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Abstract

Predictive maintenance is important for overall equip-
ment effectiveness in a production process. This paper
studies scheduling predictive maintenance in flow shops
with re-entrancy and due dates. We propose a method
to integrate maintenance operations on the re-entrant
machine in any schedule produced by a list schedul-
ing algorithm, provided we have knowledge of how the
health status of the machine evolves. Additionally, we
introduce a schedule repair strategy for instances where
schedules become infeasible as a result of due date vi-
olations resulting from the insertion of maintenance
operations. Our generic approach is evaluated on an
industrial use case. The results demonstrate that inte-
grated maintenance and production planning increases
the productivity of the process while remaining appli-
cable for online scheduling.

Introduction

The literature classifies three kinds of maintenance
(Swanson 2001), (i) preventive where maintenance ac-
tions occur according to certain patterns, (ii) predictive
where maintenance actions are carried out based on the
future health status of machines (Phogat and Gupta
2017), and (iii) reactive where maintenance actions are
only carried out upon machine failure. Of the three,
predictive maintenance shows the most promise as it
avoids the extreme case of waiting for machine break-
down and also avoids the other extreme case of main-
taining too often and incurring excessive costs. How-
ever, predictive maintenance planning requires us to
know the health status of machines and this is often de-
pendent on patterns of machine use. Thus, predictive
maintenance planning creates an integrated production
and maintenance scheduling problem.

In many modern manufacturing systems, we have the
added complexity that the same set of machines can
cater to a variety of products, which can have differ-
ent effects on the health status of these machines (El-
Maraghy 2005). Additionally, since many of these sys-
tems receive manufacturing requests on the fly, schedul-
ing decisions need to be made in an online fashion.

Existing research has proposed solutions for schedul-
ing maintenance in manufacturing systems (Yang,

Djurdjanovic, and Ni 2007; Herr, Nicod, and Varnier
2014). Artificial intelligence techniques have also been
used both to determine health status of machines (Su
et al. 2006; Susto et al. 2014) and to create schedules
themselves (Yang, Djurdjanovic, and Ni 2007; Ladj,
Tayeb, and Varnier 2018). However, predictive main-
tenance scheduling in flow shops with re-entrancy and
due dates is, to the best of our knowledge, neglected.

This paper considers scheduling predictive mainte-
nance in flow shops with re-entrancy and due dates.
Motivated by the opportunity provided by list schedul-
ing to quickly produce high quality solutions using sim-
ple heuristics (Carpov et al. 2012; Luo et al. 2013;
van der Tempel et al. 2018), we propose an integrated
production and maintenance planning method to inte-
grate maintenance operations on the re-entrant machine
in any schedule produced by a list scheduling algorithm,
provided we can predict how the health status of the
machine evolves. Additionally, we design a schedule re-
pair method for instances where schedules are broken
by the insertion of maintenance operations. The algo-
rithmic approach proposed in this paper is generic and
we demonstrate its performance on a concrete use case
with evaluations based on the makespan and overall
equipment effectiveness (OEE) (Hansen 2001).

The contributions of this paper to the liter-
ature are: an extension of list scheduling to handle
predictive maintenance, a schedule repair algorithm for
re-entrant flowshops and an evaluation of the above on
an existing industrial use case.

We first discuss related work, then provide the back-
ground and problem definition. Following, we lay out
our solution approach and analyze its complexity. We
also examine an industrial use case and show experi-
mental results from which we conclude that list schedul-
ing heuristics can be extended to include maintenance
operations on re-entrant flow shops with improvements
in resulting makespans.

Related Work
Scheduling manufacturing systems is an important field
that has received attention for many years (Basnet and
Mize 1994; Ruml, Do, and Fromherz 2005). Mainte-
nance scheduling has been studied extensively in the



operations research literature in particular, with differ-
ent goals such as reducing maintenance costs, minimis-
ing makespan, and even total tardiness (Phogat and
Gupta 2017). Typically, these manufacturing systems
are modelled as job or flow shops with many variants
depending on the specifics of the area of application or
type of problem considered (Buzacott and Shanthiku-
mar 1980). The dynamic relationship between mainte-
nance scheduling and production scheduling has been
investigated from multiple angles. Some work has fo-
cused on accurately determining machine health sta-
tus (Su et al. 2006; Susto et al. 2014), while others
have focused on generating schedules (Cui et al. 2018).
Scheduling solutions that use search optimization have
been proposed by Yang, Djurdjanovic, and Ni (2007)
and Ladj, Tayeb, and Varnier (2018) while other work
has considered mixed integer linear programming for-
mulations of this problem (Varnier and Zerhouni 2012).
Solutions like these typically consider an offline prob-
lem where there is sufficient time budget to carry out
these evaluations; however, they become a bottleneck
when applied to online scheduling problems.

Scheduling flow shops with re-entrancy is a com-
mon problem in semiconductor manufacturing (Kai-
hara, Kurose, and Fujii 2012) and production print-
ing (Waqas 2017) and has been considered in many
papers (e.g., (Choi and Kim 2008; Lin, Lee, and Ho
2013)). However, few works have considered mainte-
nance scheduling for this scenario. One example is Kai-
hara et al. (2010) where Lagrangian decomposition co-
ordination was used to tackle maintenance scheduling.
This scenario is such that maintenance is known in ad-
vance and typically takes minutes to produce a schedule
which makes it unsuitable for online scheduling.

Many common online scheduling algorithms use list
scheduling heuristics such as priority scheduling, earli-
est deadline first scheduling, and Johnson’s algorithm
(Ruiz and Maroto 2005). Heuristic list schedulers have
also been developed for the use case scenario on which
our work is demonstrated (van Pinxten et al. 2017;
van der Tempel et al. 2018). However, the presence
of due dates in our problem, combined with the fact
that typical list scheduling heuristics do not consider
many candidate solutions make it necessary to address
schedules that become infeasible. Indeed, re-organising
or repairing a changed schedule has been studied with
various heuristics like left and right shift (Kutanoglu
and Sabuncuoglu 2001). Chan and Wee (2003) com-
bine multiple of these heuristics and a genetic schedule
repair algorithm to build a solution that caters to mul-
tiple classes of schedule disturbances in a prefabrication
plant. These heuristics however, do not fully apply to
a scenario with due dates and a required job comple-
tion order. In the context of flow shops, an example of
schedule repair algorithms can be found in Allahverdi
(1996) which considers re-scheduling in a two-machine
flow shop where schedules are disrupted by machine
breakdowns. Additionally, Caricato and Grieco (2008)
consider re-scheduling due to inserting new jobs in al-

Figure 1: Sample re-entrant flow shop where the operations
are represented by circles. Column wise, we have operations
of the same job and row-wise, we have operations on the
same machine with one of these being the re-entrant ma-
chine that appears on rows 2 and 3. Operations with the
same colour or boundary lines are mapped to the same ma-
chine. Set up times are shown by solid edges and due dates
are shown by dashed edges.

ready planned schedules. These cases all consider unex-
pected interruptions and do not have the combinations
of re-entrancy and due dates.

Problem Definition

We consider the maintenance-aware re-entrant flow
shop with setup times and relative due dates. In this
problem, the due dates and setup times form a sys-
tem of difference constraints and can be represented
as a constraint graph (Figure 1). The maintenance-
aware flow shop model can be represented as the tuple
(M,J,O, P, S,D, δ,X,OM ) where M = {µ1, ..., µm} is
the set of machines and J = ⟨J1, ..., Jn⟩ is the sequence
of jobs. The set O represents the set of operations for
every job Ji ∈ J where each operation oi,j has a pro-
cessing time P (oi,j). Moreover, S : O × O → IR≥0

refers to setup times, which represents the required de-
lay between the completion of an operation and the
start of another operation. Setup times can exist be-
tween operations of the same job to model travelling
time of a job for instance, or between operations on the
same machine to model any machine preparation that
is needed between operations. Operations of the same
job also have due dates between them represented as
D : O×O → IR>0, i.e., the maximum delay between the
start times of two consecutive operations of the same
job. Due dates model the fact that operations of a job
can often not be delayed indefinitely due to physical
constraints in the plant like buffer size. In a situation
where such a constraint does not apply, we simply set
the due dates to infinity. Also part of the model is
δ : ON ×M → IR≥0, a function that maps a scheduled
sequence of operations on a machine to a deterioration
state. Finally, we have a maintenance policy X that



maps deterioration states to maintenance actions where
maintenance actions are modelled as operations from a
set of possible maintenance actions OM .
We assume a setup of re-entrancy such

that the sequence of machines for each job is
⟨µ1, ..., µk, µk, ..., µm⟩, i.e., there is one re-entrant
machine that all jobs go through twice. We assume
that jobs are not allowed to overtake each other,
that the required completion order of jobs is the
same as the index of the jobs, and all setup times
and due date constraints are hard constraints that
must be obeyed. This setup means that the only
scheduling freedom is in the sequence of operations on
the re-entrant machine, i.e., first and second operations
(referred to as passes through the machine) of the
same jobs do not necessarily have to follow each
other on this machine. We limit our maintenance
planning to maintaining the re-entrant machine in the
sequence ⟨µ1, ..., µk, µk, ..., µm⟩, i.e., µk. For simplicity
of notations, a reference of deterioration δ(ON) refers
to the deterioration of re-entrant machine µk. A
sample problem is shown in Figure 1. The solution
to the problem is a schedule Ω , i.e., a sequence of
both production and maintenance operations where
each operation is assigned a start time, i.e., Ω(oi,j)
represents the start time of operation oi,j on Ω.

Solution Approach
As explained in the introduction, we take a list schedul-
ing approach and extend it to integrate maintenance
operations in the schedule. This integration is moti-
vated by the predictive approach we take to mainte-
nance where maintenance actions are based on the use
patterns of the machines and as such, we do not know
what maintenance is needed until a sequence is selected.

The typical flow of a list scheduler is to order op-
erations according to some metric and insert them in
a schedule one after the other until all operations are
scheduled. To make a list scheduling approach mainte-
nance aware, we propose to evaluate the effect of any
operation placement on maintenance triggering before
making a decision. This leads to a schedule with the
necessary maintenance actions triggered by the opera-
tion sequence already included. This is shown in Algo-
rithm 1. In Line 1, the scheduler takes as input the flow
shop to be scheduled, the chosen ordering of the oper-
ations order, and the ranking of decisions rank. Lines
2–6 initialise the variables used in the algorithm, i.e.,
an empty schedule Ω that is filled with operations by
the algorithm, empty sets of schedules Ω′ and Ω′′ used
to keep track of scheduling options, and an operation
op to track the last operation that was inserted in the
schedule. Specifically, op is initialised to a dummy oper-
ation for the first run where no insertions have occurred
yet. In Line 7, the scheduler loops through each oper-
ation oc in the chosen order and Line 8 finds positions
to place the operation in the schedule being built with
each possible option resulting in a different schedule
stored in the set Ω′. For every one of these schedules,

Algorithm 1 MALS(Maintenance Aware List Schedul-
ing)

1: function MALS(flow shop f , operation ordering
order, ranking rank) ▷ returns schedule Ω

2: Ω←<> ▷ empty schedule
3: Ω′ ← ∅ ▷ empty set of schedules
4: Ω′′ ← ∅ ▷ empty set of schedules
5: op ← dummy
6: ▷ operation initialised to dummy operation
7: for oc in order do
8: Ω′ ← generateOptions(oc, f,Ω)
9: for ω ∈ Ω′ do

10: ω ← triggerMaintenance(oc, op, f, ω)
11: Ω′′ ← Ω′′ ∪ {ω}
12: Ω← selectHighestRanked(Ω′′, rank)
13: op ← oc
14: Ω′′ ← ∅

return Ω

we trigger predicted maintenance in Line 10, which up-
dates the schedules with predicted maintenance actions
included. We keep track of the last operation placed in
the schedule op to reduce the amount of work it takes
to trigger maintenance as the schedule is already eval-
uated up to that operation op. Eventually, we pick the
best option in Line 12 where the ‘best’ is as determined
by the supplied ranking rank.

It is valuable to note that most of the steps shown in
Algorithm 1 are generic and can be customised to any
list scheduler of choice. However, evaluating mainte-
nance is performed according to the steps described in
Algorithm 2. For a given schedule, we first go through
the operations in the schedule from the last inserted
operation op to the current operation being inserted oc
in Line 2. For each operation, we evaluate the dete-
rioration state in Line 3. If a maintenance action is
triggered at any point in the schedule, the action is
then inserted and the schedule re-evaluated in Lines
5–9. We approach this by creating an operation om

to represent the maintenance operation1 and adjusting
the edges in the graph such that the constraints of the
original problem remain intact after the insertion of the
new operation. Since we have hard timing constraints
between operations, inserting a maintenance action can
lead to a previously feasible schedule becoming infeasi-
ble. In such a case, a schedule repair action is triggered
to return the schedule to a feasible state in Line 11. Al-
gorithm 2 assumes that a schedule is always repairable
and we show in Theorem 1 what the necessary condi-
tions are for this to be true.

Schedule Repair

Flow shop schedules generally need to obey a certain
ordering of operations to be valid. However, re-entrant
flow shops with due dates have an additional validity

1Maintenance operations are written with superscript m
to differentiate them from production operations.



Algorithm 2 Trigger Maintenance

1: function triggerMaintenance(current opera-
tion oc, previous operation op, flow shop f , schedule
Ω) ▷ returns schedule Ω

2: for oi ∈ ⟨op, ..., oc⟩ do
3: ∆← δ(⟨o1, ..., oi⟩)
4: ▷ predict deterioration state
5: if X(∆) ↓ then
6: ▷ deterioration triggers maint.
7: om ← X(∆)
8: ▷ Insert maint. operation
9: Ω← insertMaintenanceOperation(om,Ω)

10: Ω← updateStartT imes(f,Ω)
11: feasible← checkFeasibility(f,Ω)
12: if !feasible then
13: Ω← repairSchedule(f,Ω)

return Ω

criterion which is the due date between operations. In
a case where operations that are not completely part of
the set of input operations have to be scheduled, due
date violations become even more likely. Since these op-
erations are only known when schedules are evaluated,
we always have the possibility that a schedule becomes
infeasible as a result of these insertions. Furthermore,
it is still combinatorial to decide on the repaired ver-
sion that minimizes makespan after an infeasible event
occurs. We therefore need to develop a strategy.

Schedule repair entails us reorganising a schedule to
obtain a state where the schedule is valid again. Since
we start from a valid schedule that is rendered infeasible
by inserting new operations, the infeasibility is due to a
due date violation, i.e., an operation has been delayed
too long after its preceding operation. Therefore, the
fix is to systematically bring operations closer to their
predecessors. However, it is not immediately obvious
which operations need to be brought forward and how
far this needs to go because any re-organisation of the
schedule changes the sequence and as such could lead to
a different set of maintenance actions which may or may
not be feasible to include. Therefore, we define a recur-
sive strategy where we take small steps forward and
reevaluate the fix until the schedule is feasible again.

As shown in Algorithm 3, every time we reorganise
the operations in the schedule, we first identify three
key operations, namely, the penultimate first pass op-
eration from the point where the schedule was broken,
the last second pass operation from the point where the
schedule was broken, and finally the last second pass
operation that has been included in the schedule. This
is shown in Lines 4–6 where we identify these key op-
erations and their positions in the schedule. We then
move all scheduled second pass operations belonging to
jobs ranging from the last second pass to the ultimate
first pass in the schedule – this occurs in the remove
and insert calls on Lines 13–17. This way, the schedule
has been reorganised such that second pass operations
from the point of failure are at least a step closer to

their first pass operations. We repeat this process until
the schedule becomes feasible, moving the point of fail-
ure a step backward each iteration – this is as seen on
Line 18 where the point of failure is updated ahead of
the next iteration. After the schedule is deemed feasi-
ble, a last step is taken to trigger maintenance again in
Line 20 as re-ordering operations could have invalidated
or triggered maintenance actions.

Figure 2 shows an example of the schedule repair pro-
cess. In step 1, the schedule is infeasible after the in-
sertion of a maintenance action highlighted in green.
The ultimate first pass is identified as o4,2, the penul-
timate first pass as o3,2 and the last second pass as
o1,3. From this point, the operations after the main-
tenance action are brought forward as can be seen in
the new placement of o2,3 in step 2. This continues
in steps 3 and 4 until the schedule is evaluated to be
feasible. This re-ordering works because due dates ex-
ist only between consecutive operations of the same job
and moving second pass operations backwards does not
violate any other due dates in the schedule.

Figure 2: Schedule repair strategy showing progressive
steps in the algorithm. Red and blue circles represent the
first and second operations on the re-entrant machine µ2 in
Figure 1. In the first step, the schedule is infeasible because
of the maintenance action (highlighted in green). From this
point on, the future steps re-organise the schedule until we
achieve a feasible schedule in Step 4. In Step 5, a last step
is taken to trigger maintenance again as re-ordering opera-
tions could have invalidated existing or triggered new main-
tenance actions. Operations circled in dotted lines are the
ultimate first pass from the point of failure, circled in a thin
line are the penultimate first pass and circled in a thick line
are the last higher pass operation.

Safe Maintenance Policies A maintenance policy
maps a deterioration state of the machine to an ap-
propriate maintenance action. The policy in use de-
termines when and where maintenance actions are nec-
essary. As discussed above, inserting a maintenance
operation in a schedule has the tendency to make the
schedule become infeasible. We define a safe mainte-
nance policy as a policy that ensures that there exists at
least one maintenance-aware solution to the flow shop
provided there is a feasible schedule for the flow shop
alone without considering maintenance actions.



Since a schedule becoming infeasible after a mainte-
nance insertion is a result of a violated due date, there
should be enough room between consecutive first and
second passes of the same job to fit a particular mainte-
nance action unless the policy is such that that action
cannot be triggered while a pending second pass exists.
Concretely, this means that the processing time of any
maintenance action om that can be triggered between
passes of the same job oi,k and oi,k+1 should fit in the
available time between them, i.e.,

P (om) ≤ D(oi,k, oi,k+1)− P (oi,k)− S(oi,k, oi,k+1)

∀ oi,k, oi,k+1.
(1)

Theorem 1. Given an infeasible schedule, the schedule
repair strategy defined in Algorithm 3 is always able to
return it to a state of feasibility in at most |J | itera-
tions, where |J | is the number of jobs in the schedule,
provided that a solution exists for the problem and the
maintenance policy in use is safe.

Proof. For an insertion of a maintenance action om

between operations oi,k and oi,k+1 to become infeasi-
ble due to a due date violation, it means that oi,k+1

has been delayed too long, i.e., Ω(oi,k+1) − Ω(oi,k) >
D(oi,k, oi,k+1). To avert this, the maintenance opera-
tion must be able to fit in the slack between both oper-
ations. Bearing in mind that other operations could be
placed between oi,k and oi,k+1, the slack Ψ(oi,k, oi,k+1)
left between oi,k and oi,k+1 is

Ψ(oi,k, oi,k+1) = D(oi,k, oi,k+1)− P (oi,k)−
max((S(ox, oa) + P (oa) + S(oa, ob) + P (ob)− ...),

S(oi,k, oi,k+1)),
(2)

where oa and ob represent operations possibly placed
between oi,k and oi,k+1. The repair algorithm progres-
sively brings operations closer to their direct predeces-
sors by at least one step per iteration. In the last pos-
sible iteration of the schedule repair, each operation
oi,k+1 follows its direct predecessor oi,k. It follows that
this occurs in at most |J | iterations of the schedule re-
pair as the re-entrant machine can only have |J | higher
pass operations to be re-ordered. At this point, Equa-
tion (2) becomes

Ψ(oi,k, oi,k+1) = D(oi,k, oi,k+1)−P (oi,k)−S(oi,k, oi,k+1).
(3)

For this to be infeasible, it means that om cannot fit in
Ψ(oi,k, oi,k+1), i.e., P (om) > D(oi,k, oi,k+1)− P (oi,k)−
S(oi,k, oi,k+1), which violates the rules of a safe main-
tenance policy shown in Equation (1).

Industrial Use Case
Our algorithmic approach described above is generic
and in this section, we demonstrate it on a concrete use
case – an in-use industrial printer. The setup is such

Algorithm 3 Schedule Repair Strategy

1: function repairSchedule(flow shop f , position
n, schedule Ω) ▷ returns schedule Ω

2: feasible← false
3: end← false
4: while !feasible ∧ !end do
5: (fp

′
, ofp,k)← penultimateF irstPass(n,Ω)

6: (ffp
′
, offp,k)← ultimateF irstPass(n,Ω)

7: (sp
′
, osp,k+1)← lastSecondPass(n,Ω)

8: ▷ find operations and their positions in Ω
9: if offp = o1,k then

10: ▷ first operation on machine
11: end← true
12: i← sp

′
+ 1

13: while i ≤ ffp
′
do

14: Ω← removeSecondPassOp(oi,k+1,Ω)

15: Ω← insertSecondPassOp(fp
′
, oi,k+1,Ω)

16: fp
′ ← fp

′
+ 1

17: i← i+ 1
18: n← fp

′

19: Ω← updateStartT imes(f,Ω)
20: feasible← checkFeasibility(f,Ω)

21: Ω← triggerMaintenance(osp, o1,k, f,Ω)
22: return Ω

Figure 3: Industrial printer showing the use case.

that it has 3 machines and jobs refer to one sheet to be
printed. The sequence of machines is ⟨µ1µ2µ2µ3⟩. The
use case accepts different types of jobs each with dif-
ferent effects on the health status of the machines. As
such, the maintenance actions triggered are dependent
on the mix of job types presented to the flow shop.
Additionally, the maintenance policy is such that the
more deteriorated a machine is, the longer it may take
to perform a maintenance action to restore it. There
are three types of maintenance actions with up to one
order of magnitude difference between the duration of
each type as shown in Table 1d. The relationship be-
tween how long a maintenance action takes and the
deterioration state is described as a step function with
the same maintenance action being valid for a range of
deterioration states. There is some flexibility in when
we schedule maintenance operations as machines only
have to be maintained right before they are used again
to ensure the quality of the job. As such, a mainte-
nance action is triggered only if the predicted deterio-
ration state affects the quality of a job that is yet to
be scheduled. However, not maintaining a machine at
the right time drastically affects the quality of the print



Type P (oi,1) P (oi,2) P (oi,3) P (oi,4) D(oi,1, oi,2) D(oi,2, oi,3) D(oi,3, oi,4)

0 0.25 0.30 0.30 0.21 0.85 12.30 1.00
1 0.35 0.42 0.42 0.30 0.95 12.42 1.12
2 0.50 0.59 0.59 0.42 1.10 12.59 1.29
3 0.70 0.84 0.84 0.60 1.30 12.84 1.54
4 0.99 1.19 1.19 0.85 1.59 13.19 1.89

(a) Job processing times and due dates

Machine Setup Time

µ1 0.20
µ2 0.05
µ3 1.00

(b) Machine Setup Times

Path Travelling Time

µ1 to µ1 0.60
µ2 to µ2 10.00
µ2 to µ3 0.70

(c) Job travelling times

Action Type Duration Deterioration States

1 0.5s 10 – 15
2 10s 15 – 30
3 20s 30 – inf

(d) Maintenance Policy of the Use Case

Table 1: Use case job properties. Times in seconds; travelling times treated as setup times between operations of same job.

job with such prints likely having to be discarded and
reprinted. We apply our maintenance scheduling idea
to the use case based on the list scheduler developed
by van Pinxten et al. (2017). We tune the prediction
for this use case such that we maintain a machine if a
threshold that affects the next operation is crossed or if
90% of the upper bound of a threshold that affects the
quality of an operation further down the line is crossed.

Time Complexity Analysis

To insert a maintenance operation, we also have to up-
date the start times of the operations in the schedule.
Inserting an operation can be done in constant time but
the longest path computation to update begin times
takes O(|V ||E|) time where |V | is the number of ver-
tices and |E| the number of edges. Our graph (without
maintenance) has |J |r edges and vertices – where |J | is
the number of jobs and r is the number of operations
per job. Since we apply a bounding technique, there is
a limited number of jobs L≪ |J | for which we perform
this re-computation. The cost of the re-computation is
O(L2r2). In the worst case, we have to insert a main-
tenance operation for every one of the L jobs in the
window and therefore the cost of evaluating a schedule
for maintenance is O(L3r2). As L is at least 1 and at
most |J |, the worst case time complexity is O(|J |3r2).
The other algorithm that also needs analysing is the

schedule repair algorithm. Repairing the schedule in-
volves inserting elements, removing elements, and up-
dating start times. In the worst case, we have to insert
and remove an operation for each job. This can be
done in O(|J |) time. After the insertion and removal,
we once again need the longest path algorithm to up-
date start times, leading to O(|J |3r2) time as there is
no limited window for updating begin times at schedule
repair. Finally, we cannot guarantee that one cycle of
this is enough to bring the schedule back to a feasible
state and as shown in Theorem 1, the highest number
of recursions is |J | which brings the time complexity to
O(|J |4r2). Although this is an expensive addition to the
runtime of the scheduler, repair happens infrequently in
practice.

Experimental Results

In this section, we evaluate the performance of our
scheduler on the industrial use case. All experiments
are performed on an 8-core 4.6GHz Intel i7 machine
with 16GB memory running Ubuntu 20.04.

We generate benchmarks according to the types of
jobs typically presented in our industrial use case as
described in Table 1 with the assumption that all jobs
are duplex, i.e., require re-entrancy. We generate two
classes of benchmarks, first with random arrivals of
job types, and secondly with patterned arrivals of jobs
types. In the patterned arrival, jobs of a type appear
in repeated blocks, for instance, a set of 50 jobs can be
made of 20 type 1 jobs followed by 10 type 2 jobs and
then 20 type 3 jobs.

We compare a base list scheduler – Bounded HCS
(BHCS) (van Pinxten et al. 2017) – for this use
case, with the maintenance-incorporated version as de-
scribed in this paper which is indicated as MIBHCS.
With BHCS, maintenance is reactive and interrupts the
scheduler. We simulate the behaviour of BHCS by eval-
uating the schedule it produces for maintenance.

Performance Evaluation

In Figure 4, we compare the makespan of the sched-
ules produced by MIBHCS to those produced by BHCS.
The average improvement in makespan over all the data
sets is 15% while we have minimum improvement of -
15% and maximum improvement of 66%. The points
where predictive maintenance worsens the makespan
are a result of scenarios where the maintenance pre-
diction is too conservative and performs maintenance
even though the job set could be completed without it.
Figures 6 and 7 show the distribution of the number
of maintenance actions and the time spent on mainte-
nance. With MIBHCS, we perform more maintenance
actions but on average, spend 50% less time on main-
tenance. This is because predicting deterioration al-
lows us to perform maintenance before machines dete-
riorate to a state where we have to pay larger mainte-
nance costs. As another means of evaluation, we look at
OEE which is a measure of manufacturing productivity



Figure 4: Makespan improvement of MIBHCS over BHCS Figure 5: Runtime evaluation of MIBHCS

Figure 6: Number of Maintenance Actions Figure 7: Duration of Maintenance Actions

Number of Jobs Improvement in OEE

50 7%
100 8%
150 10%

Table 2: Improvement in OEE of MIBHCS over BHCS

(Hansen 2001). OEE is made of three metrics, namely,
quality, performance and availability. We compute this
under the assumption that maintenance actions are the
only source of disruptions. We measure quality in terms
of how many re-prints are required in the schedule, and
measure availability in terms of the deviation of a sched-
ule’s makespan from the planned makespan. We see in
Table 2 that we can have up to 10% improvement in
the OEE with predictive maintenance planning.

Runtime Evaluation

As all the algorithms discussed are to be suitable for on-
line applications, we evaluate the runtime of our sched-
uler. The runtime increases with number of jobs as ex-
pected and with a planning window of up to 150 jobs,
the maximum runtime encountered per job was 23ms
while the average runtime across scenarios was 6ms.

Conclusion and Future Work

This paper shows that list scheduling heuristics can
be extended to include maintenance operations on re-
entrant flow shops. We have presented a generic ap-
proach to integrated maintenance and production plan-
ning. We have demonstrated our approach on a con-
crete industrial use case, finding a mean 15% improve-
ment in the resulting makespans. Notably, our ap-
proach remains applicable for online scheduling.

We have considered maintenance actions on the re-
entrant machine alone. An interesting direction for fu-
ture work is to include planning maintenance on all
the machines in the flow shop. There is a cyclic de-
pendency of this integrated problem because inserting
maintenance operations on one machine affect the start
times of operations on other machines. We also look
to experiment more extensively, considering other use
cases and other schedulers.
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