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Abstract

We explore the problem of generating a plan for a team of
heterogeneous collaborative agents without knowing their ca-
pabilities, but having access to observations of previously ex-
ecuted of plans. To plan for such “black-box” collaborative
agents, we present the Planning using Offline Learning (POL)
framework. POL compiles the given observations into trajec-
tories of a single “super” agent, and uses an action model
learning algorithm to learn the capabilities of that “super”
agent. We implemented POL for Multi-agent STRIPS (MA-
STRIPS) domains, and show that when using the Safe Ac-
tion Model (SAM) learning algorithm, it is guaranteed to be
sound and have a probabilistic form of completeness. Empir-
ically, we evaluate POL over a standard MA-STRIPS bench-
mark. The results show that an almost perfect action model
was learned for all agents with only a few trajectories in most
cases. Finally, we discuss how POL and SAM learning can be
extended to handle observations with concurrent and possibly
conflicting actions.

Introduction
Many real-world applications require planning for a group
of collaborative autonomous agents, e.g., in furniture as-
sembly systems (Knepper et al. 2013), automated ware-
houses (Azadeh, De Koster, and Roy 2019), sensor net-
works (Lesser, Ortiz Jr, and Tambe 2003), and teams of
robots performing search and rescue missions (Allouche
and Boukhtouta 2010). Collaborative multi-agent planning
(CMAP) is a well-known challenge in the Artificial Intel-
ligence literature, and multiple formalisms have been pro-
posed to represent CMAP problems and in particular the
capabilities of the different agents (Brafman and Domsh-
lak 2013; Bernstein et al. 2002; Tambe 1997). Yet obtain-
ing a formal model of the capabilities of all agents in the
team is often a difficult manual task. In this work, we fo-
cus on a CMAP setting in which the planning agent is not
given a model of capabilities of the other agents. Such a set-
ting may also occur in ad-hoc teamwork setups (Barrett and
Stone 2012), where other agents’ interfaces do not support
sharing their internal models (Verma, Marpally, and Srivas-
tava 2021), and where agents do not wish to share this in-
formation due to privacy reasons (Brafman and Domshlak
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2013; Maliah, Shani, and Stern 2016). Generating a collabo-
rative plan with such “black-box” agents is particularly chal-
lenging in mission-critical domains. In these domains, plan
execution failures must be avoided, and thus trial-and-error
approaches, which are common in the multi-agent reinforce-
ment learning (MARL) literature, cannot be used.

Instead of knowing the other agents’ capabilities, we as-
sume access to a set of trajectories, i.e., sequences of al-
ternating states and actions, performed in the same domain
(possibly planning to achieve different goals). Such trajec-
tories may have been generated by humans who know the
agents’ capabilities or via an interactive querying process,
as outlined by Verma et al. (2021).

For using these trajectories to generate new plans, we
propose the POL framework. POL comprises three stages:
compiling, learning, and planning. In the compilation stage
POL processes all the given trajectories of the multi-agent
plans and transforms them to trajectories of a single “super”
agent that has all the actions observed in T . Then, in the
learning phase, POL employs a learning algorithm to gener-
ate a single-agent action model that represents the planning
agent’s view of the capabilities of the agents in the team. Fi-
nally, in the planning phase, POL uses learned single-agent
action model to generate plans by using an off-the-shelf
single-agent planner. This framework is the first contribu-
tion of this work.

The second contribution of this work is a descrip-
tion and theoretical analysis of a POL implementation for
CMAP problems expressed in Multi-agent STRIPS (MA-
STRIPS) (Brafman and Domshlak 2013). MA-STRIPS is a
CMAP formalism for agents that operate in a closed discrete
world, have full observability, and their actions have deter-
ministic effects. Coupled with the Safe safe Action Model
(SAM) learning algorithm (Juba, Le, and Stern 2021; Stern
and Juba 2017), POL can guarantee that every generated plan
is compatible with the actual capabilities of all agents. More-
over, under certain assumptions, only a small number of tra-
jectories are needed to guarantee that, with high probabil-
ity, such a plan can be found for a given problem in the
same lifted domain. The third contribution of this work is an
experimental evaluation of POL on a standard MA-STRIPS
benchmark, using several action model learning algorithms,
namely SAM learning (Stern and Juba 2017), ESAM learn-
ing (Juba, Le, and Stern 2021), and FAMA (Aineto, Celor-



rio, and Onaindia 2019a). Our results show that using a small
number of observations, POL can create multi-agent plans for
almost all test problems. Finally, we describe how POL can
be implemented for MA-STRIPS with concurrent, possibly
conflicting actions. This requires extending SAM learning
to this setting, which requires disambiguating the effects of
actions that are performed concurrently and learning which
actions can be performed in parallel.

Background and Problem Definition
STRIPS is arguably the most straightforward and well-
known language for formalizing single-agent planning. It
uses uses propositional logic to define the planning domain
and problem, as follows:

Definition 1 (STRIPS). A STRIPS problem is represented
by a tuple Π = ⟨P,A, I,G⟩ where:

• P is a finite set of propositions.
• A is the set of actions the agent can perform.
• I is the initial state.
• G is the goal to achieve.

A proposition p ∈ P describes a possible fact about the
world. A state is a set of facts (s ⊆ P ), representing that
the conjunction of these facts are true and all other facts are
not. A is the finite set of actions that the agent can perform.
Each action a is defined by its preconditions (pre(a)) and
effects (eff(a)). Preconditions and effects are sets of literals,
where a literal is either a fact p ∈ P or its negation. The
effects of an action are often separated into add-effects and
delete-effects, where a positive fact is an add-effect, and a
negative fact is a delete effect. An action a is applicable in
a state s if all its preconditions are satisfied in s. The result
of applying a to a state s, denoted by a(s), is a state that
contains all the facts in eff(a) as well as all the facts in s
except whose negations are in eff(a). The initial state I is a
state and the goal G is a consistent set of literals. A state s
satisfies a set of literals L iff s satisfies all the literals in L.
A state sG that satisfies the goal condition G is referred to
as a goal state. A solution to the STRIPS planning task is a
plan, which is a sequence of actions (a1, . . . , ak) such that
(1) I satisfies pre(a1), and (2) ak(. . . (a1(I) . . .) satisfies G,
i.e., a plan that can be applied to the initial state and results
in a state that satisfies the goal.

Multi-agent STRIPS (MA-STRIPS) (Brafman and
Domshlak 2008) is an extension of STRIPS that supports
planning for multiple agents. MA-STRIPS generalizes
STRIPS by defining a finite set of actions for each agent,
characterizing the capabilities of that agent. The formal
definition is as follows:

Definition 2 (MA-STRIPS). A MA-STRIPS problem is
represented by a tuple Π = ⟨P, k, {Ai}ki=1, I, G⟩ where:

• P , I and G are the set of propositions, initial state, and
goal, respectively.

• k is the number of agents.
• Ai is the set of actions agent i can perform.

For simplicity, we assume agents perform their actions
sequentially and not in parallel (we revisit this assump-
tion later in the paper). Under this assumption, a solution
to the MA-STRIPS planning task is a sequence of actions
(a1, . . . , ak) that can be applied to I and results in a state
that satisfies G. Each action in the plan is a member of the
set of actions of one of the agents. For example, a solution to
a MA-STRIPS problem can be a sequence of actions where
the first agent performs the first two actions and the second
agent performs the next four. Note that concurrency is not
explicitly defined in the MA-STRIPS formalism, and to the
best of our knowledge all MA-STRIPS planners output a se-
quential plan comprising a sequence of single agent actions.
Recent extensions to formally define concurrent actions are
not yet adopted in the CMAP community (Shekhar and Braf-
man 2020).

The main source of information we assume are trajecto-
ries collected by observing previously executed plans.

Definition 3 (Trajectory). A trajectory T =
⟨s0, a1, s1, . . . an, sn⟩ is an alternating sequence of
states (s0, . . . , sn) and actions (a1, . . . , an) that starts and
ends with a state.

The trajectory created by applying π to a state s is the se-
quence

〈
s0, a1, . . . , a|π|, s|π|

〉
such that s0 = s and for all

0 < i ≤ |π|, si = ai(si−1). In prior work (Wang 1994,
1995; Walsh and Littman 2008; Stern and Juba 2017; Arora
et al. 2018; Aineto, Celorrio, and Onaindia 2019b) a tra-
jectory

〈
s0, a1, . . . , a|π|, s|π|

〉
is often represented as a set

of triples
{
⟨si−1, ai, si⟩

}|π|
i=1

. Each triplet ⟨si−1, ai, si⟩ is
called an action triplet, and the states si−1 and si are re-
ferred to as the pre- and post- state of action ai. We denote
the set of all action triplets in the trajectories in T that in-
clude the grounded action a by T (a).

Finally, we can formally define the problem we consider
in this work, which we refer to as the CMAP with black-box
agents problem.

Definition 4 (CMAP with Black-Box Agents). A CMAP
with Black-Box Agents (CMAP-BB) problem is represented
by a tuple ⟨Π, T , i⟩ where:

• Π is a MA-STRIPS problem.
• T is a set of trajectories.
• i is an index of an agent specified in Π.

A solution to this CMAP-BB is a plan which is a solution to
the underlying MA-STRIPS problem Π.

We refer to agent i as the planning agent and assume with-
out loss of generality that i=0. The key constraint in solving
a CMAP-BB problem is that the problem solver does not know
the actions of any agent except that of the planning agent
and the actions observed in the given trajectories (T ). In ad-
dition, the problem solver does not receive an action model,
i.e., the preconditions and effects, of any action except for
those of the planning agent. We denote the action model for
all agents by M∗ and refer to it as the accurate action model.

Since multi-agent problems vary significantly in their as-
sumptions, we list the ones we make in this work. The agents
are collaborative and do not aim to obfuscate their action
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Figure 1: A diagram of the POL framework for solving
CMAP-BB problems.

models explicitly. The world is deterministic and fully ob-
servable, and the given trajectories provide a complete and
accurate depiction of observed previously executed plans.
When observing an action belonging to the non-planning
agents in a trajectory, the planning agent only receives the
signature of that action. While these assumptions are strong,
they are commonly assumed in the automated planning lit-
erature and are also a helpful abstraction in many real-world
applications.

The POL Framework
The approach we propose for solving a CMAP-BB problem,
called POL, consists of three phases: compilation, learning,
and planning. In the compilation phase, POL processes all
the given trajectories of the multi-agent plans and transforms
them to trajectories of a single “super” agent that has all
the actions observed in T . In the learning phase, POL ap-
plies a learning algorithm to learn an action model for that
“super-agent’s” actions based on the transformed trajecto-
ries. POL uses this learned action model to create a single-
agent STRIPS problem corresponding to the given CMAP-BB
problem. Finally, in the planning phase, POL uses a single-
agent planner to generate a solution for that problem, which
translates to a solution to the given multi-agent CMAP-BB
problem. Figure 1 illustrates how POL is used to solve a
CMAP-BB problem.

POL’s compilation phase is pretty straightforward. It con-
sists of iterating over every action in the given multi-agent
trajectories T and creating a corresponding action for the
“super” agent. The identity of the agent performing each
action is inserted as a parameter of the super agent’s ac-
tion. For example, consider a trajectory from a multi-agent
logistics problem with two truck agents t1 and t2 that in-
cludes the truck agent t1 performing (load p1 l1) and
the truck agent t2 performing (load p2 l2). POL will
compile this multi-agent trajectory to a single-agent tra-
jectory that includes the actions (load t1 p1 l1) and
(load t2 p1 l1).1 The result of this compilation phase
is a set of single-agent trajectories.

For POL’s learning phase, any single-agent action model
learning algorithm that accepts a set of trajectories can

1Note that this assumes the planning agent knows that the load
actions of all agents are the same. In cases where the agent cannot
discern this the it will consider these actions as distint and may
learn a different action model for them.

be used. FAMA (Aineto, Celorrio, and Onaindia 2019b),
ARMS (Wu, Yang, and Jiang 2007), LOCM (Cresswell,
McCluskey, and West 2013), and SAM learning (Juba, Le,
and Stern 2021; Stern and Juba 2017) are examples of such
learning algorithms. Similarly, any single agent planner can
be used for the POL’s planning phase. In our experiments, we
used for this purpose FastDownward (FD) (Helmert 2006),
a well-known state-of-the-art single-agent planner.

Learning Safe Action Models in POL
Without any restrictions on the learning and planning algo-
rithms used for the learning and planning phases, it is not
easy to guarantee the success of the plans generated by POL.
Next, we propose several restrictions over the algorithms
used in the POL planning and learning phases that provide
such guarantees. To this end, we borrow the notion of a safe
action model from Juba et al. (2021).
Definition 5 (Safe Action Model). An action model M ′ is
safe with respect to an action model M if for every state s
and action a it holds that if a is applicable in s according to
M ′ then (1) a is also applicable in s according to M , and (2)
applying a to s results in the same state according to both
action models.

As noted by Juba et al. (Juba, Le, and Stern 2021), a direct
implication of Definition 5 is that if an action model M ′ is
safe w.r.t. some other action model M , then any plan that
is sound according to M ′ will also be sound according to
M (Juba, Le, and Stern 2021). This observation allows us to
provide a similar guarantee in our context.
Theorem 1 (Soundness). Let ΠT be a CMAP-BB problem
⟨Π, T ⟩. In any implementation of POL in which (1) the learn-
ing phase returns an action model that is safe w.r.t. the ac-
tion model of the underlying MA-STRIPS problem Π, and
(2) the planning phase returns a plan that is sound w.r.t. the
learned action model, it holds that if POL returns a plan, then
that plan is a solution for ΠT .

Proof. Let M and M ′ be the action models of the under-
lying MA-STRIPS problem and learned by the POL learning
phase, respectively. If the plan returned by POL is sound w.r.t.
M ′ then that plan must also be sound w.r.t. M since M ′ is
safe w.r.t. M .

Thus, implementing POL with an action-model learning
algorithm that returns a safe action model and a sound
single-agent planner guarantees that it will never return a
multi-agent plan that cannot be executed by one of the
agents. Nevertheless, such a POL implementation is not nec-
essarily complete, i.e., it might fail to find a solution to a
given CMAP-BB problem even if the underlying MA-STRIPS
problem is solvable. An extreme example of this is when T
is empty, i.e., zero trajectories are available. In this case, POL
would practically attempt to solve a multi-agent problem us-
ing only the actions of the planning agent. If the problem
requires cooperation with any other agents, then POL would
fail to find a solution. More generally, having too few trajec-
tories in T may result in learning a safe action model that
is overly restrictive or even lack actions that are critical for
achieving the goal.



Implementing POL with SAM Learning
Next, we describe an implementation of POL that is based
on using the SAM learning algorithm (Stern and Juba 2017;
Juba, Le, and Stern 2021) for the POL learning phase. For
completeness, we begin by providing a brief description
of SAM learning. Initially, SAM learning creates an action
model in which each action a has all literals as a precondi-
tion and none of the literals as an effect. Then, for each state
transition (s, a, s′) ∈ T (a) the algorithm removes literals
from pre(a) that do not appear in s, and adds to eff(a) every
literal that is s′ but not in s.

SAM learning has several attractive properties. First, it
guarantees that the action model it returns is safe with re-
spect to the action model of the domain that generated the
trajectories. Second, its runtime is polynomial in the number
of trajectories, actions, and literals. Third, if future problems
are drawn from the same distribution as those used to gener-
ate the given set of trajectories, then the number of trajecto-
ries required to learn an action model that, with high proba-
bility, enables solving most problems is only quasi-linear in
the number of actions and facts in the real domain (Theorem
2 in (Stern and Juba 2017)).

Thus, this implementation of POL has the following prop-
erties. First, any solution returned is a sound multi-agent
plan. Second, the runtime of the learning phase is polyno-
mial. Third, if future problems are drawn from the same dis-
tribution as the one used to generate trajectories, then the
number of trajectories needed to guarantee that POL will be
able to solve a randomly drawn problem with high probabil-
ity is only quasi-linear in the number of actions, facts, and
agents.

CMAP-BB in Lifted Domains
The discussion so far was limited to grounded domains,
where actions and facts are not parameterized. Planning
and learning in grounded domains are often highly inef-
ficient, where the number of actions can be exponentially
large. Instead, classical planning domains and problems
are almost always provided in a lifted representation, usu-
ally specified in the Planning Domain Definition Language
(PDDL) (McDermott et al. 1998). Similarly, existing MA-
STRIPS benchmarks are also available in a lifted represen-
tation called MA-PDDL (Kovacs 2012). This section de-
scribes the CMAP-BB problem in such lifted domains and
how POL can be adapted accordingly.

A lifted classical planning domain is defined in PDDL by
a set of types T , lifted fluents F , lifted actions A, and their
corresponding action models. Lifted fluents and actions are
parameterized versions of the facts and actions in STRIPS,
where each parameter is associated with a type t ∈ T .
For example, the lifted action (move ?obj - object
?from - location ?to - location) has three
parameters, ?obj, ?from, and ?to, associated with the
types object, location, and location, respectively.
Similarly, the lifted fluent (at ?obj - object ?loc
- location) has two parameters of types object and
location. The action model of a lifted action a is its pre-
conditions and effects, which are specified as lifted literals

coupled with a binding function that maps the lifted fluent’s
parameters to the lifted action’s parameters. A problem in
PDDL specifies a set of objects O, each associated with a
type from T . A grounded action and a grounded fluent are a
lifted action and a lifted fluents, respectively, coupled with
a binding function that maps their parameters to the objects
specified in a PDDL problem. A state in PDDL is a set of
grounded fluents. Similarly, the goal in PDDL is specified
as a set of grounded literals. The desired solution, i.e., the
plan, is a sequence of grounded actions.

MA-PDDL (Kovacs 2012) is a lifted multi-agent planning
formalism that generalizes MA-STRIPS in a similar way,
where agents’ actions are defined in a lifted parametrized
representation. The CMAP-BB problem definition can be nat-
urally extended to this lifted formalism. The available trajec-
tories T are sequences of grounded actions and states. The
planning agent receives a set of trajectories T , which are
sequences of grounded actions and states, as well as the cur-
rent PDDL problem Π, which includes the available objects,
initial state, and goal. It does not know, of course, the lifted
action model of the other agents.

POL for Lifted Domains
The POL framework is also applicable for this type of
CMAP-BB problem but requires learning and planning algo-
rithms that support lifted domains. Most modern planning
algorithms provide such support.2 Recently, the SAM learn-
ing algorithm has also been extended to support learning
lifted safe action models (Juba, Le, and Stern 2021). This
lifted version of SAM learning, however, can only consider
action triplets in which each of the bindings of action pa-
rameters to objects is injective, i.e., a single object cannot
be mapped to more than one parameter of the same ac-
tion (Juba, Le, and Stern 2021). SAM learning cannot use
action triplets in which this assumption, called the injec-
tive action binding assumption does not hold, without com-
promising its safety guarantee. Thus, it ignores such action
triplets. If such triplets are common in the available trajecto-
ries, SAM learning’s sample efficiency would be negatively
affected. To learn safe action models in this setting, Juba
et al. (2021) created the ESAM algorithm. This algorithm
generates a CNF for each action it observes in the trajectory,
representing its knowledge about which lifted literals may be
preconditions and effect of that action. This CNF translates
to a safe action model. In some cases, this CNF indicates the
existence of ambiguity in the effects of an action which pre-
vents directly creating a safe action model for that action. In
such cases, ESAM creates proxy-actions that represent spe-
cific forms of that action that can still be performed safely.
The details of this algorithm are somewhat involved and are
presented more clearly in Juba et al. (2021).

Theoretical Properties
POL with ESAM and a sound and complete single-agent
planner has similar properties to POL for grounded domains.
The multi-agent plans it returns are applicable by all agents

2Although the standard approach is to fully ground the domain
as a preprocessing step.



(soundness), but it may not find a plan even for cases where
such exists (incompleteness). Here too, the probability that
will occur decreases quickly with the number of trajectories
(probably approximately complete). More accurately, let PD

be a probability distribution over solvable planning prob-
lems in a domain D. Let TD be a probability distribution
over pairs ⟨P, T ⟩ given by drawing a problem P from P(D),
using a sound and complete planner to generate a plan for P ,
and setting T to be the trajectory from following this plan.
Let arity(a, t) and arity(F, t) be the number of parameters
in the lifted action and fluent a and F , respectively, of type
t. The following result is proven by Juba et al. (2021) for the
single-agent case and directly applies to POL as well.
Theorem 2. Given

m ≥ 1

ϵ
(2 ln 3

∑
F∈F

a∈
⋃k

i=1 Ai

∏
t∈T

arity(a, t)arity(F,t) + ln
1

δ
) (1)

trajectories sampled from TD, with probability at least 1−
δ the probability that a problem drawn from PD will not be
solvable by POL is at most ϵ.

Note that increasing the number of agents only increases
the complexity linearly. To calculate the time complexity for
POL we divide the calculation to three parts: First, the com-
pilation stage consists of iterating over the actions in the
multi-agent trajectories and creating the appropriate action
for the ”super” agent trajectory. This process is linear in the
number of actions that were compiled in this stage. Second,
The learning stage consists of executing SAM/ ESAM on the
compiled trajectory and learning the ”super” agent’s action
model. The complexity for this stage depends on whether or
not proxy actions were created. In case proxy actions were
not created, the time complexity for the learning stage of POL
is linear in the number of triplets Juba, Le, and Stern (2021).
On the other hand, if POL using ESAM needs to compile
proxy actions the time complexity can rise up to be expo-
nential. Finally, the planning stage’s time complexity is the
same as the complexity of the planner that is being used.

Experimental Results
We implemented POL for lifted domains using three differ-
ent action-learning algorithms: SAM learning, ESAM learn-
ing (Juba, Le, and Stern 2021), and FAMA (Aineto, Celor-
rio, and Onaindia 2019a). Since existing MA-STRIPS plan-
ners do not generate plans with concurrent actions, we did
not implement the support for concurrent actions mentioned
above. We evaluated our POL implementations on the pub-
licly available CoDMAP benchmark of MA-PDDL prob-
lems.3 This benchmark includes 10 MA-PDDL domains and
20 MA-PDDL problems for each domain. Table 1 shows
general statistics on the selected domains. The columns |A|
and |P | list the total number of different actions and flu-
ents in each domain. The columns “Act.” and “Flu.” list
each domain’s maximal arity for actions and fluents. The
column “I.B.A” indicates whether or not the trajectories in
our benchmark maintained the injective binding assumption
required for SAM.

3http://agents.fel.cvut.cz/codmap/

Arity
Domain |A| |P | Act. Flu. I.B.A.

blocks 4 5 3 2 yes
depot 5 7 4 3 yes
driverlog 6 6 4 2 yes
elevators 6 8 5 2 no
logistics 5 3 4 3 yes
rovers 9 25 6 3 no
satellites 5 8 4 2 yes
taxi 17 6 2 2 yes
woodworking 13 14 9 3 no
zenotravel 5 4 6 2 yes

Table 1: Statistics of the maximal values for each of the
tested domains.

Implementation Details
Since there is no publicly available implementation of
ESAM, we implemented both SAM and ESAM learning al-
gorithms in Python for use in the POL learning phase. Due to
its complexity, we implemented a partial version of ESAM
in which only some of ESAM’s proxy actions are created.
Specifically, ESAM resolves ambiguity about the possible
effects of an action by creating two types of proxy actions:
one that merges action parameters that are mapped to the
same object into a single parameter and one that assumes
imposes an additional precondition. We only implemented
the latter approach as it was simpler technically and suffi-
cient to solve all the problems in the available benchmark.

In addition, some domains contain constants, which are
objects that are defined at the domain level and are present
in all problems from that domain. The addition of constants
to the domain definition adds complexity to the learning pro-
cess since they extend the current set of objects to which
the action and predicate parameters can be mapped. Indeed,
neither SAM nor ESAM directly support constants, as they
assume the parameters of an actions’ preconditions and ef-
fects can only be bound to parameters of the action. There-
fore, we extended both algorithms to support constants by
allowing such binding of literals to constants. The impact
of this addition on the sample complexity analysis given in
Theorem 2 is reasonable, adding the number of constants in
the domain to the base of the exponent in Equation 1. Prac-
tically, we limited the scope of learning by assuming that a
grounded literal ℓ is a precondition or effect of a grounded
action a only if they share at least one object in their param-
eters. This prevents having lifted literals with only constants
as preconditions or effects and improves the learning effi-
ciency. We also verified this assumption empirically in all
our benchmark problems.

To implement POL with FAMA, we used a publicly avail-
able implementation of FAMA.4 FAMA runs an internal
planner to generate its action model. As recommended by
FAMA, we used the Madagascar single-agent planner (Rin-
tanen 2014) for this purpose, setting a time limit of 100 sec-
onds. In preliminary experiments, we observed that indeed

4https://github.com/daineto/meta-planning



Madagscar is well-suited for this task, and increasing the
time limit beyond 100 seconds did not yield significant ben-
efits. Also, we note that the woodworking and taxi domains
included constants, which FAMA does not support, and thus
we did not include FAMA results for these domains.

In all our POL implementations, we used the FD planner
for the POL planning phase, with a time limit of 60 seconds.
Since we do not aim for optimal solutions, we configured
FD to use Greedy Best-First Search with the FF heuristic
and preferred operators.

Evaluation Setup
Since the number of problems for each domain is rela-
tively small in the available benchmarks, we evaluated our
algorithms using the k-fold cross-validation method (Re-
faeilzadeh, Tang, and Liu 2009). Specifically, we split our
dataset into five disjoint folds, each comprising four prob-
lems. Thus, in each fold, 16 problems were used to generate
the train set trajectories, and the remaining four problems
were used to test the learned action model. These trajecto-
ries were generated by converting the 16 MA-PDDL prob-
lems into single-agent problems and running Fast Down-
ward (Helmert 2006), an off-the-shelf state-of-the-art plan-
ner, to solve them, using a time limit of 1 minute.5 In a few
cases, FD could not solve all 16 problems. This occurred
only in depot and driverlog domains. In these cases, fewer
trajectories were obtained and used for training.

We focused our evaluation on three metrics: the number
of problems solved with POL, the precision of the learned
action model, and the recall of the learned action model, de-
noted S, P , and R, respectively. The S metric is computed
by running POL on the problems in our test set. Note that if
POL outputs a plan that is not sound, then it is not counted as
a solved problem. Precision and recall (P and R) are mea-
sured separately for preconditions, add- and delete effects,
and denoted Padd, Pdel, Radd, and Rdel.

Experimental Results
While conducting our experiments, we noticed that FAMA
could only generate action models for the blocks, driverlog,
logistics, and zenotravel domains before running out of time
or memory. In these domains, the injective binding assump-
tion always holds (see Table 1). Thus, the behavior of POL
with either SAM or ESAM is the same, and we only report
the results for POL with SAM learning. These results are pre-
sented in Table 2. The column “Alg.” indicates the learning
algorithm used, FAMA or SAM, denoted in the table as F and
S, respectively. The columns T and “Tri.” indicate the num-
ber of trajectories and action triplets needed to obtain the
best results. Here, best results mean maximizing S, and then
maximizing the precision and recall results. The rest of the
columns show the minimum, average, and maximum across
all folds for all our metrics. Observe that while SAM learn-
ing is monotonic, in the sense that adding more trajectories
can only increase its performance (P , R, and S values), this
is not the case for FAMA.

5Increasing the FD time limit did not significantly increase the
number of problems solved.

As can be seen, POL with SAM can always solve the same
or more problems than when using FAMA. The advantage of
POL with SAM is evident in the driverlog and zenotravel do-
mains, where POL with SAM solved all 4 test problems while
POL with FAMA solved only one or zero problems, respec-
tively. In both cases, POL with FAMA generated multi-agent
plans, but these plans were inapplicable (i.e., not sound).
Previous work (Verma, Marpally, and Srivastava 2021) also
encountered similar results.

In terms of precision and recall, the action model learned
using SAM always yielded the same or higher precision and
recall compared to FAMA. Observe that for driverlog, and
zenotravel domains, POL with FAMA, peaked after fewer
action triplets than SAM. However, in these cases, its peak
performance was significantly lower than POL with SAM,
solving fewer problems in the test set (lower S values) and
lower precision and recall results. Notably, the precision and
recall computation for FAMA was different than as we com-
puted. In FAMA, the precision and recall are averaged over
the TP, FP, and FN of all actions, while we computed the pre-
cision and recall per action and reported the average of these
values. Nevertheless, in all cases except driverlog SAM was
able to learn precisely the real action model, and thus these
different computations are not significant.

In general, the results highlight that for CMAP-BB, POL
with SAM performs significantly better than POL with
FAMA. However, it is essential to note that the primary
purpose of FAMA is learning action models in a partially
observable environment while our algorithm only works in
fully observable ones. This property of FAMA correlates
with the fact that its best performance results were acquired
after a few trajectory triplets. Furthermore, we noticed that
while POL with SAM learning only deduced the precondi-
tions and effects for observed actions, FAMA also partially
learned unobserved actions.

Results over the Entire Benchmark Unlike FAMA, both
SAM and ESAM feature feasible time complexity. Thus, we
were able to run POL with SAM and with ESAM over our
entire benchmark. The results are reported in Figure 2. The
table in Figure 2 (left) is in the same format as Table 2. Since
both SAM and ESAM return a safe action model, the precon-
ditions’ recall and the add and delete effects’ precision val-
ues are constantly 1.0. Thus, we omitted these columns from
the table. The table shows only the results for POL with SAM
learning since we observed that POL with ESAM performed
the same in almost all cases. The only difference observed
between SAM and ESAM manifested in the satellite domain
and only in the number of triplets needed to reach the best
performance. We report these results in the plot in Figure 2
(right), which shows the number of triplets needed to reach
the best performance in each of our five folds. This simi-
larity in performance between SAM and ESAM is expected
since the injective binding assumption holds in all domains
except elevators, rovers, and woodworking. Moreover, even
in these domains, cases where this assumption does not hold
are relatively rare.

The first trend we observe is that the small number of tra-
jectories used for learning was sufficient to solve all prob-



Domain Alg. |T | Tri. Ppre Rpre Padd Radd Pdel Rdel S

blocks S 1, 1, 1 38, 38, 40 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
F 1, 1, 1 38, 38, 40 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

driverlog S 9, 10, 11 143, 183, 249 0.9, 0.9, 0.9 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
F 1, 3, 4 14, 34, 57 0.7, 0.8, 0.9 0.6, 0.7, 0.8 0.4, 0.6, 0.7 0.7, 0.8, 1.0 0.7, 0.8, 1.0 0.9, 0.9, 1.0 0, 0, 1

logistics S 1, 1, 1 46, 47, 49 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
F 1, 2, 2 49, 81, 89 1.0, 1.0, 1.0 0.8, 0.8, 0.9 0.9, 0.9, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 0, 1, 4

zenotravel S 2, 3, 3 55, 72, 82 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
F 1, 1, 1 24, 26, 27 0.6, 0.6, 0.7 0.6, 0.7, 0.7 0.4, 0.6, 0.7 0.7, 0.8, 0.9 0.6, 0.6, 0.7 0.7, 0.7, 0.9 0, 0, 0

Table 2: Comparison: POL using FAMA and SAM. The best results in each case is given in bold.

Domain T Tri. Ppre Radd Rdel S

blocks 1, 1, 1 38, 38, 40 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
depot 1, 1, 1 31, 201, 243 0.9, 0.9, 0.9 1.0, 1.0, 1.0 1.0, 1.0, 1.0 3, 4, 4
driverlog 9, 10, 11 159, 183, 249 0.9, 0.9, 0.9 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
logistics 1, 1, 1 46, 47, 49 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
satellite 1, 4, 6 40, 229, 324 0.8, 0.9, 1.0 0.8, 0.9, 1.0 0.7, 0.8, 0.9 3, 4, 4
taxi 16, 16, 16 349, 367, 405 0.8, 0.9, 0.9 1.0, 1.0, 1.0 1.0, 1.0, 1.0 3, 4, 4
zenotravel 2, 3, 3 55, 72, 82 1.0, 1.0, 1.0 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
rover 4, 6, 8 281, 352, 409 0.8, 0.8, 0.8 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4
woodworking 6, 7, 11 260, 320, 447 0.6, 0.6, 0.6 0.6, 0.6, 0.6 0.6, 0.6, 0.6 4, 4, 4
elevators 2, 4, 5 148, 326, 400 0.7, 0.7, 0.7 1.0, 1.0, 1.0 1.0, 1.0, 1.0 4, 4, 4

Figure 2: (Left) Results for POL with SAM learning. (Right) Comparison of the number of triplets needed until complete learning
for both SAM (marked in blue) and ESAM (marked in orange) in the elevators domain.

lems in our test set in almost all cases. Moreover, for the
blocks, depot, logistics, and zenotravel domains, the learn-
ing converged after less than 100 action triplets. For the
taxi domain, our algorithm required all 16 trajectories in the
training set to learn a model that is adequate to solve the
test set problems. This happened since it is divided so that
some agents are not observed. Thus, their actions could not
be learned until the entire training set was acquired. There
were a few cases where not all of the test set problems were
solved. For instance, in the depot domain, for one fold, only
three out of the four test set problems were solved. We per-
formed a deeper investigation of these few cases and dis-
covered that they occur either when the problem itself is too
complicated for our planner to solve, even with the actual
action model (this was the case in depot), or when an action
has not been observed at all in the training set trajectories
(this was the case in satellite).

The second trend we observe is that in all domains ex-
cept woodworking and satellite, our algorithm can learn the
action model of all agents almost perfectly, with a recall of
1.0 for the effects and an average precision higher than 0.7
in all cases (and usually much higher). The satellite domain
presented an interesting phenomenon: the minimal recall for
effects occurred when an action was not observed in a spe-
cific fold. Indeed, without observing an action, our algorithm
cannot learn it. When experimenting on the woodworking
domain, we discovered that to solve the test set problems, it
was unnecessary to learn all of the actions and that using 7
out of the 12 actions, all of the test set problems were indeed
solved. Thus, while the correct action model was not accu-
rately learned, a sufficient, safe action model was found.

Finally, consider the difference between the results of
SAM and ESAM on the elevators domain, as shown in Fig-
ure 2 (right). As can be seen, in this domain, ESAM was

able to reach peak performance much faster than SAM, i.e.,
with significantly fewer action triplets. On average, ESAM
converged in this domain after less than half of the triplets
needed for SAM to converge. We note that the minimal num-
ber of triplets needed for SAM to converge for the domain is
as high as the maximal number of triplets needed for ESAM.
To the best of our knowledge, this is the first experimental
evidence for the benefit of using ESAM over SAM learning.

Concurrent Actions
If more than one agent can act at the same time, then a plan
comprises joint actions, where a joint action represents at
most a single action per agent. Formally, a joint action is a
k-dimensional vector â where entry i in that vector, denoted
â[i], is either an action from Ai or ⊥, where the ⊥ sign in-
dicates that agent i does not perform an action in the joint
action â. Correspondingly, a trajectory is an alternating se-
quence of states and joint actions.

It is possible to extend the POL framework to support
such settings with concurrent actions as follows. The “su-
per” agent in POL’s compilation phase is now capable of per-
forming joint actions (as opposed to single-agent actions).
The learning phase applies an action model learning algo-
rithm over these trajectories of joint actions, explicitly learn-
ing an action model for the joint actions. That is, this action
model explicitly specifies the preconditions and effects of
each joint action independently.

The safety property of POL is preserved — plans gener-
ated with this joint action model are guaranteed to be sound.
Yet explicitly learning a joint action model is highly ineffi-
cient, as the number of actions in this action model grows
exponentially with the number of agents. To achieve the
form of approximate completeness described in Theorem 2
requires observing a number of trajectories that is exponen-



tial in the number of agents, as opposed to only linear in the
number of agents, as is the case in the sequential case.

Independent Actions
The above challenge can be alleviated by making assump-
tions about the factored nature of a multi-agent planning
problem. For example, consider the following assumptions,
referred to as the independent actions assumption. Under
this assumption, each single-agent action has its own pre-
conditions and effects, and: (1) an action ai can be ap-
plied if and only if its preconditions hold, regardless of
the actions performed concurrently by the other agents; and
(2) the effects of any joint action that includes ai includes
all of the effects of ai. To the best of our knowledge, all
MA-STRIPS planners implicitly make the independent ac-
tions assumptions, perhaps because conflicting effects are
not well-defined in MA-STRIPS. Under the independent ac-
tions assumption, we propose the following version of SAM
learning.

Definition 6 (SAM rules for independent concurrent ac-
tions). For any observed action triplet ⟨s, â, s′⟩
1. If ℓ /∈ s then ℓ is not a precondition of any action a ∈ â.
2. If ℓ /∈ s′ then ℓ is not an effect of any action a ∈ â.
3. If ℓ ∈ s′ \ s then ∃a ∈ â in which ℓ is an effect.

These learning rules form the basis for SAM learning for
independent concurrent actions, in the same way that sim-
ilar rules form the basis of ESAM. Initially, we assume all
literals are preconditions of all single-agent actions, and the
effects of all single-agent actions are empty. Then, we re-
move preconditions and add effects for the different single-
agent actions by processing all the trajectories and applying
the learning rules above. Note the third learning rule may
create a disjunction over the possible effects of an action.
The resulting action model can then be applied safely, for
all states where these disjunctions allow determining safely
the effects. This can be handled by replacing an action that
has potentially ambiguous effects with proxy actions that en-
sure no ambiguity of effects exists. For more details, see how
such proxy actions are created and used by the ESAM algo-
rithm (Juba, Le, and Stern 2021).

Possibly Non-Independent Concurrent Actions
Consider two truck agents in the logistics domain, trying to
load the same package in the same joint action. The effect of
each load action independently is to have the package loaded
onto the loading track, yet the effect of performing a joint
action with both load actions cannot be that both trucks are
loaded with the same package.

Without any additional assumption about the relation be-
tween the preconditions and effects of the joint action in
those of its constituent actions, not much can be done be-
yond explicitly learning the joint action model. Consider the
following relaxed form of the independent actions assump-
tion: actions are independent except that performing some
pairs of actions concurrently is forbidden. We refer to such a
pair of actions as a conflicting pair of actions. Under this
assumption, we can augment the rules in Definition 6 by

adding that a pair of actions a and a′ can only be performed
concurrently, i.e., do not conflict, if there have been observed
in the same joint action in the given observed trajectories.
Adding this restriction maintains safety, but limits the ability
to generalize, and increase the number of trajectories needed
to guarantee our probabilistic form of completeness.

A more relaxed assumption is that a pair of actions cannot
be performed concurrently iff they have conflicting effects.
That is, a pair of single-agent actions a and a′ are in con-
flict, denoted conflict(a, a′), if there exists a literal ℓ such
that ℓ ∈ eff(a) ∧ ℓ ∈ eff(a′). A joint action â is said to have
a conflict if it has constituent single-agent actions that are
in conflict. This natural definition of conflicts corresponds,
for example, to our logistics example with trucks picking up
the same package. Namely, the actions load − truck and
unload− truck are in conflict since both affect the same lit-
erals. If the observed trajectories contain only joint actions
that do have a conflict, then we can extend the SAM rules
in Definition 6 with the following rule: for every observed
action triplet ⟨s, â, s′⟩, action pair a, a′ ∈ â:

∀ℓ ∈ L :
∧

a,a′∈â

ℓ /∈ eff(a) ∨ ℓ /∈ eff(a′) (2)

Actions can be be performed concurrently safely if their pre-
conditions are consistent with each other and their effects do
not share any literal. This can safely be done using the action
model returned by SAM learning.

Conclusions and Future Work

This paper introduced the CMAP-BB problem, where an agent
is tasked to generate a multi-agent plan for a team of black-
box agents. We proposed POL, a framework for solving
CMAP-BB problems that learns an explicit action model for
the agents in the team. Equipped with a Safe Action Model
learning algorithm, POL is guaranteed to return a sound plan
and, given enough trajectories, is probabilistically complete.
We implemented POL for CMAP problems specified in MA-
STRIPS, and evaluated it using three different action model
learning algorithms. Our results, over 10 benchmark do-
mains, showed that using a small number of trajectories is
sufficient for POL to learn an action model that serves as
an adequate approximation of the actual action model that
enables producing applicable plans for most test problems.
Comparing the different learning algorithms within POL in
a fully observable setting showed the benefit of using a safe
action model learning algorithm, namely SAM learning, over
FAMA, a state-of-the-art action-learning algorithm. Finally,
we discuss how POL and SAM learning can be extended
to support problems in which agents can act concurrently,
and their actions can potentially conflict. Future work will
connect this version of SAM learning to recent progress in
modeling concurrent actions (Shekhar and Brafman 2020),
as well as explore how to implement POL in the context of
richer planning models that include stochasticity, partial ob-
servability, and numerical state variables.
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