expensive. Graphic Pro-
cessing Units (GPUs) are frequently used to boost perfor-
mance and, while the cloud remains the most cost-effective
and flexible deployment, the overall cost can be consistently
reduced by efficiently sizing and sharing the available re-
sources among the various processes.
This work addresses the online joint capacity planning and
job scheduling with deadlines problem for DL training jobs.
In particular, we compare our previously proposed Hierarchi-
cal approach with a new Dynamic-Programming-based algo-
rithm, adapted from a State-of-the-Art method, and with a
First-Principle method (Earliest-Deadline-First) in terms of
efficiency and computational costs. Our experimental cam-
paign proves the efficiency of the Hierarchical method, which
achieves an average percentage cost reduction between 16%
and 96% with respect to the Earliest-Deadline-First approach,
and between 36% and 99% compared to the Dynamic-
Programming-based algorithms.

1 Introduction
The widespread adoption of Graphic Processing Units
(GPUs) to boost the training performance of Neural Net-
works (NNs)-based applications helped the Deep Learning
(DL) paradigm in gaining increasing popularity. DL is ex-
ploited in many fields as, e.g., language recognition (Wang
et al. 2019) and brain cancer detection (Ranjbarzadeh et al.
2021). It greatly benefits from GPU acceleration thanks to
highly efficient linear algebra libraries. However, training
DL applications is still computationally demanding, and the
adoption of GPU acceleration on a large scale is extremely
expensive even relying on pay-per-use cloud pricing mod-
els (Cao et al. 2019), resulting as a feasible approach for
large organizations only. In light of this, today’s research is
focusing more and more on developing methods that allow
an efficient resources management in order to obtain a sig-
nificant costs reduction. In this paper, we compare our pre-
vious work presented in (Filippini et al. 2020), based on Hi-
erarchical optimization and hereafter denoted as Hierarchi-
cal method, with a new Dynamic Programming (DP)-based
algorithm, adapted from a State-of-the-Art method initially
proposed in (Saxena et al. 2020).

The Hierarchical method considers multiple DL training
jobs, continuously submitted for execution on a cluster of
cloud nodes. Individual nodes can be configured from a vari-
ety of Virtual Machine (VM) types available from the cloud
provider’s catalog, such that each type features, possibly,
several GPUs. Each node can be configured with a single
VM type and multiple job can run on it.

Each job is characterized by a deadline, a batch size and a
tardiness cost (i.e., a penalty cost proportional to the differ-
ence between the job completion time and its deadline, and
its priority). The set of jobs to be scheduled is not known in
advance: new jobs are submitted with different characteris-
tics, deadlines, and priorities without any repetition scheme,
resulting in an online problem. Finally, job preemption is al-
lowed to manage higher priority submissions. To evaluate
the effectiveness of the Hierarchical method, we compare
its performance with an extension of the DP-based algo-
rithm in (Saxena et al. 2020), that we suitably modified to
adapt to our scenario. While our Hierarchical method con-
siders the batch size of each job as a static parameter, fixed
by the user upon submission as well as, e.g., the deadline,
the DP-based method treats it as a dynamic parameter that
can be adapted to guarantee better performance. To boost
the DP-method results, we implemented multiple variants by
relying on different proxy functions. Our comparison con-
siders also a First-Principle method based on the Earliest-
Deadline-First (EDF) policy which is used as a baseline also
in other studies (Amaral et al. 2017).

Experimental results show that the Hierarchical method
outperforms the other algorithms particularly when the sys-
tem load is relatively high, achieving an average cost reduc-
tion up to 99% against the DP-based methods and 96% with
respect to EDF. Additional tests highlighted that the DP-
based algorithms obtain comparable results with respect to
the Hierarchical method only when they can exploit a four
times larger amount of resources, making the latter the most
suitable in order to achieve good results employing a lim-
ited number of nodes. The rest of the paper is organized
as follows. Section 2 reviews the related work. Section 3
describes the hierarchical framework proposed in (Filippini
et al. 2020). Section 4 introduces the novel DP based al-
gorithm. Section 5 presents the experimental setup and the
results of comparing both the Hierarchical method against
the DP methods and the First-Principle approach. Finally,



Section 6 draws conclusions and outlines future works.

2 Related work
Optimizing job scheduling and GPU resources management
in a Deep Learning (DL) context is a popular problem
in these years. GPUs lead to an unprecedented computing
power, still hard to fully exploit (Steinberger 2018). Both
robust theoretical frameworks and effective practical solu-
tions are thus needed to support job scheduling (Tan et al.
2019).

The Hierarchical method proposed in (Filippini et al.
2020) represents one of the first attempts to tackle jointly
the problems of online DL job scheduling and resource se-
lection on multiple virtualized GPUs, while most of the ex-
isting literature is mainly focused on one of these aspects.
Many works, e.g., (Amaral et al. 2017; Xiao et al. 2018;
Bao, Peng, and Wu 2019; Chaudhary et al. 2020; Maha-
jan et al. 2020), rely on GPU requests submitted by the
users and determine only the optimal job scheduling to op-
timize different objectives. Other proposals focus instead
on the resource selection problem, delegating the schedul-
ing to simple mechanisms as First-In-First-Out (FIFO) or
EDF (Peng et al. 2018; Saxena et al. 2020; Peng et al. 2021;
Yeung et al. 2022).

In particular, (Amaral et al. 2017) proposes a topology-
aware scheduling policy for DL jobs in cloud environ-
ments, which provides a placement strategy able to satisfy
workload requirements preventing also application interfer-
ence. Gandiva (Xiao et al. 2018) is a scheduling frame-
work that improves latency exploiting heterogeneity and
recurrent behaviors of DL jobs while running mini-batch
iterations. Harmony (Bao, Peng, and Wu 2019) deep re-
inforcement learning-based scheduler evaluates the impact
of co-location to reduce interference, aiming at maximiz-
ing GPUs and nodes usage and reducing jobs completion
time. Gandivafair (Chaudhary et al. 2020) exploits a cen-
tral, gang-aware scheduler for large jobs that span multiple
servers, and a local, per-server, gang-aware scheduler for
small jobs, in order to maximize inter-user fairness. Fairness
is crucial also for Themis (Mahajan et al. 2020), where a
round-by-round partial allocation auction is exploited to al-
low applications to specify their placement preferences, pro-
viding Pareto efficiency and maximizing sharing incentive.

Optimus (Peng et al. 2018) is a Kubernetes scheduler es-
pecially designed to manage DL jobs on a shared distributed
containerized environment. It minimizes the training time
by estimating job execution times through online resource-
performance models and reduces communication overheads
by placing jobs on the minimum number of servers that al-
low to deploy an equal amount of workers/parameter servers
(PS). DL2 (Peng et al. 2021) combines an offline super-
vised learning and an online reinforcement learning-based
approach for resource selection, setting the number of work-
ers/PS to adopt for DL training jobs. The work in (Yeung
et al. 2022) proposes an interference-aware and prediction-
based resource manager that evaluates the quality of place-
ment decisions through GPU utilization. Finally, (Saxena et
al. 2020), which is used as benchmark in this work, devel-
ops an optimization formulation where the optimal job batch

size is set according to their scaling efficiency. Moreover, it
proposes a dynamic programming-based heuristic algorithm
to determine an effective resource allocation, while jobs are
scheduled relying on a FIFO mechanism.

3 The Hierarchical method
This paper aims to analyze the performance of a resource
selection and scheduling algorithm designed in a hierarchi-
cal framework (Filippini et al. 2020) for the management
of DL training jobs on a GPU-based virtual machine clus-
ter, comparing it with a novel Dynamic-Programming-based
algorithm and a First-Principle method based on the EDF
policy. The algorithm, initially proposed in (Filippini et al.
2020), is denoted in the following as Hierarchical method.
This section summarizes its main features in order to make
this paper self-contained and readily comprehensible. In the
reference framework (see Figure 1), multiple jobs can run
concurrently on the same node and each job can be allocated
on a single node (featuring, possibly, multiple GPUs). As al-
ready mentioned, a deadline is associated to each job upon
submission, and a penalty proportional to the job’s priority
is incurred in case this deadline is exceeded. Moreover, job
preemption is allowed.

Incoming jobs are submitted to a central queue J , that,
according to a Round Robin (RR) policy, distributes them
in local queues Jk, each one managed by a local controller
k. The set N of available nodes, which can be provisioned
with a VM type v selected from a cloud provider’s catalog
V , is partitioned among the K controllers so that each one
considers N/K instances. Each VM type v available in the
catalog is characterized by a set of available GPUs Gv =
{1, 2, . . . , Gv}, and by a time unit cost cv . Each job j ∈ J
has a submission time, a deadline dj , and a tardiness weight
ωj that is used to characterize its priority. Indeed, the penalty
due to the violation of its deadline is defined as ωjτj , where
the tardiness τj is computed a posteriori as

τj = max {0, Tj − dj}, (1)
and Tj is the ending time of the execution of job j.
Each local controller k aims at: i) determining which jobs

must be executed in the current scheduling step and which
must be postponed, ii) choosing from the cloud provider cat-
alog the best VM type to deploy on each node, iii) partition-
ing efficiently the available GPUs among the running jobs
on each node.

Therefore, each local controller solves a joint Capacity
Allocation (CA) and Jobs Scheduling (JS) problem in an
online setting, every time a job is completed or a new job
is submitted or after a certain time interval denoted by ∆t if
none of the two previous events happen. We assume that jobs
execution can be stopped and resumed from a checkpoint to
account for changes in the allocated resources.

The expected execution times of job j when it is deployed
on a VM type v with g GPUs, denoted by tjvg, are estimated
through the machine learning models proposed in (Lattuada
et al. 2022), with an average percentage error below 11%.

Figure 1 shows an example featuring six DL training jobs,
sent to three local controllers so that, e.g., controller k man-
ages a local queue Jk = {j2, j5}. The N/K nodes in
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Figure 1: Reference framework.

Nk = {nk, . . . , nk+N/K} can be configured with VMs of
three types. Two types (v1 and v2) have four GPUs while v3
has eight GPUs. Each VM type has its own time unit cost
(0.2, 0.3, 0.5) $/h. Sample execution time estimates are re-
ported in the blue box. The local controller k schedules jobs
j2 and j5 to run on the same node nk

1 selecting the VM type
v2 , with 4 GPUs. Job j5 will end first; if no other jobs are
submitted in the while, the problem is solved again by the
local controller: job j2 can be preempted or can continue
in the next time slot, possibly with a different configuration
(VM type and/or number of GPUs). A similar procedure is
performed when a new job joins the local queue.

Each local controller k solves a Mixed-Integer Linear Pro-
gramming (MILP) problem, whose complete formulation is
reported in (Filippini et al. 2020), to determine which VM
type v ∈ V to select on each available node n ∈ Nk (through
the binary variables yknv), and the optimal deployment of job
j ∈ Jk (through the binary variables xk

jnvg, which are 1 if
job j runs on node n with VM type v and g GPUs). Since a
single VM type can be selected on each node, the set Nk is
often referred to in the following as set of assignable VMs.

The list of all problem parameters and variables is re-
ported in Table 1.

The objective function for controller k reads:

min
∑

j∈Jk

ωj

(
τ
k
j + ρτ̂

k
j

)
+µ

∑
n∈Nk
v∈V

(Gvy
k
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∑
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∑
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k
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(2)

The first term represents the costs due to the accumulated
tardiness. In particular, the worst-case tardiness τ̂kj is de-
fined, for any job j ∈ Jk, as:

τ̂j
k = max{0, Tc +∆t+min

v,g
tjvg − dj}, (3)

where Tc is the current time, ∆t is the scheduling time
interval and tjvg is the expected execution time of job j
on the VM type v using g GPUs. The worst-case tardiness
aims to penalize postponed jobs, who may be resumed too
close to the deadline, and assumes a different value for every
scheduling step.

The second term in Equation (2) is proportional to the dif-
ference between the number of used GPUs and the number
of available GPUs from each selected VM type, and so it
penalizes idle resources (µ is a positive constant acting as a
Lagrange multiplier).

Finally, the third term in Equation (2) corresponds to the
sum over all nodes of the total execution costs of the first job
that will complete on them. Here, αk

jn is a binary variable
that is equal to 1 if the job j ∈ Jk is the first ending job on
node n ∈ Nk, and 0 otherwise, while πk

jn is the total execu-
tion cost of job j ∈ Jk on node n ∈ Nk. Although binding
the execution costs only to the first ending job might seem a
short-sighted approach, the experiments conducted in (Filip-
pini et al. 2020) and in Section 5.2 confirm its effectiveness.
Finally, note that we are neglecting re-configuration costs of
running nodes since this would require a few minutes while
DL training jobs run for several hours (or days).



Table 1: Notation of the MILP model
Problem parameters
Jk set of jobs submitted to the local queue k
Nk set of available nodes managed by the local controller k
Gv number of available GPUs on the VM type v
dj deadline of job j
ωj tardiness weight of job j
tjvg execution time of job j when running on VM type v

with g GPUs
∆t scheduling time interval
µ a penalty coefficient for unused GPUs
ρ a penalty coefficient for postponed job
Local controller k variables
yk
nv 1 if VM type v is chosen on node n, 0 otherwise

xk
jnvg 1 if job j is executed on node n with VM type v

on g GPUs, 0 otherwise
τk
j tardiness of job j
τ̂k
j worst-case tardiness of job j if it is postponed
πk
jn execution cost of job j on node n

αk
jn 1 if job j is the first-ending job on node n, 0 otherwise

4 A Dynamic Programming-Based
Alternative Method

To assess the effectiveness of our approach, we compare its
results with the outcomes of a novel extension of the DP-
based method initially proposed in (Saxena et al. 2020).

The initial work introduced a resource allocation strategy
for DL training jobs that leverages dynamic programming
to determine, for each job, the number of GPUs to be al-
located and its optimal batch size. The optimization is pe-
riodically performed, with a time period ∆t. Note that the
optimization method is developed in a centralized way, thus
at any rescheduling point it considers the complete queue
J =

⋃
k Jk and the set of nodes N =

⋃
k Nk, consequently

all the variables do not need the index of the local controller
k. Furthermore, the DP algorithm has an additional decision
variable: at each rescheduling point the job batch size can be
selected to optimise the job expected execution time. There-
fore, while the job execution times were denoted in Section 3
as tjvg, here we define them as tjvgb, where b is the optimal
batch size selected for job j in the current scheduling step.

The core of our extension with respect to (Saxena et al.
2020) is to add the concept of VMs and to optimally select
VMs size, which was not considered in the reference work.
Indeed, the original method worked under the assumption
that all nodes were physical machines hosting GPUs of ho-
mogeneous types. In contrast with our Hierarchical method
(see Section 3), (Saxena et al. 2020) prescribes that a single
job can be executed on each node. Since only one VM type
is selected on each node, this is equivalent to prescribe that
one job can run on each VM. This has a strong impact on
the choices the algorithm can make concerning the resource
allocation. First of all, since any VM type v can be selected
from the catalogue V to run on any node n ∈ N , the VM
type and the number of GPUs assigned to a job j ∈ J do
not influence the resources assigned to all the other jobs:
the only constraint is given by the total number of available
nodes. Moreover, all the GPUs available in a VM are used to

run the job deployed on it, since they cannot be assigned to
other jobs and idle resources determine higher operational
costs.

Our extension, that in the following will be named DP
algorithm, is based on the Optimal Substructure property,
that in our context can be stated as follows:

Property 1 (Optimal Substructure) Consider the cost
function F and let Fopt

(
{ji}Ji=1, N

)
be its optimal value

for jobs {ji}Ji=1 when the number of available nodes is N .
We say that the problem has an Optimal Substructure if:

Fopt({ji}Ji=1, N) = min
n∈{0,1}

Fopt({ji}J−1
i=1 , N−n)+Fopt(jJ , n)

Property (1) can be interpreted as follows: given an opti-
mal solution, if we consider as a collection of sub-problems
any partition of the jobs and the nodes on which they run, the
solution is optimal also for the single sub-problems. More-
over, also the converse is true: the partition of nodes is such
that the sum of the costs provided by the optimal solutions of
the single sub-problems is optimal for the original problem.

The general structure of our DP approach is reported in
Algorithm 1. At lines 2 and 3, three parameters are initial-
ized: J denotes the number of submitted jobs that can be
executed in the current scheduling step, i.e. the length of
the queue J . F is a J × N table such that F (i, n) is the
cost associated to the optimal solution considering only jobs
{jl}il=1 and n nodes. Finally, SOL is a J×N table such that
SOL(i, n) stores the setup selected to execute job ji in order
to achieve the optimal cost F (i, n). Before entering in the
first loop, the first row of F is initialized to 0 since no op-
erations are required if there are no jobs. Then, in lines 4-7,
the optimal configuration is selected for every job according
to the value of a proxy function F1 (defined in the follow-
ing), and both the cost of executing the job with the selected
configuration and the cost of postponing the job to the fol-
lowing scheduling step are computed according to a possibly
different proxy function F2. Lines 8-18 aim to find the op-
timal cost and resource allocation for jobs {jl}il=1 consider-
ing only h nodes, exploiting Property 1. Finally, at lines 21-
27 we allocate resources to all jobs exploiting a backward
scheme.

To define the proxy functions F1 and F2, we consider the
binary variables ynv , equal to 1 if the VM type v ∈ V is
selected on node n ∈ N (see Section 3), and zjn. These
were used in the complete formulation proposed in (Filippini
et al. 2020), and are equal to 1 if job j ∈ J is deployed on
node n. Moreover, we introduce, for each job j ∈ J , a new
binary variable rj , which is equal to 1 if j is not executed
in the current scheduling step. The new problem parameters
and variables are summarized in Table 2.

Starting from the problem definition in Section 3, we in-
troduce a first proxy function as:

FWCT =
∑

j∈J ,v∈V,n∈N
zjnynvωjτj +

∑
n∈N ,v∈V

ynvcv∆t +
∑
j∈J

rj τ̂j .

(4)

The first term represents the penalty for deadline viola-
tions, the second one measures the operational costs related



Algorithm 1 General structure of the DP algorithm
1: Result: Optimal setup for each submitted job given the jobs

queue J and N nodes
2: J ← LENGTH (J ), F ← +∞J×N

3: SOL← 0J×N , F (0, :)← 0
4: for i = 1, . . . , J do
5: find the best set up Ci for ji w.r.t. F1

6: cassign ← F2 (ji, Ci)
7: cqueue ← F2 (ji, {})
8: for h = 1, . . . , N do
9: passign = cassign + F

(
{jm}i−1

m=1, h− 1
)

10: pqueue = cqueue + F
(
{jm}i−1

m=1, h
)

11: if passign < pqueue then
12: F

(
{jm}im=1, h

)
= passign

13: SOL (i, h) = Ci

14: else
15: F

(
{jm}im=1, h

)
= pqueue

16: SOL (i, h) = {}
17: end if
18: end for
19: end for
20: i← J k ← K
21: while i > 0 do
22: set the optimal set up for ji Ci = SOL (i, k)
23: i← i− 1
24: if Ci ̸= {} then
25: k ← k − 1
26: end if
27: end while

to VMs usage, and the third one is used to penalize the post-
ponement of jobs via the worst-case tardiness τ̂j defined in
Equation (3). In the following, we will denote the method
characterized by F1 = F2 = FWCT as DP(WCT).

In order to enhance the results obtained by DP(WCT), we
tried to develop alternative proxy functions. In particular, fo-
cusing on the selection of the best setup, we defined F1 to se-
lect as optimal configuration the one that guarantees the low-
est execution time. This is particularly effective in high-load
scenarios (which are the most challenging ones, as shown in
the next sections). This choice was coupled with two alter-
natives for F2. In the first setting, denoted as DP(FastWCT),
we kept F2 = FWCT . In the second scenario, denoted in-
stead as DP(FastB), we defined FB by replacing the worst-
case tardiness τ̂j with a positive constant B. Indeed, if the
deadline of a job j is very large, the corresponding τ̂j be-
comes 0, which means that the job may be postponed with
no impact on the proxy function value. This would nega-
tively affect the performance in the long term, since post-
poned jobs risk to violate their deadlines if, due to the arrival
of new jobs, resources are not enough to execute them in the
near future.

Finally, we decided to couple F2 = FWCT with a modi-
fied function F1 given by:

F̃ =
∑

j∈J ,v∈V,n∈N
zjnynvωj τ̃j +

∑
n∈N ,v∈V

ynvcv∆t +
∑
j∈J

rjB. (5)

The first term of F̃ is obtained by substituting the tardi-
ness τj with an adjusted tardiness defined as:

τ̃j = max{0, Tc + tjvgb − dj}, (6)

which measures the delay of job j with respect to its dead-
line if it is fully executed with the current configuration (i.e.,
assuming that no migration occurs in the following schedul-
ing steps). Due to this definition, it penalizes slow configu-
rations even if no tardiness occurs at the end of the current
scheduling step. The method obtained exploiting F1 = F̃
and F2 = FWCT is denoted as DP(AdjWCT).

Note that, for a fair comparison among different DP-based
algorithms, we always compute the final costs with the same
proxy function, namely FWCT , regardless of the selected
proxy functions F1 and F2.

We performed different experiments with the aforemen-
tioned methods, varying the time elapsed between two
scheduling steps, ∆t. For the sake of space, we discuss in
the following section only the results obtained with ∆t =
15min, which guaranteed the best trade-off between results
quality and rescheduling frequency, comparing them with
our method.

Table 2: Notation of the DP algorithms
Problem parameters
J set of submitted jobs
N set of available nodes
cv time unit cost of the VM type v
dj deadline of job j
ωj tardiness weight of job j
tjvgb execution time of job j when running on VM type v

with g GPUs and batchsize b
∆t scheduling time interval
Problem variables
ynv 1 if VM type v is chosen on node n, 0 otherwise
zjn 1 if job j is executed on node n, 0 otherwise
rj 1 if job j is postponed, 0 otherwise
τj tardiness of job j
τ̂j worst-case tardiness of job j if it is postponed
τ̃j adjusted tardiness of job j

5 Experimental results
In this section we report the result of the comparison
of the Hierarchical method with three of the DP algo-
rithms presented in Section 4: DP(WCT), DP(FastWCT),
and DP(AdjWCT). We omit the results of DP(FastB), since
overall it shows a behaviour very close to DP(FastWCT).
We considered a very large set of representative scenarios,
randomly generated as described in Section 5.1. The results
obtained by the Hierarchical method and the DP algorithm
variants are compared in Section 5.2, drawing conclusions
about their efficiency in relation to the amount of employed
resources.

The results with all methods were collected exploiting a
Ubuntu 18.04 VM based on a dual Intel Xeon Silver 4114
CPU at 2.20GHz with overall 40 cores and 64GB of mem-
ory. The largest problem instance (100 nodes and 1,000 jobs)
can be solved by the Hierarchical Method (with Gurobi 9.0
exploiting all cores) in less than one minute on average (the
computation time of the k-th controller is around 40 − 50s,



see (Filippini et al. 2020) for an in depth analysis). The av-
erage time required to run the alternative methods to execute
instances of different size are reported in Table 3.

The datasets and the source code employed to perform the
experiments reported in this paper are available at
https://zenodo.org/record/6591444#.YpPBlDlBxH4.

Table 3: Computational times (in seconds) required by the
DP-based and the Hierarchical methods

N° nodes Hierarchical WCT FastWCT AdjWCT
10 40.724 6.963 2.956 3.355
20 41.475 19.645 6.888 8.078
30 42.254 29.740 11.158 13.230
40 43.062 38.998 15.124 17.538
50 43.902 59.700 20.710 24.530
60 44.776 74.620 24.820 29.553
70 45.685 94.380 30.120 36.088
80 46.632 116.528 36.164 43.388
90 47.619 142.298 43.571 52.225
100 48.649 164.885 50.413 59.855

5.1 Experimental setup
As representatives of long-running Deep Learning (DL)
training jobs, we selected different neural networks (i.e.,
Alexnet, Resnet, VGG, and DeepSpeech) implemented with
PyTorch and Tensorflow frameworks. They are significantly
heterogeneous in terms of resource usage: VGG perfor-
mance is heavily related to the available computational
power, while Alexnet and DeepSpeech performance are
mainly determined by disk-access efficiency and by the GPU
memory size and speed. Finally, Resnet revealed to be char-
acterized by a balanced type of workload, for additional de-
tails see (Lattuada et al. 2022). For each network-framework
pair, several application instances have been created by vary-
ing the epochs number.

Table 4: Characteristics of the Target Nodes
Cost

VM type GPU type #GPU [$/h]
NC6 K80 1 0.56
NC12 K80 2 1.13
NC24 K80 4 2.25
NV6 M60 1 0.62
NV12 M60 2 1.24
NV24 M60 4 2.48
NC48∗ K80 8 4.48
NV48∗ M60 8 4.96

The considered VM catalog (reported in Table 4) is com-
posed of 8 different types. Six of them (NC6, NC12, NC24,
NV6, NV12, NV24) are based on Nvidia K80 and M60 and
are available on Microsoft Azure. The last ones (NC48∗ and
NV48∗) are hypothetical VM types obtained from the NC24
and NV24, doubling the number of available GPUs and their
hourly costs, in line with the current cloud providers pricing
models.

To verify the effectiveness and generality of the proposed
approach, several random problem instances were generated

Figure 2: Job submissions under different workloads

using the parameters described in the following.
We varied the number N of available nodes in the clus-

ter from 10 to 100. The number of submitted jobs in each
instance is set to J = 10N .

The number of controllers K for the Hierarchical method
has been set to N/5, i.e., each local controller has to manage
5 nodes (or VMs).

Job inter-arrival times were generated as follows:

• In the first instance set, inter-arrivals were drawn, as in
other literature proposals (see. e.g., (Amaral et al. 2017)),
from an exponential distribution, with mean equal to
75, 000s/N . The mean decreases as the cluster size in-
creases so that the average per-node workload remains al-
most constant.

• In other instances, inter-arrival times were generated as
described in (Saxena et al. 2020). Arrivals are sampled
from a Poisson distribution, considering three possible
rates. Let λ be a base rate defined as the reciprocal of
the minimum expected completion time given the config-
urations available in the catalog. The high rate is set to
ε nmax λ, while the low rate is ε nmax λ/4. We defined
nmax as the number of nodes in the system multiplied
by the maximum number of GPUs that can be assigned
to each job. We tuned the parameter ε to match the peak
load of the system to real-life scenarios reported in (Peng
et al. 2021), of nearly 135 job submissions per hour in
a system involving few thousands of GPUs. Finally, we
obtained the mixed rate by alternating high and low distri-
butions approximately every 10 submissions (similarly to
the work in (Saxena et al. 2020)).

The distributions of jobs arrivals for a scenario featuring
N = 1000 and J = 10000 are reported in Figure 2. We
used the aforementioned traces of jobs to simulate a long-
term scenario, involving multiple submissions. The costs are
evaluated at the end of the simulation, when all jobs have
been completely executed, and involve the execution costs
depending on the chosen VMs and the tardiness costs of jobs
that complete their execution after the deadline.

For each value of the cluster size and each arrival rate,
three problem instances were built by changing the seed of
the random distribution.



The remaining parameters are set as follows. As stated
previously, the periodic scheduling time interval ∆t is set
to 15 min. The deadline dj for each job is randomly gen-
erated according to a uniform distribution in the range
[minvg{tjvg}, 3minvg{tjvg}] for all the methods, indepen-
dently on the selected batch size. This guarantees fair com-
parisons, since the batch size is a dynamic parameter for the
DP methods.

The tardiness weights ωj are randomly generated in the
interval [0.003, 0.015] $/hour with a uniform distribution. In
this way, for any job whose deadline is violated, the aver-
age time unit delay penalty is almost ten times larger than
the time unit execution cost. Concerning the objective func-
tion adopted by the Hierarchical method, the postponed job
penalty ρ is set to 100 while the µ parameter is set equal to
1 (given the objective function adopted in the problem for-
mulation, any positive value forces the use of all available
GPUs).

The results of both the Hierachical method (hereafter de-
noted as HM) and the three DP-based algorithms of Sec-
tion 4 have been compared, as in other literature proposals
(see, e.g., (Amaral et al. 2017)), against those obtained with
the Earliest-Deadline-First method. In particular:

• For each problem instance characterized by N avail-
able nodes and J jobs generated as described in Sec-
tion 5.1, different solutions were determined by exploiting
all methods.

• Then, the same jobs traces were considered by all meth-
ods except HM, progressively increasing the amount of
available resources by exploiting 2N , 4N and 8N nodes.
The results associated to the 8N and 4N scenarios were
found to be very similar, since the resources available in
a system with 4N nodes were already enough to run all
jobs concurrently. Thus, the 8N results are not reported
here.

The purpose of this set of experiments is twofold: first, we
want to quantify the relationship between the performance
of HM and those of all the other methods, and check if this
depends on the instance size (number of nodes and jobs).
Second, since HM is the only method which allows to ex-
ecute multiple jobs on a single node, the first comparison
might not be fair. So, in order to balance that constraint,
we also compare the results obtained by HM with those ob-
tained by the other methods employing more nodes.

All HM solutions were obtained by setting in Gurobi
the mixed-integer programming gap (i.e., the difference be-
tween the current upper and lower bounds of the MILP
solver) to 5%. EDF and the DP-based methods are imple-
mented in C++.

5.2 Comparative analysis
For the sake of space, we report here the results for the expo-
nential, low and high distributions. The results of the simu-
lations for the mixed distribution were found to have a trend
very similar to the high distribution. For each considered
scenario, the first row of Figure 3 shows the ratio between
the average total cost obtained with all proposed methods

and the average total cost of EDF. The plots in the left col-
umn represent the outcome associated to the exponential dis-
tribution, while the high distribution is represented by the
plots in the middle and we finally we find the low distribu-
tion in the right column. We observe in the first row of Fig-
ure 3 that HM yields the best performance when N nodes
are exploited by all five algorithms for all the distributions.
The average cost reductions are between:
• 16.48% (low rate) and 95.53% (high rate) compared to

EDF
• 47.85% (low rate) and 93.97% (high rate) compared to

DP(FastWCT)
• 35.96% (low rate) and 95.50% (high rate) compared to

DP(AdjWCT)
• 95.36% (low rate) and 98.70% (high rate) compared to

DP(WCT).
For all the distributions, DP(WCT) is the method which

leads to the worst performance. This is due to the fact
that, as specified in the previous section, the worst case tar-
diness τj defined in Equation (3) does not penalize jobs
preemption properly. For the exponential and high distri-
butions, DP(FastWCT) performs better than EDF and the
other DP-based algorithms. This is not surprising: indeed
DP(FastWC) is designed for situations with a high system
load. This is not valid for the low distribution, in which
DP(AdjWCT) performs better than DP(FastWCT) and EDF
performs better than all the DP-based algorithms, with an
overall cost comparable even to the one obtained by HM.
Indeed, in the low rate scenario the system load is reduced,
so there is no need to look for the fastest setup; consequently,
it is easier to meet the deadlines even with simple algorithms
like EDF.

Concerning the set of experiments exploiting a larger
number of nodes, first we note that, regardless the number
of available nodes, DP(WCT) always yields the worst re-
sults for all distributions. Moreover, as the number of avail-
able nodes increases, DP(AdjWCT) and EDF perform bet-
ter than DP(FastWCT): indeed we are decreasing the ra-
tio J/N , i.e., the system load is reducing. It is interesting
to see that, when 4N (and also 8N ) nodes are considered,
EDF and DP(AdjWCT) achieve comparable (or, sometimes,
marginally better) results with respect to those obtained with
HM (for which only N nodes are exploited). The maximum
gain w.r.t. HM is reached by DP(AdjWCT) for the high dis-
tribution when the number of nodes is equal to 4N (and 8N ),
and it is less then 20%. However, exploiting a higher number
of nodes could be financially not feasible, especially when
relying on reserved instances. Indeed, even if there is the
possibility to have a reduced hourly cost for resources, this
often can be done through an additional yearly cost. There-
fore, methods that yield to equivalent costs requiring less
resources are preferred.

6 Concluding remarks
This paper compares the performance of the Hierarchical
method originally presented in (Filippini et al. 2020), for
the online joint capacity planning and jobs scheduling for



Figure 3: Total costs for different number of nodes and distribution of jobs submission. The horizontal axis represents the
number of nodes employed, while the vertical axis represents the ratio between the cost obtained with a fixed method and the
one obtained by EDF under the same conditions

DL training in cloud deployments, against three Dynamic-
Programming (DP)-based methods adapted from (Saxena et
al. 2020), all sharing the same structure but with different
proxy functions. The results of the presented experimental
campaign show how the Hierarchical method achieves very
significant costs savings with respect to Earliest-Deadline-
First (EDF) and the DP-based methods for an exponential
inter-arrival and high rate of incoming jobs, while for a lower
rate the gain is less remarkable but still relevant. In particu-
lar, the Hierarchical method achieves an average percentage
cost reduction between 16% and 96% with respect to EDF,
and between 36% and 99% compared to the DP-based algo-
rithms.

Among the compared methods, the Hierarchical approach
is the only one that allows the execution of multiple jobs on
the same node. Therefore, to guarantee a fair comparison,
we expanded the experiments by comparing its results with
those obtained with the other methods when they consider
the same jobs traces but a larger number of nodes. We ob-
served that, in the best case, this leads to a gain less than
20% with respect to the Hierarchical approach, which does

not worth the usage of so many resources.
In our research agenda we plan to integrate the Hierarchi-

cal method with a jobs queue manager and to validate the
results achieved in an industry setting.
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