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Dear passengers welcome in 2059.

20 ?yot]r new caeptalh‘Jehn fell -~ .
slee st taklng over the commands
to fIy you back home.

Keep calm and enjoy your fllght'
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A typical use case: airport diversion strategy

Autonomous system

Must ensure to take over the pilot
landing success

with at least 1-1e™?
probability on
chosen airport

as a last resort
Must ensure:

.
—

e . : ¥ Safety




AIR

Airbus Al Research

A typical use case: airport diversion strategy

Autonomous system
to take over the pilot
as a last resort

Must ensure:

¥  Safety

¥  Robustness
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A typical use case: airport diversion strategy

g~ ° °
Desigh explanations Autonomous system

Adding the pilot's drowsiness

status to the input state of the RL to take over the ol lot
policy improves mission success

as a last resort

Flying the nominal route will
now hit the thunderstorm with - .
probability 0.95. Would you like . Must ensure:
to avoid it but delaying the
landing by 5 mn?

¥  Safety
¥  Robustness

¥ Explainability




Diversion management based on AIR
Probabilistic Flight Planning

Pre-Flight

’’’’’’’

average time

optimal points

iy 5 | v P AR
Ensemble Weather Forecast

average fuel

. controlled risk of
"4 . .
: | Violating safety

constraints |

Continuous update
(dynamic mode)

Probabilistic
Model of Events : {:} \
Impacting the ‘ Dynamic Flight Plan:

Flight e Event-based trajectory

In-Flight e  Proactively modifies the
trajectory to mitigate
\ upcoming risks

Live
observations

Other Events



DONUT project: benchmarking of two AIR
complementary flight planning algorithms

CSSP - Constrained Stochastic Shortest Path Parallel Robust Optimal Control

Optimal and Heuristic Approaches for Constrained Flight Planning under Weather Probabilistic 4D Flight Planning in Structured Airspaces through Parallelized

Uncertainty. F. GeiBer, G. Povéda, F. Trevizan, M. Bondouy, F. Teichteil-Kénigsbuch, S. Simulation on GPUs. D. Arribas, E. Andrés-Enderiz, M. Soler, A. Jardines, J. Garcia-Heras.
Thieébaux. ICAPS 2020 Computer Science, 2020

Iterative algorithm based on LP and column generation N s Uses Augmented Random
. / Search and Optimal Control to
produce waypoint-constrained
continuous trajectories
evaluated on a set of
probabilistic weather
scenarios

No use of heuristics due to simulation-based aircraft
performance model

Take-off Take-off Take-off
Landing Landlng Landing
W

Fuel Burn

Satisfy constraints by &
construction

Robust by construction
Handle waypoint graph

5000

+ =4 Use continuous aircraft
performance model

4 Robust by construction

4500

Ah o
—_— Shortest path
s — — . Route graph /|
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= Optimal route |

Jf;Uu 4000 4500 5000 5500
Heuristic Decomposition
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No approach ruling all the others out

Aircraft Aircraft XWEVE Weather
Dynamics Systems Graph Model

x 18 0 8 L8 A 8 ¢ * &




AlR

Airbus Al Research

A complex probabilistic weather model

Ensemble Weather Forecast
DRSO RC @

Duplicate waypoint graph
per possible weather

Numerical Weather
Prediction model

Perturbed initial conditions
Stochastic physics

Temperature

us

[ —
I »

T-0 T=t T=1
e © .o Time and
Initial condition Forecast time Forecast prObablllty Weather Map .4: Spatlal
Lo

indexed by time = interpolation

Observation at

time t merged

with ensemble
forecast at time t
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A complex probabilistic weather model

Planning %
engine :?);

State s
attimet

next states
query

@aypoint W)

State s, at
time t+]

State s, at

time t+7

State s, at
time t+]

\. .,

@aypoint W)

State s, at
time t+]

Stgte S
at time t+]

State s,

at time t+1

Observation at

time t merged

with ensemble
forecast at time t

Probability Weather Map
indexed by time

Duplicate waypoint graph
per possible weather

Time and
spatial

/ interpolation




ATC and weather
uncertainties

Research

The full transition model story

. Lo? @Vaypoint w @Vaypoint w rVVaypoint w rVVaypoint w
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80)

States,,, State s, States,,,

at time t+] at time t+] at time t+]

State s,
at time t+]

State s
attimet

—>

Evaluate fuel o?

consumption and ;Q)
feasible trajectory &%)

States,,, States,,, States,,,

at time t+1 at time t+] at time t+1

States,,
at time t+1

State s,,; States,,; States,,;

at time t+1 at time t+1 at time t+1

States,
at time t+]
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No free lunch: need for hybrid planning method

Simulation-based Search-based
methods methods

‘ Logical goal
Complex and
computationally expensive
transition model .
Airways graph
Can be modeled as Deep Neural
Network surrogate model to speed
up transition queries
‘ Aircraft systems logics




Possible hybridizations of deep learning  AIR

with a typical search algorithm
-—=>
|

ends of I
paths on
frontier |

start =
w 7 Surrogate
‘ = model of the
solver

Surrogate
model of

l:&h5
N
I\
==
S
e T \ unexplored nodes
(aircraft performance

evaluation, weather & '
ATC prediction)

Heuristic

function
(learned from previous
solved instances of the
search problem)



Another example of hybridization: AIR
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stochastic manufacturing task scheduling

Stochastic Multi-Skill Multi-Mode Resource & . .« a0
Constrained Project Scheduling Problem with -

M, Chat 0
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Large Neighborhood Search

- Result Storage : results = []
-RCPSP Problem : problem
-Number of iterations iteration)ng

|

Init master problem :
MP(problem)
-i=0

Compute initial solution :
results = [greedy(problem)]

RMP < addansgreints (M P(problem), results)

l

results; = solve(RMP) ‘

l

results; = postprocess(results;)

l

results = results -- results; ‘
t=1i+1

[ Return results

Solving extended
RCPSPs with Large
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Neighborhood Search
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Makespan =2897
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T

Scales to large
industrial
problems

(thousands of
multi-mode tasks with
multi-skilled workers
and temporal
precedence
constraints)

But does not
handle
uncertainty



Towards uncertainty and adaptivity AIR
handling with Graph Neural Networks

_Graph Neural Network encoding of a RCPSP e ij
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https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html?highlight=parallel#torch_geometric.nn.conv.TransformerConv

Hybridizing C

p+G N N (supervised learning from CP solution examples) AIR
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RCPSP

I

Lot —1_
CP solver @ —
50) —

Graph Neural
Network
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Back propagation
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Loss minimization @
60

RCPSP
J

L
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Infeasible
schedule
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Le?

CP solver @—»
Make Feasible
feasible schedule




CP + GNN : training statistics
(80% of 2040 RCPSP instances)
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Resource
constraints
violation
percentage
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CP + GNN : testing statistics
(20% of 2040 RCPSP instances)
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Protocol: evaluate vanilla CP solver time to get same quality solution as GNN+CP solver, then
compare with GNN+CP solver time = Does warm-starting CP with GNN solution help?
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solver with the GNN inferred solution helps
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Possible hybridizations of deep learning AR
with a Constraint Programming solver

Learn task
duration and
resource
uncertainties ; worker
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Learn constraints
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with the inferred solution

Learn human schedules to
warm-start the CP solver
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Trustable decision-making systems

Different from trustworthy

j Relying on deep learning
deep learning:

adds to the complexity:

Explainable

Provide rationales
for action choices
w.r.t the future

valid independently from
using deep learning models
in decision-making

Trustworthy properties for
deep learning-based
decision-making rest upon
trustworthy deep learning
properties

Trusted

Robust

Don't reach unsafe Reach objectives
states with while adapting to

sufficient uncertainties and
probability unknowns
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Explaining manufacturing schedules

, : 5 Precedence constraint-analysis
Precedence constraints analysis o Y=

Resource needs analysis Csagagiasiianaan ]
. 5 S 9.4 1.

Feature importance analysis of g ‘ £l
embedded deep learning | SESERESESET
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X Runtime task choice
explanation
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NLP-based chatbot for schedule explanation

Sucalant

Coattarbot
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Robustness: adapt to uncertainties AIR
(and you can't go without a simulator)
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Robustness: optimization in hindsight
showcase

Flight planning under uncertain
convective areas
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Manufacturing scheduling under

uncertain task durations
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Safety: HAL-320, don't crash the plane! AIR

Example: maximum flight time in convective area

Fuel Burn in KG mi_}n Z E[Co|m]px (LP1)
P
*a = 0.01
Ca = 0.05 st. pr20 Vm € Hger (C1)
xa = 0.10 . "
ta = 0.15 =
5000} [t& =222 _— pr (C2)
Aa =0.25 %
Y E[Cilnlpr <u; Vi€ {l,---,k} (C3)
P
A 4500
72}
7 X
o
* . . . .
& Perfectly deals with flight time constraints that can
4000 PO be modeled in the LP
. " Unable to capture fuel constraints because aircraft
3500 ve performance model is based on simulation engines
3500 4000 4500 5000
Average Determinisation
Optimal and Heuristic Approaches for Constrained How to solve C-SSPs with simulation-based
Flight Planning under Weather Uncertainty .. - . . -
F. GeiBer, G. Povéda, F. Trevizan, M. Bondouy, F. transitions? With deep-learning surrogate models?

Teichteil-Konigsbuch, S. Thiebaux. ICAPS 2020
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So HAL-320, how can | help‘ ou to e trusted?

1. Solve the right problem efiicicntly: hybridize search and
deep learning

2. Explain: (i) algorithm parameter.impact to system
| designers; (if) algorithm online choices to end users

3. Be robust: proactively reasons about uncertainty while
optimizing the plan or the schedule

4. Be safe: prove that the plan or schedule - be hybridized with :
' deep Iearnlng or not - satisfy probabilistic constraints A

- - . -
T 3
vy 3N 4
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