TattleTale: Storytelling with Planning and Large Language Models

Nisha Simon, Christian Muise

Queen’s University, School of Computing
Goodwin Hall, Kingston ON
20nis@queensu.ca, christian.muise @queensu.ca

Abstract

We explore how automated planning can be applied to Nat-
ural Language text generation in order to create narratives
(stories) that are coherent and believable. While Large Lan-
guage Models (LLMs) such as GPT-3 can be used for narra-
tive generation based on given input prompts, they lack coher-
ence and can be prone to repetition and stilted language. We
demonstrate the use of a planning model that provides scaf-
folding to an LLM so that its language generation is context-
dependent in order to create more coherent and believable
stories in a variety of domains. After manually extracting
characters, objects, and locations from the story source, we
create domain and problem encoding that captures the me-
chanics of the story. The output of a planner, taken one ac-
tion at a time, is fed to the LLM to generate a narrative. We
find that almost all nouns (characters, objects, and locations)
and verbs (actions) of the plan are reflected in the generated
story, and the resulting narrative is more coherent than sto-
ries that are generated using only plain text prompts to the
LLM. Finally, gathering, curating, and modelling the source
stories in PDDL is an additional contribution of our work
that will be released publicly. Our work represents a key first
step towards the novel application of planning technology to
a neuro-symbolic approach for effective story generation.

1 Introduction

In many walks of life we have increasingly come to rely
on intelligent systems that automate both routine and high-
level tasks for us in order to meet our desired goals, but
we still know relatively little about how those systems re-
ally make their decisions and plan sequences of actions that
fulfill those goals. Story telling or narrative generation can
be used to determine if a particular intelligent industrial, fi-
nancial or medical system truly understands relevant real-
world concepts, or in explainable Al, to allow a system to
explain the reasoning behind its selected actions to a human
user. The system can generate language to articulate why
it chose certain actions over others. In the future, these de-
tailed explanations can then be used to train systems to pick
the correct sequence of actions for a given related scenario.
The domains for such applications can range from mechan-
ical equipment repair, medical diagnosis assistance, to au-
tomatic vehicle navigation. Story telling can also be used
for educational purposes, and in entertainment fields such as
creating ‘choose-your-own-adventure’ games (Riedl 2021).

Story telling or narrative generation has various entertain-
ment applications (Riedl 2016) such as text based games,
and it can involve extending narratives to create new plots.
Story telling has been used in several ways, for instance to
create variations on a base story (Hayton et al. 2020) or to
extend an existing story (Porteous et al. 2020). In this work,
we propose to show how automated planning can be applied
to Natural Language text generation in order to create be-
lievable and coherent narratives (stories) based on the given
application. Although LLMs such as GPT-3 can be used for
narrative generation based on given input prompts such as
the first two or three lines of a narrative, they lack coherence,
and can be prone to repetition and stilted language (Olmo,
Sreedharan, and Kambhampati 2021; Castricato et al. 2021).
We therefore accomplish our goal of creating coherent nar-
ratives in a variety of domains by building a model that
will provide inputs to the Large Language Model that are
more context-dependent, and that incorporate commonsense
knowledge.

Creating a plan in storytelling involves creating a se-
quence of steps that are essential in reaching an end goal.
For instance, the desired result of a fairy tale may be that a
princess escapes from a tower, and the steps of the plan may
involve the princess finding all the ingredients to create a
magic spell that allows her to do so. The required character-
istics of the plan may be coherence, that is to say, the steps
of the story follow a logical outline, and consistency, which
means that the characters act in predictable ways according
to their individual traits and abilities and the parameters of
the story (Hayton 2019).

Plans may be created in order to generate natural lan-
guage utterances, a process that is also called Natural Lan-
guage Generation (NLG) (Appelt 1982; Koller and Hoff-
mann 2010). Automated Planning can be applied to Natu-
ral Language text generation in order to create believable,
coherent and engaging narratives (stories) that inform, en-
tertain or educate the user based on the given application, in
a variety of domains.

Large Language Models (LLMs) are a class of deep learn-
ing architectures that have been trained on a large amount of
textual data. They can then be used to generate text based
on given input prompts, and they do so one token (i.e.,
word) at a time. The LLM used in this paper is GPT-J-6B
which is ‘a 6 billion parameter, autoregressive text gener-

Characters Story Agnostic Prompt (;)
Objects %@ ...action: (guide characterl character2
Locations location1 location2)
Actions g;? story: characterl guides character2

i

story | > %
Source W o

from location1 to location2.”
action: (say character1 text1)

Prior Input: The wolf family has to /@)
move their Den... Wilf falls behind and
becomes lost in the Tundra. ...

action: (guide arctic_fox wilf bridge

trees) “
story: The arctic fox guides Wilf from 1\

v @ v

J

Domain

Problem

Story Variation

story: characterl says “text1”...

Planner

)
4)

Lo

the bridge to the trees

action: (guide goose wilf trees valley)
story: The goose guides Wilf from the
trees to the valley

&)
Current Input: \°)

action: (carry moose wilf valley wilds)
story:

Repeat for each action

Output: ... “The moose carries Wilf

Generated NL

stories

| =

from the valley to the wilds”... 7 Y,

Figure 1: System architecture showing the various components that are used to generate the natural language story. From the
original story source, Step 1: characters, objects, locations, and actions are manually extracted. Step 2: Problem (story variation)
and Domain (story mechanics) files are created. Step 3: Story agnostic prompts are created by hand as the initial input to the
LLM in order to provide background and style information. Step 4: The planner creates a valid plan. Step 5: prior inputs,
along with story agnostic prompts, and Step 6: the actions of the plan (Current input) which is the current action that is being
processed, are iteratively used as input prompts into the LLM, to Step 7: generate a natural language story. The resulting output
sentences are then collected together and compiled into a plain text file in Step 8 to form the complete generated story.

ation model’ (Wang 2021) that was trained on a large com-
bined dataset called ‘The Pile’, that includes smaller datasets
from sources such as PubMed Central, GitHub, Stack Ex-
change, and BookCorpus2 (Gao et al. 2020). In this study,
we use classical planning with STRIPS and typing to cre-
ate the plans. Some of the Natural Language metrics that are
used in our research are based on POS (Part of Speech) tags
identified in the stories, which are the grammatical classifi-
cations that indicate the function that a particular word per-
forms in a sentence.

The mechanics of how LLMs work and the precise no-
tation for the planning models are both standard in our ap-
proach. For further details, we refer the reader to general
resources on each topic respectively (Brown et al. 2020;
Haslum et al. 2019).

2 Generating Stories with Automated
Planning and LLMs

The first step in our study was to obtain suitable datasets.
Our initial selected datasets consist of children’s stories, as
these are likely to have simple vocabulary and basic gram-
mar. The second step was to manually translate stories to a
domain and problem encoding in the form of PDDL. The
selected stories were manually anlaysed to extract the char-
acter names, locations, significant objects, and goals. An
example of this is illustrated in Table 1. These were then
used to create predicates and actions for encoding them

in PDDL. The translation from story to PDDL is done by
hand, by manually extracting characters, locations, objects,
states, and goals. While the NLP technique of Named Entity
Recognition (NER) could potentially be used to automati-
cally extract the characters, locations and objects, the use of
this technique may suffer from inaccuracies, as all entities
may not be correctly recognized. In addition, if POS tag-
ging is used to identify nouns and verbs this could also re-
sult in inaccuracies due to ambiguity. A word such as ‘fire’
or ‘plan’, for instance, may be a verb in one context but a
noun in another.

A typical plan is about 10 to 20 actions long, and a gener-
ated story is of the corresponding length. The predicate and
action names are designed under the constraints of PDDL
syntax and some features such as the concept of two loca-
tions being connected, and therefore allowing a character to
move between them, or a character being available to per-
form a certain action in one state but not in another, are
shown by predicate names such as “isconnected” or ‘“has-
friend”. This step resulted in the creation of the ‘Domain’
file. We also constructed the initial/original ‘Problem’ file
that was based on the original story. A snippet of the PDDL
code of the Domain file for the ‘The Way Home for Wolf’
story is shown in Figure 2. The domain file and the problem
file were then sent as inputs to a classical planner, which
generated a valid plan for the story. A generated plan for the
‘The Way Home for Wolf” story is shown in Listing 2.

Category List of Corresponding Items
Wilf, polar bear, walrus, narwhal
Characters
musk ox, arctic fox, goose,
moose, bear moth, wolf family
iceberg, shore, ridge.
Locations
trees, bridge, valley,
wilds, stream, den
guide,
Actions
carry
Objects -
Wilf is lost in the Tundra
Initial State
Wilf is safely back at the Den
Goal State

Table 1: Examples of characters, actions and locations that
were manually extracted by hand from the ‘The Way Home
for Wolf” story. Note that this particular story has no explicit
entities that are characterised as objects, whereas in stories
like ‘Robin Hood and the Golden Arrow’ we have objects
like ‘arrow’ and ‘target’.

We assume that the original story corresponds to a valid
plan i.e. the character goals and author goals are achieved.
However this may not always be the plan that is found. We
also created variations of the story in additional problem in-
stances. We ensure that the above domain and problem files
result in valid plans that are found by the solver. After com-
puting the plans, we fed the individual plan actions to the
LLM and then obtained the corresponding next Natural Lan-
guage line, one at a time as follows: First we include any
background or real-world contextual information as the ini-
tial or ‘hidden’ (i.e. not directly related to the specific ac-
tions in the story) input prompt (also called story-agnostic
prompts) to the LLM . Second, we took one line at a time,
in sequence, of the solved plan. Third, we appended this line
to the hidden prompt for the LLM input. Fourth, we let the
LLM generate one line of output (ignoring any other lines
that were generated). Fifth, taking this one line of generated
output, we added it to the end of the existing input prompt
and used the result as the new input prompt. This process
was repeated until all action lines of the plan had been used.
Lastly, we then compiled the generated Natural Language
lines into stories. The input prompt that was used, in addi-
tion to the final output of the LLM, was pasted into a text file
as a complete story. The details of this process are illustrated
in Figure 1.

Listing 1: Example of a story agnostic prompt for ‘The Way
Home for Wolf” story

Input:

The wolf family has to move their Den. Wilf
is a small wolf pup. The wolf family
starts their journey to their new den,
but Wilf is too small to keep up. Wilf
falls behind and becomes lost in the
Tundra.

Output:

He needs to get back to his family as soon
as possible. Wilf has to go on an
adventure to find his way home. Wilf is
an adventure story. The story is about
the journey of a wolf pup, to find his
way home. This book is for children aged

6-9 years. It is also suitable for
those who are looking for a bit of
adventure in their lives.

The story agnostic prompts provide background or
common-sense information that guides the rest of the output
but can be common to multiple stories e.g., for the “Wilf’
story, one of the story-agnostic prompts might be: “Wilf is
an animal, and he is a small wolf cub’. This can be extended
to a story about another character for example, ‘James is
an animal, and he is a small hedgehog’. The story agnos-
tic prompts are also useful for style purposes such as how
the story is written, etc. The LLM requires at least two (or
more) initial patterns of ‘action’ and ‘story’ prompts in order
to recognize and generate the text. The ‘pattern’ is the com-
bination of the story-agnostic prompts, as well as the initial
inputs.

The example of Listing 1 shows that the LLM is initially
given an input prompt consisting of a short paragraph of
background information. In response, the LLM then gen-
erates some output of its own in the form of another short
paragraph. The LLM can be considered to be a ‘few-shot’
learner, since with the story agnostic prompts and about two
or three input prompts, it is able to generate valid output.

It should be noted that Figure 1 includes the precise input
to the LLM. That is, we seed it with PDDL-formatted ac-
tions from the plan along with the story snippets, and it then
generates the next story snippet for us. On the right of Fig-
ure 1, aside from ‘Prior Input:” and ‘Current Input:’, those
complete strings are fed as written to the LLM, and the ‘Out-
put:” box lists the precise response from the LLM. Thus, the
LLM receives inputs in the exact form shown in Listing 1.
The generated output for the current iteration is then added
to the initial prompts along with the previous outputs and
then fed back into the LLM. This process continues until all
the actions in the plan have been fed into the LLM, with the
input growing in size each time. Note that although the input
size is steadily increasing each time a new action is added,
only the first generated line of any output that is produced by
the LLM in the current iteration is used. This is due to the

fact that using more than one line of the LLM’s output from
the current iteration will likely introduce incoherent text into
future inputs. Therefore, an interesting effect of this charac-
ter of the LLM is that the LLM cannot simply *fill up space’
in the story while simultaneously remaining faithful to the
plot, nor is it likely to be able to generate a coherent story if
some of the specified actions are removed from the plan.

2.1 Dataset Curation

LLMs can sometimes display skewed results in their pro-
duced output, based on the inputs with which they are first
seeded. Therefore, gathering, modeling, and curating the
datasets is an important contribution. To ensure diversity and
richness in the prompts, the input stories were drawn from
a wide variety of sources such as folktales from Asia, First
Nations stories, as well as North American and European
fables. We curated the prompts to prevent bias due to gen-
der, race, ethnicity, or geographic region. Examples of sto-
ries that were used are children’s stories such as ‘The Way
Home for Wolf’ (Bright and Field 2020), ‘Robin Hood and
the Golden Arrow’ (San Souci and Lewis 2010), and ‘The
Paper Bag Princess’ (Munsch and Martchenko 1980). The
input stories were selected so as to contain simple language
(vocabulary) and sentence construction.

3 Implementation and Evaluation

The preliminary goal of the research was to synthesise a
model with the intention of generating plans that correspond
to given story lines. The initial step was therefore the devel-
opment of a planning model to create the story skeleton. The
variations on the base story (story source) were generated
based on prompts that had been fed into the LLM as inputs.
For the purposes of training, the initial prompts were based
on children’s stories that contain simple sentences and basic
grammatical constructs. The main objective was to generate
the skeleton story, feed the prompts to the LLM incremen-
tally, and use the resulting output as new inputs to the sys-
tem. A snippet of the PDDL code of the Domain file for the
‘The Way Home for Wolf’ story is shown in Figure 2. This
can be considered part of the ‘abstract’ version of the PDDL
model, while the output components generated by the plan-
ner in Table 2, can be considered part of an ‘instance’ of the
model.

Examples of a predicate (items that can be either TRUE or
FALSE in the domain) from the story ‘Robin Hood and the
Golden Arrow’ (San Souci and Lewis 2010) are that Robin
Hood is an archer and that he is an outlaw. As an example of
an action, we consider the action ‘hide-character’ as shown
in Figure 5, which is one particular action that is used in the
plan that generates this story.

The parameters of the action in Figure 5 are an ‘archer’,
an ‘event’ and a ‘disguise’, which are instantiated as ‘Robin
Hood’, the ‘archery contest’, and a ‘beggar’ respectively.
The preconditions are that the archer learns of the event and
the archer is an outlaw. A character who is an outlaw re-
quires a disguise in order to prevent themselves from being
captured while attending the event. Once all preconditions
are met, the effect of the action is that the archer is able to

(:predicates

hasFriend 2?11 - location ?f - friend)
isConnected 2?11 ?12 - location)

(
(
(at ?11 - location ?wl -wilf)
(

canGuide 2?11 ?12 - location
?f - friend)
(canCarry ?11 ?12 - location

?f - friend))

Figure 2: Predicate portion of domain file PDDL code for
‘The Way Home for Wolf’ story. This is part of the actual
PDDL code which can be considered the ‘abstract’ version,
as opposed to an ‘instance’.

(:action guide

:parameters
(?f — friend ?w - wilf
?11 ?12 - location)

:precondition
(and
(isConnected 2?11 ?12)
(at 211 ?w)
(hasFriend 2?11 ?f)
(canGuide ?11 212 ?f))

:effect
(and
(at 212 ?w)
(not (at 2?11 ?w))
(not (hasFriend 2?11 ?£))))

Figure 3: Actions portion of domain file PDDL code for ‘The
Way Home for Wolf” story. The action ‘guide’ is shown. This
is part of the actual PDDL code which can be considered the
‘abstract’ version, as opposed to an ‘instance’.

(:raction carry

:parameters
(?f - friend ?w - wilf
?11 ?12 - location)

:precondition
(and
(isConnected 2?11 ?12)
(at ?11 ?w)
(hasFriend 2?11 ?f)
(canCarry 2?11 2?12 ?f))

:effect
(and
(at 212 ?w)
(not (at 2?11 ?w))
(not (hasFriend 2?11 ?£f))))

Figure 4: Actions portion of domain file PDDL code for ‘The
Way Home for Wolf’ story. The action ‘carry’ is shown. This
is part of the actual PDDL code which can be considered the
‘abstract’ version, as opposed to an ‘instance’.

(:action hide_character

:parameters (?al - archer
?d - disguise
?e — event)

:precondition (and
(learn ?al ?e)
(isOutlaw ?al))

:effect (disguised_As ?al ?d)

Figure 5: An action example in PDDL language - ‘hide-
character’, from the ‘Robin Hood and the Golden Arrow’
story.

Listing 2: Example of a generated plan for ‘The Way Home
for Wolf’ story

(carry polar_bear wilf iceberg shore help_is_here)

(carry walrus wilf shore ridge to_the_ridge)

(carry musk.ox wilf ridge bridge hold_on)

(guide arctic_-fox wilf bridge trees over_the_bridge)
(guide goose wilf trees valley though_the_trees)
(carry moose wilf valley wilds stay_-with_me)

(guide bear_moth wilf wilds stream be_brave)

(carry wolf_family wilf stream den welcome_back)

Item Type List of Corresponding Items

carry :
Action: parameters

polar bear, Wilf, Iceberg, shore,

‘Help is here’

hasFriend (iceberg, polar bear),

Preconditions

isConnected (iceberg, shore),
at iceberg (Wilf),

canCarry (iceberg, shore, polar bear),

canSay (‘Help is here’)

at shore (Wilf), not at iceberg (Wilf),
Effects

not hasFriend (iceberg, polar bear)

Table 2: Portion of an output plan component showing how
a particular action, which in this case is ‘carry’ is (a) built up
based on the preconditions that are required for that action
to occur and (b) results in effects caused by that action. This
is an example of an ‘instance’, while the actual PDDL code
is the ‘abstract’ version.

disguise themselves and therefore they can participate in the
event.

Creating the appropriate context is a key element of cre-
ating believable stories. The plan that leads to the generated
story required a method of determining which characters,
objects, and actions are appropriate for the particular story.
The variations of the story need to be believable and interest-
ing while still following the skeleton in their salient points.
For instance, a story about genies and magic spells that takes
place many years ago might become jarring if the story vari-
ation were suddenly to include futuristic spaceships or time-
travelling robots. Reliance on the symbolic planning model
was vital in maintaining this type of coherence. This is also a
critical purpose of using appropriate story-agnostic prompts
to ‘set the scene’ for the generated story.

There are two main goals to be considered when creating
a story: the author or overarching goal (Lebowitz 1985) that
brings the story to a successful conclusion, and the multi-
agent or character goals. Characters in the story must work
towards achieving the main author goal while staying true to
their own beliefs and characteristics; that is to say, they must
be consistent in their actions.

An example of an encoded action that forms part of a
valid plan for a given domain and problem file is given in
the snippet in Table 2. We see that the Polar Bear fulfills his
character goal by being helpful and carrying Wilf to the next
leg of the young wolf cub’s journey. In addition, Wilf fulfills
his character goal of being an adventurous explorer and also
works towards achieving the author goal of being reunited
with his family.

It should be noted that if the input plan contains several
different viable paths leading to the end goal i.e., if there are
multiple ways to reach the conclusion or main aim of the
story, then the results will be several variations of the story
each time the LLM is queried. Therefore, although a single
version of the example story is presented in the paper, a plan
that contains multiple paths is capable of creating several
variations of a story if the LLM is repeatedly queried. For
example, in the ‘The Way Home for Wolf® story, the main
goal is for Wilf to find his way back home to the Wolf den.
If there are multiple animal friends that can guide Wilf from
location 1 to location 2 on the way back to the den, then
one version of the story may generate text that shows friend
1 being a guide, while querying the LLM again may gen-
erate text that shows friend 2 being a guide instead. These
variations can be achieved by appropriate additions to the
Domain and Problem files. For instance, if the underlying
PDDL is constructed so that both the polar bear and the nar-
whal are able to carry Wilf from the iceberg to the shore,
then the planner will automatically pick either one animal
friend or the other to get Wilf to the shore each time the plan
is generated. In Listing 2 we see that the planner has chosen
the polar bear to carry Wilf from the iceberg to the shore, but
it could just as easily have created an alternative plan where
it falls to the narwhal to perform this act, with the remainder
of the original plan being concatenated and then continuing
as before to achieve the same objective.

The planner used was the online solver! (Muise 2016).
The LLM model used was GPT-J-6B eleuther (Wang 2021)
that is available for limited public trial online through a
browser interface. The evaluation metrics used in this study
include part-of-speech tags of nouns and verbs to indicate
how many of the characters, objects, locations (nouns), and
actions (verbs) from the plan are reflected in the output of
the LLM. That is to say, we evaluate how well the gener-
ated story from the LLM mirrors the output of the planner.
The generated stories are also judged on whether or not they
achieved their required author and character goals, as well as
on coherence. Castricato et al. define coherence as ‘any per-
ceivable relationship between events in a story’ (Castricato
et al. 2021).

4 Results

The output of the LLM shows that when its inputs are pro-
vided as actions from generated plans, both the author and
character goals are achieved. For instance, in the story ‘The
Way Home for Wolf” (Bright and Field 2020), the title char-
acter, Wilf, fulfills the author goal by successfully finding
his way home. The characters of the Moose, Goose, Musk

"https://solver.planning.domains/

Listing 3: Example of a natural language story that has been
generated by the LLM based on input actions from a valid
plan for ‘The Way Home for Wolf” story

The Polar Bear carries Wilf from the iceberg
to the shore and says "Help is here"

The Walrus carries Wilf from the shore to
the ridge and says "To the Ridge"

he Musk Ox carries Wilf from the ridge to
the bridge and says "Hold on"

The Arctic Fox guides Wilf from the bridge
to the trees and says "Over the bridge"

The Goose guides Wilf from the trees to the
valley and says "Through the trees"

The Moose carries Wilf from the valley to
the wilds and says "Stay with me"

The Bear guides Wilf from the wilds to the
stream and says "Be Brave"

The Wolf carries Wilf from the stream to
the den and says "Welcome back"

Ox, Arctic Fox, and Wilf’s other animal friends fulfill their
character goals by being helpful and friendly and guiding
Wilf back to his den. In Figure 3 we see that some animal
friends guide Wilf from one location to another while oth-
ers carry Wilf from one location to another. This is because
only the comparatively larger animals such as the walrus,
musk ox and moose are strong enough to carry Wilf, but the
other smaller animals like the tiny arctic fox and the diminu-
tive bear moth have to rely on their wits, rather than on brute
strength, to guide little Wilf on his journey home.

Another example is the story ‘Robin Hood and the Golden
Arrow’ (San Souci and Lewis 2010) where Robin Hood ful-
fills both the character goal of being a fabled archer and also
the author goals of entering the archery contest in disguise to
trick the Sheriff, winning the archery competition and then
escaping from the trap that was set for him by the wicked
Sheriff of Nottingham.

The Part of Speech (POS) tags are codes that represent
the grammatical function that is performed by a particular
word in a sentence, for example ‘noun’ or ‘verb’. The verbs
‘carry’ and ‘guide’ for instance are successfully included
in the generated story, as are the character names (nouns)
such as Goose, Musk Ox, and so on, of Wilf and his animal
friends.

It should be noted that the text of the LLM output should
be considered the ‘average’ or representative output, since
the generated output of the LLM may vary slightly every
time the process is repeated, especially for more complex
stories like ‘Robin Hood and the Golden Arrow’ and ‘The
Paper Bag Princess. Although the gist and the main thread
of the story are maintained over several iterations, exactly
the same wording may not be generated each time.

Listing 4: Example of a natural language story that has been
generated by the LLM based on input actions from a valid
plan for the ‘Robin Hood and the Golden Arrow’ story

Listing 5: Story that has been generated by the LLM based
on input actions from a valid plan for the ‘Paper Bag
Princess’ story

The sheriff announces a archery contest.
Robin Hood learns about the archery contest.

Robin Hood disguises himself as a beggar to
enter the archery contest.

Robin Hood participates in the archery
contest

The arrow hits the target at the center.

Robin Hood wins the golden arrow.

As can be seen from the POS counts in Table 3 and the
output snippets in Listing 3 and Listing 4 the LLM output
captures almost all the nouns and verbs from the PDDL plan.
It is interesting to note that while the LLM captures the gist
of the plan, certain nouns and verbs are sometimes added or
substituted for clarity. For example, the verb ‘say’ is added
to the ‘The Way Home for Wolf” story for clarity even though
this particular verb is implied but not explicitly used in the
found plan. The verb ‘hits’ is added to the generated ‘Robin
Hood and the Golden Arrow’ story, although this word is
not explicitly used in the plan. Also, it is interesting to note
that the LLM does not always recognize unfamiliar nouns.
For example, ‘Bear Moth’ is replaced with ‘Bear’ and ‘Wolf
Family’ is replaced with ‘Wolf’ in the generated story. It is
possible that the LLM needs more fine-grained instruction
in the form of hidden prompts on how best to handle and
recognize unfamiliar compound nouns.

The generated natural language stories also display the
required qualities of coherence and consistency. The output
was considered to be ‘coherent’ if there were no grammati-
cal or logic errors e.g., verbs and nouns were in agreement,
and a character could not be in two locations at the same
time. An example of incoherent text is provided in the List-
ing 6 where the LLM is allowed free rein and therefore de-
volves into repetition. Our generated outputs in Listing 4 and
Listing 3 stand in contrast to the output shown in Listing 6.
The output shown in Listing 6 indicates that in the absence
of relevant PDDL input prompts, the LLM loses the story
thread and instead resorts to basic repetition with no regard
for the plot outline or for the prior actions that have already
occurred in the story.

We used quantitative metrics in the paper, but we also in-
tend to use more qualitative metrics by distributing our gen-
erated stories to human participants in a survey, and then
asking them to provide feedback by judging the coherence
and believability of the generated stories. More thorough
empirical evaluation with human participants is currently
beyond the scope of this paper.

Princess Elizabeth is a beautiful princess
who lives in a magnificent castle.
Princess Elizabeth is engaged to marry
Prince Ronald.

The Dragon attacks and destroys the castle
and Princess Elizabeth’s clothes and the

Dragon kidnaps Prince Ronald.

Princess Elizabeth wears a paper bag because
her clothes are destroyed, and she
follows the Dragon.

Princess Elizabeth chases the Dragon, and it
is charmed by Princess Elizabeth.
Princess Elizabeth flatters the Dragon, and
the Dragon likes Princess Elizabeth.

The Dragon breathes large flames.

The Dragon flies fast.

The Dragon falls asleep.

Princess Elizabeth saves Prince Ronald from
the Dragon.

Prince Ronald insults Princess Elizabeth,
and she wears a paper bag because she is

wearing no clothes.

Princess Elizabeth calls off the wedding,
and she is wearing a paper bag.

5 Related Work

In numerous domains and applications, it becomes neces-
sary to convert plans to Natural Language instructions and
vice versa (Hayton et al. 2020; Miglani and Yorke-Smith
2020; Steinert and Meneguzzi 2020; Feng, Zhuo, and Kamb-
hampati 2018). Natural language instructions can also be
created from given plans in order to make the plan more
understandable to a human user. Automated Planning can
therefore be used for story telling, and text generation can
be viewed as a planning task (Koller and Petrick 2011).

Efforts to first plan out skeletons of stories include Yao
et al. who have used planning as a neural generation ‘plan-
and-write’ framework (Yao et al. 2019) to build a system that
performs open-domain story generation, which is to gener-
ate a story based on a given title as well as a plan. Their sys-
tem alternates between planning the steps of the story and
then writing it. However their stories are limited in length
(five sentences) and vocabulary size (33,215), and they rely
on story lines that are extracted from existing story corpora
(Yao et al. 2019). Unlike TattleTale, this system does not use
a PDDL planner, and in contrast, our TattleTale system has
the potential to work without the input of whole original sto-
ries.

Several story-telling approaches already exist in the lit-
erature. For example, interactive narrative planning is used
in the entertainment field (Porteous et al. 2021) where an
extended narrative or a range of plans are created based on
a baseline story. Storytelling with multiple agents has been
studied in systems such as SABRE (Ware and Siler 2021).

Text generation or sentence generation is an integral as-
pect of storytelling. It can be performed by isolating relevant

Story POS tag | Plan | LLM story

The Way Home for Noun 18 18
Wolf

Verb 2 3
Robin Hood and the Noun 8 7
Golden Arrow

Verb 6 7

Noun 6 7
Paper Bag Princess

Verb 10 19

Table 3: Number of nouns and verbs found in the PDDL plan
that are successfully duplicated in the LLM output

Listing 6: Illustration of repetition in the unrestricted LLM
output for ‘The Way Home for Wolf’ story. When the PDDL
input is not provided in the form of actions from the plan,
the LLM defaults back to repeating the same text over and
over.

Output:

But, Wilf has to travel home on his own. He
has to travel through the Tundra. He
needs to cross the river. He needs to
cross the river. He needs to cross the
river. He needs to cross the river. He
needs to cross the river. He needs to
cross the river. He needs to cross the
river. He needs to cross the river. He
needs to cross the river. He needs to
cross the river. He needs to cross the
river. He needs to cross the river. He
needs to cross the river. He needs to
cross the river. He needs to cross the
river

actions and objects, using Part of Speech (POS) tags to iden-
tify verbs and nouns, and using a prior dictionary of terms.
Sentence generation or utterance generation can be regarded
as a planning problem (Koller and Stone 2007). Planning
has also been used in this context for sentence generation. In
addition to using the correct grammar, recognizing the ap-
propriate context of a sentence is another challenge in sen-
tence generation. Rule-based text generation models can be
restrictive, and may not be able to encompass a wide array of
domains. In contrast to the above, our work uses an LLM to
generate the individual sentences corresponding to distinct
actions in the plan.

6 Conclusion

In this study we have shown how Automated Planning can
be applied to Natural Language text generation in order to
create narratives (stories) that are coherent and believable. In
our Tattletale system, we have overcome the issues of a lack
coherence, repetition, and stilted language to which LLMs
may be prone. We accomplish this by demonstrating the use
of a planning model that provides scaffolding to the LLM

so that its language generation is context-dependent in order
to create more coherent and believable stories in a variety
of domains. Plans are vital to the construction of the stories
since without the plan, the output text loses coherence and
the LLM could not create a valid story. We find that almost
all of the nouns (characters, objects, and locations) and verbs
(actions) of the plan are reflected in the generated story, and
that the resulting narrative is more coherent than stories that
are generated using only plain text prompts to the LLM. Fi-
nally, gathering, curating, and modeling the source stories
in PDDL was an additional contribution of our work. Our
research opens the door to many planning-oriented exten-
sions. Future work will include Epistemic planning giving
more believable agent understanding, including the goals of
deception/misconception in epistemic planning to tell better
stories, and the inclusion of linear temporal logic constraints
to direct how a story might unfold.

Ethical/Societal Impact

We also consider the potential broader impact of our work,
including its ethical aspects and future societal conse-
quences. As indicated in the Dataset Curation section 2.1,
if inputs to LLMs are not appropriately directed, LLMs can
sometimes display bias in their produced output, digress into
irrelevance (as shown in Listing 6), as well as generate harm-
ful, potentially toxic or discriminatory outputs. We avoid
these issues by strictly controlling the prompts that are given
to the LLM. Prompts were therefore curated to prevent bias
due to gender, race, ethnicity, or geographic region and also
to remove any potentially negative inputs. To ensure diver-
sity and richness in the prompts, the input stories were drawn
from a wide variety of sources such as folktales from Asia,
First Nations stories, as well as North American and Euro-
pean fables.

References

Appelt, D. E. 1982. Planning Natural-Language Utterances.
In AAAI 59-62.

Bright, R.; and Field, J. 2020. The Way Home for Wolf,
volume 1. Scholastic Press.

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165.

Castricato, L.; Frazier, S.; Balloch, J.; Tarakad, N.; and
Riedl, M. 2021. Automated Story Generation as Question-
Answering. arXiv preprint arXiv:2112.03808v1.

Feng, W.; Zhuo, H. H.; and Kambhampati, S. 2018. Extract-
ing action sequences from texts based on deep reinforcement
learning. arXiv preprint arXiv:1803.02632.

Gao, L.; Biderman, S.; Black, S.; Golding, L.; Hoppe, T.;
Foster, C.; Phang, J.; He, H.; Thite, A.; Nabeshima, N.;
Presser, S.; and Leahy, C. 2020. The Pile: An 800GB Dataset
of Diverse Text for Language Modeling. arXiv preprint
arXiv:2101.00027.

Haslum, P,; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language. Morgan & Claypool. ISBN 9781627058759.

Hayton, T. 2019. Acquiring Planning Models from Narrative
Synopses. Ph.D. thesis, Teesside University.

Hayton, T.; Porteous, J.; Ferreira, J. F.; and Lindsay, A.
2020. Narrative Planning Model Acquisition from Text
Summaries and Descriptions. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-20).

Koller, A.; and Hoffmann, J. 2010. Waking Up a Sleeping
Rabbit: On Natural-Language Sentence Generation with FF.
In Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS 2010).

Koller, A.; and Petrick, R. P. 2011. Experiences with plan-
ning for natural language generation. Computational Intel-
ligence, 27(1): 23-40.

Koller, A.; and Stone, M. 2007. Sentence generation as a
planning problem. Technical report, Columbia University.

Lebowitz, M. 1985. Story-telling as Planning and Learning.
In Poetics.

Miglani, S.; and Yorke-Smith, N. 2020. NLtoPDDL: One-
Shot Learning of PDDL Models from Natural Language
Process Manuals. In ICAPS’20 Workshop on Knowledge En-
gineering for Planning and Scheduling (KEPS’20). ICAPS.

Muise, C. 2016. Planning.Domains. In The 26th Interna-
tional Conference on Automated Planning and Scheduling -
Demonstrations.

Munsch, R.; and Martchenko, M. 1980. The Paper Bag
Princess, volume 1. Annick Press.

Olmo, A.; Sreedharan, S.; and Kambhampati, S. 2021.
GPT3-to-plan: Extracting plans from text using GPT-3.
arXiv preprint arXiv:2106.07131.

Porteous, J.; Ferreira, J. F.; Lindsay, A.; and Cavazza, M.
2020. Extending Narrative Planning Domains with Linguis-
tic Resources. In Proceedings of the 19th International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS 2020).

Porteous, J.; Ferreira, J. F.; Lindsay, A.; and Cavazza, M.
2021. Automated narrative planning model extension. Au-
tonomous Agents and Multi-Agent Systems, 35(2): 1-29.

Riedl, M. 2021. An Introduction to Al Story Generation.
The Gradient.

Riedl, M. O. 2016. Computational narrative intelligence:
A human-centered goal for artificial intelligence. arXiv
preprint arXiv:1602.06484.

San Souci, R. D.; and Lewis, E. 2010. Robin Hood and the
Golden Arrow, volume 1. Scholastic Press.

Steinert, M.; and Meneguzzi, F. 2020. Planning Domain
Generation from Natural Language Step-by-Step Instruc-
tions. In Proceedings of the Twentieth International Confer-
ence on Automated Planning and Scheduling (ICAPS 2020).

Wang, B. 2021. Mesh-Transformer-JAX: Model-Parallel
Implementation of Transformer Language Model with JAX.
https://github.com/kingoflolz/mesh-transformer-jax.

Ware, S. G.; and Siler, C. 2021. The Sabre Narrative Plan-
ner: Multi-Agent Coordination with Intentions and Beliefs.
In Proceedings of the 20th International Conference on Au-
tonomous Agents and MultiAgent Systems, 1698—1700.

Yao, L.; Peng, N.; Weischedel, R.; Knight, K.; Zhao, D.; and
Yan, R. 2019. Plan-and-write: Towards better automatic sto-
rytelling. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01): 7378-7385.

