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* Planning, Decision-making and Learning in robotic systems
* General algorithmic methods with rigorous theoretical guarantees

* Applications to real-world robotic problems/systems
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sb bl What is Search-based Planning —™eroeonesismi

Generate a systematic graph representation of the planning problem
Search the graph for a solution with a heuristic search (e.g., A* search)

Can interleave the construction of the representation with the search (i.e., construct only
what is necessary)

2D grid-based graph representation for 2D (x,)) search-based planning:

3

S, | 8; | construct ‘@ @ search the graph

the graph: for solution:

s, |s; | — ’@

: S

discretize:

construct search the graph
the graph: for solution:
> —_— S _—

motion primitives
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What iS Search_based Planning THE ROBOTICS INSTITUTE

. Generate a systematic oranhes ‘= wrahlem

R Pros:
| - rigorous guarantees on solution quality
. - good cost minimization
- consistency in solution

(similar queries = similar solutions)

‘ St | O | D3 | CUmSUCT \1 \W search the graph =
the graph: _ 1 for solution: .
s, |8 | — %@ ——> e

Lattice-based graph representation for 3D (x,y,0) planning:

discretize:

construct search the graph :
the graph: for solution: Ee

motion primitives
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What iS Search_based Planning THE ROBOTICS INSTITUTE

) PR

. Generate a systematic aran o= eahlem

- Challenges:
- high-dimensionality/graph size
- expensive edge cost evaluation
- edge construction for dynamic systems
- reliance on the accuracy of the model

‘ St | O | D3 | CumSLUCT \1 GEQ\S]Q search the graph =
the graph: _ 1 for solution: .
s, |8 | — %@ ——> e

Lattice-based graph representation for 3D (x,y,0) planning:

discretize:

construct search the graph :
the graph: for solution: Ee

motion primitives

Maxim Likhachev Carnegie Mellon University 6



Q— {b@r—/{) CumtlshricMel lon
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* Challenges in Search-based Planning

* Constant-time Motion Planning (CTMP) — offline learning for
online planning

« CMAX/CMAX++ for handling inaccurate models

 Summary and thoughts on research directions
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Generate a systematic oranba

- Challenges:

erahlem

- high-dimensionality/graph size

- expensive edge cost evaluation

- edge construction for dynamic systems
- reliance on the accuracy of the model

92

93

discretize:

Sy

conswruct

the graph:
—_—
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1 GEQ\S]Q search the graph
, for solution:

SR

Lattice-based graph representation for 3D (x,y,0) planning:

construct
the graph:
_—

motion primitives

search the graph

for solution: N
Cfs,.s; 100 N Wl
C(s,8 A o
sy )
J

R o
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5-D trajectory planning 12-D full-body planning
(x,y,2,6,v) (3D base pose, 1D torso height,
6DOF object pose, 2 redundant DOFs in arms)

goal e

State

Maxim Likhachev Carnegie Mellon University
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Qs;%?—ﬁil High-dimensionality/Graph Size  meweontm

5-D trajectory planning 12-D full-body planning
(x,y,2,6,v) (3D base pose, 1D torso height,
6DOF object pose, 2 redundant DOFs in arms)

goal m - -
k s R
state - w

over 500M states! over 10%° states!

(for 10km by 10km area discretized into (for small indoor space,
25m cubes, 32 yaw angles, 5 velocities) joint angle resolution = 10 degrees)
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sbpl High-dimensionality/Graph Size — ™erwonisit:

5-D trajecta v nlanning
~ojght,
Methodologies to address it: narms)
- implicit graphs
- compact graph representations including adaptive

dimensionality [Gochev et al. 11]

- sub-optimal/anytime search [Pearl 84, Likhachev
et al. 04, Hansen & Zhou 07, Thayer & Ruml 08, ...]

- incremental planning, especially within sub-
optimal/anytime search [Koenig & Likhachev 04,

k Likhachev et al. 08, ...]

- deriving multiple heuristics, each corresponding to
a low-dimensional version of the problem, and
using these via Multi-Heuristic A* [Aine et al. 15]

over 500M states! over 10%° states!
(for 10km by 10km area discretized into (for small indoor space,
25m cubes, 32 yaw angles, 5 velocities) joint angle resolution = 10 degrees)

Maxim Liknaci.c. Carnegie Mellon Univeisi,



Generate a systematic oranba

- Challenges:

erahlem

- high-dimensionality/graph size

- expensive edge cost evaluation

- edge construction for dynamic systems
- reliance on the accuracy of the model
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discretize:
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1 GEQ\S]Q search the graph
, for solution:

SR

Lattice-based graph representation for 3D (x,y,0) planning:

construct
the graph:
_—

motion primitives

search the graph

for solution: N
Cfs,.s; 100 N Wl
C(s,8 A o
sy )
J

R o
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3-D (x,y,8) planning with full-body collision checking

Work done in collaboration with Willow Garage
[Hornung et al. 12]

Maxim Likhachev Carnegie Mellon University 14
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V- Methodologies to address it:

- Lazy planning (postponing full edgecost evaluation until
absolutely necessary) [Cohen et al. 14, Dellin & Srinivasa
16, Mandalika et al. 19, ...]

- Parallelizing search, in particular edge evaluations

[Mukherjee et al. 22]

Maxim Likhachev Carnegie Mellon University 15



Generate a systematic oranba

- Challenges:

erahlem

- high-dimensionality/graph size

- expensive edge cost evaluation

- edge construction for dynamic systems
- reliance on the accuracy of the model
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1 GEQ\S]Q search the graph
, for solution:

SR

Lattice-based graph representation for 3D (x,y,0) planning:

construct
the graph:
_—

motion primitives

search the graph

for solution: N
Cfs,.s; 100 N Wl
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Planning for a highly dynamic driving (collaboration between

Thyssenkrupp and RobotWits, now part of Waymo)

Hard/impossible to construct transitions
whose endpoints land at the centers of high-d cells

D

:

/

>/
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% Edge Construction for Dynamic Systems™resnesisiit:

Hard/impossible to construct transitions
whose endpoints land at the centers of high-d cells

D

= i A
¥
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- Challenges:
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- high-dimensionality/graph size

- expensive edge cost evaluation

- edge construction for dynamic systems
- reliance on the accuracy of the model
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1 GEQ\S]Q search the graph
, for solution:
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Planning for tasks requiring heavy interaction with the world

Tabletop Scene #1

[Saleem & Likhachev 20]

Maxim Likhachev Carnegie Mellon University 20
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[Saleem & Likhachev 20]

Maxim Likhachev Carnegie Mellon University 21
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sbpl What is Search-based Planning  ™eReeoncsinsmmie
. Generate a systematic aranbes ' Yt e esehlem

- Challenges:
- high-dimensionality/graph size
- expensive edge cost evaluation
- edge construction for dynamic systems
- reliance on the accuracy of the model

.— Ih | S L~ consruct \91) \fb'g{] }\TSS) search the graph
2P\
for solution:

N

discretize:
Lots of work on learning to address these challenges:
- learning heuristics [Bhardwaj et al. 17, ...]
- learning collision detection estimator [Das & Yip 19,
Huh & Lee 16, ...]

- learning soft duplicate measure [Maray et al. 22]
- learning residual models [Nagabandi et al. 19, ...]

& T eeee et
b . ——
N -
W l s
motion primitives g //Y T
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shpl What is Search-based Planning — ™eroeoncs s

. Generate a systematfic arantys N

Challenges: CTMP algorithms
[Islam et al. 21]

~

- high-dimensionality/graph size
- expensive edge cost evaluation
- edge construction for dynamic systems
- reliance on the accuracy of the model

o— |L [(Se | =~ COnNIFUCT ,\01)([ \\_ CMAX *
discretize:
‘ [Vemula 22] j

Lots of work on learning to address these challenges:

- learning heuristics [Bhardwaj et al. 17, ...]

- learning collision detection estimator [Das & Yip 19,
Huh & Lee 16, ...]

- learning soft duplicate measure [Maray et al. 22]

- learning residual models [Nagabandi et al. 19, ...]

T seee |

0
motion primitives S //Y -, l
., N
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* Challenges in Search-based Planning

* Constant-time Motion Planning (CTMP) — offline learning for
online planning

« CMAX/CMAX++ for handling inaccurate models

 Summary and thoughts on research directions

Maxim Likhachev Carnegie Mellon University 24
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[Cowley et al., 2013], joint work with CJ Taylor (joint work with Honeywell & NREC - Herman, Pires, etc.)

* Planning often needs to be fast and “constant-time”
* while tasks are often repetitive

Maxim Likhachev Carnegie Mellon University 25
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Qﬂd Motivation for Constant-time Motion Planning TERoBomiCS INSTTUTE

https://youtu.be/mTFBuSuYuZI ‘ _ —E

Autonomous truck unloading
[Cowley et al., 2013], joint work with CJ Taylor (joint work with Honeywell & NREC - Herman, Pires, etc.)

* Planning often needs to be fast and “constant-time”
* while tasks are often repetitive

Maxim Likhachev Carnegie Mellon University 26
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Constant-time Motion Planning (CTMP) class of algorithms
[Islam et al., ICAPS’19], [Islam et al., RSS’20], [Islam et al., ICRA’21]

Algorithms that learn offline data structures which enable online planners to
quarantee to find a solution (if one exists) within a (small) user-defined time

Maxim Likhachev Carnegie Mellon University 27
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« Given (known) environment
« Given set of potential start configurations

» Given set of corresponding goal regions (e.g., we need to
handle goal perturbations)

=
\Q‘ -
¥ .

Bt g
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« Given (a mostly known) environment
« Given set of potential start configurations

» Given set of corresponding goal regions (e.g., we need to
handle goal perturbations)

=
\Q‘ -
7, .

Bt g

Goal Region

Maxim Likhachev Carnegie Mellon University 29
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» Given a start state and a goal region

goal

-

start

Maxim Likhachev Carnegie Mellon University 30



rie Mellon
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» Given a start state and a goal region
» Discretize the goal region

goal

start

0000000
0000000

O
(o]

Maxim Likhachev Carnegie Mellon University 31
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» Given a start state and a goal region
» Discretize the goal region

0000000
0000000

o O

Maxim Likhachev Carnegie Mellon University 32
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» Given a start state and a goal region
» Discretize the goal region

Key idea:
Given a potential function and any “attractor” state S , there
is typically a large region of states that can reach the attractor

state following the potential function

goal

start

JXPO OO0
0000000
IJOOOOOOO

O
O
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Qéf %J Constant-time Motion Planning (CTMP) THE ROBOTICS INSTITUTE

» Given a start state and a goal region
Discretize the goal region

Key idea:
Given a potential function and any “attractor” state S , there
is typically a large region of states that can reach the attractor

state following the potential function

Ryou Related to the idea of funnels [Burridge, Rizzi, and Koditschek, ‘99]
OO0OO0OOO for decomposing an environment into a set of controller domains for
0 00O robust execution
0O/0 O0O0O
Q 00 Sstart
’O ®)
OO
OO0
o

O
O
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» Given a start state and a goal region
 Discretize the goal region

Key idea:
Given a potential function and any “attractor” state S , there
is typically a large region of states that can reach the attractor

state following the potential function

goal

start

0000000
IJOOOOOOO

Sal‘l‘

Pre-processing algorithm:

Decompose R, into a set of subregions R; y, each defined by {S£", r;},
s. t. UX R, completely covers R,

where r; — radius of subregion R,

Maxim Likhachev Carnegie Mellon University 35
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C@%J Constant-time Motion Planning (CTMP) ™ RoBOTICS iNSTITUTE

» Given a start state and a goal region
» Discretize the goal region

Key idea:
Given a potential function and any “attractor” state S , there
is typically a large region of states that can reach the attractor

state following the potential function

start

Q.0

 JeosnouoN/ o) Nelle])
00O

Pre-processing algorithm:

. Into a set of subregions R; , each defined by {S*", r},
s. t. UX R, completely covers R,
where r; — radius of subregion R;

Decompose R,,

Maxim Likhachev Carnegie Mellon University 36
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» Given a start state and a goal region
 Discretize the goal region

Online Planning:

Given an Sy, in Ry,

a) find which R; contains S,

b) follow the potential function towards S,
c) once reached, follow the stored path from S to s

start

o

P O
i

(o} NoXeo)

? '
0C0O0O0¢O

o)

0 @ O(Dx

(€ ‘O/L\

10.Q g

b N

I

)

ldoooooncr

s FoWeY Yo¥o¥o

O

D}%
g

(O
pReNoNoNeoX( Neo
( JeuonoRoN/ NoX Ne)
"0 0 000QOHDO

Pre-processing algorithm:

Decompose R, into a set of subregions R; y, each defined by {S£", r;},
s. t. UX R, completely covers R,

where r; — radius of subregion R,

Maxim Likhachev Carnegie Mellon University 37
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+ Given a start state and a goal region
Discretize the goal region

Online Planning:

ya il

Details on pre-processing:
- each subregion R, can be computed via single backward search from S
- 8,/ can be any state that lies in the portion of R, that isn t yet covered

- more details including analysis in [Islam et al., [CAPS’19]

Provides provable guarantee on finding a plan to the goal (if
one exists) within a given user-defined time

SUML

where r;— _ radius of subregion R,

Maxim Likhachev Carnegie Mellon University 38
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* On bin picking 7DOF arm planning
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Constant-time Motion Planning (CTMP) ™ ROBOTICS NSTITUTE

| PRM (4T) MQ-RRT (4T) E-graph RRT-Connect  Our method

Planning time [ms] | 21.7 (59.6) 21.2 (35.5) 497.8 (9678.5) 1960 (9652) 1.0 (1.6)
Success rate [%] 86 69.75 76.5 83.8 100
Memory usage [Mb] 1.828 225.75 2.0 - 7.8
100 x 2000
—~MQ-RRT Y
S 80 | 1 { 'E 1500 -~ PRM |
= : 1 P % Our Method
3 60 | — -y ,
ad - [ — 2 1000 P
2 1 I =
g a0 | 2 -
* L ¥
20 PRM S _— | —
% Our Method 0 %
o 0.2 0.5 1 2 4 0.25 0.5 1 2 4
Preprocessing Time (Multiples of T) Preprocessing Time (Multiples of T)
(a) (b)
Maxim Likhachev

Carnegie Mellon University 39
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Constant-time Motion Planning (CTMP) class of algorithms
[Islam et al., ICAPS’19], [Islam et al., RSS’20], [Islam et al., ICRA’21]

Algorithms that learn offline data structures which enable online planners to
quarantee to find a solution (if one exists) within a (small) user-defined time

Examples of observations exploited by these algorithms:

* Goal region can be decomposed into subsets within which one can get
to its center by following a potential function [Islam et al., ICAPS’19]

* Paths can be precomputed so as to guide Experience-based planner to
find a solution within X expansions [Islam et al., RSS’20]

* Disjoint paths guarantee that at least one is feasible given a potential

for an obstacle blocking one [Islam et al., ICRA’21]

Maxim Likhachev Carnegie Mellon University 40
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Real World Experiments

Simulation Experiments

1.0x

Conveyor Speed — 20 cm/s
Planning Time Bound — 0.2s

S -~
Y

) P p

100% task success rate in simulation

Detecting objects...

* Planning happens between “Detecting objects”
and “Following trajectory” (notice the blink)

Task: The robot must pick up the bowl while avoiding collisions with the pitchers and the table
CTMP for picking up objects in partially-known
environments [Islam, Paxton, Eppner, Peele, Likhachev,
Fox et al., ICRA’21] (collaboration with Nvidia)

M Q —, | o
CTMP for picking dynamic objects off a conveyor
with imperfect perception [Islam et al., RSS’20]

e i

J

CTMP for Shield-based Protection project (work in progress)
Maxim Likhachev 41
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* Challenges in Search-based Planning

* Constant-time Motion Planning (CTMP) — offline learning for
online planning

« CMAX/CMAX++ for handling inaccurate models

 Summary and thoughts on research directions

Maxim Likhachev Carnegie Mellon University 42
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« Planning models for real world tasks are often complex (e.g., physics-based
simulators, analytically computed motion primitives, etc.), yet often imperfect

« Learning a model on-the-fly requires too many samples for goal-oriented
execution

Start Location

How to interleave planning and execution to
guarantee task achievement
despite the inaccuracies in the model?

Maxim Likhachev Carnegie Mellon University 43
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Related to
“cost poisoning” [Zucker et al. 2011

« Main points behind CMAX [Vemula, Oza, Bagnell & Likhachev, RSS’20]
- instead of updating dynamics, inflates the cost of transitions discovered to be
incorrect
- does not require updates to the dynamics of the model
- uses limited expansion search as planner to bound computation
- uses function approximation to scale to large state spaces

 (Guarantees task achievement under certain conditions

Maxim Likhachev Carnegie Mellon University 44
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Heavy object

Goal Location

Start Location

—

* Obijective:

Provably reach the goal online, despite having an inaccurate
dynamical model, without any resets

Resets allow the robot to “reset” to a state, usually a previously visited state

« The problem is formulated as a shortest path problem M=(S,A,G,f,c)
S : State space, A: Discrete action space, G: Goal space
Cost function: c: SxA—J0,1]
Unknown Deterministic True Dynamics: f: SxA—S$
Access to Approximate Dynamics: f': SXA—S
State is fully observable

Maxim Likhachev Carnegie Mellon University 45
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* Incorrect transitions:

Transitions where true and approximate dynamics differ
for example, f(s,a)#f' (s,a)or lf(s,a)-f" (s,a)ll>¢

¢ - smallest discrepancy handled by low-level feedback controller

X € S$xA = set of “incorrect” transitions

X is not known beforehand, and is only discovered through online
executions

Key ldea:

Instead of learning the true dynamics, CMAX maintains
a running estimate of the set of incorrect transitions X and

biases the planner to avoid using transitions known to be incorrect

Maxim Likhachev




sbpl CMAX
« Key idea:

While
current

state s; is
not a goal

Plan a path to goal using '

Execute action
a; to get
St+1= f (St ay)

Maxim Likhachev Carnegie Mellon University

Carn
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soie Mellon
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Inflate
c(sg ag) to
a large
value

If (S¢, ag) is incorrect

While
current
state s; is
not a goal

Plan a path to goal using '

Execute action
a; to get
St+1= f (St ay)

Maxim Likhachev Carnegie Mellon University 48
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Inflate
Move to t c(sg, ap) to

a large
value

If (S¢, ag) is incorrect

While
current

state s; is
not a goal

Plan a path to goal using '

Execute action
a; to get
St+1= f (St ay)

Else, move to t = t+1

Does not update approximate dynamics f' !

Theorem. The robot is guaranteed to reach a goal (accomplish its task), i.e. CMAX is
task-complete, under the assumption that there always exists a path from s, to a goal
that does not contain any transitions (s, a) known to be incorrect, i.e. (S, a) € X;

Maxim Likhachev Carnegie Mellon University 49
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To handle large state-spaces:

» Key idea:

ses function approximators to learn where discrepancies ar

Inflate
c(sg ag) to
a large
value

Move to t = t+1

If (S¢, ag) is incorrect

While
current

state s; is
not a goal

Plan a path to goal using ' /' £, o .ute action

a; to get
St+1= f (S, at)

Else, move to t = t+1

To handle large state-spaces:

extended to support limited-horizon search (e.g., LRTA* [Korf 90

Maxim Likhachev Carnegie Mellon University 50
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« CMAX in action:

Goal Location

!

— j Start Location

Maxim Likhachev Carnegie Mellon University 51



« Task achievement vs. optimality for repeated tasks

Start

CMAX++

CMAX
after I* iteration

Start f------- feen —

'
"\ —

icy
regian

Goal

Maxim Likhachev

Goal

Carnegie Mellon University

Carnegie Mellon
THE ROBOTICS ‘ihST ITUTE

CMAX
after n' iteration

Start f-------

— FEEt] CEEEEEE -———

'
. —1 v —

B

_____________ 1,
—= —= —t =
—— — —— :
H
— —= —6oal

potentially highly sub-optimal path

52
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« Task achievement vs. optimality for repeated tasks

CMAX++ [Vemula, Bagnell & Likhachev, AAAI’'21]
- combines CMAX with model-free Q-learning

- learns optimal Q-values of incorrect transitions over time and slowly
switches to using those during planning

- Guarantees task achievement under certain conditions AND
convergence to optimal execution of repeated tasks

Maxim Likhachev Carnegie Mellon University 53
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« Task achievement vs. optimality for repeated tasks
CMAX++ CMAX++
after 1% iteration after n' iteration
Start Start f-------f--- S Start f-------f--- S
E ' ;
g r
@ (@ | il 1@ |Q2  |@s
Icy 11 L
region _ .
Goal Goal -+ 1= —16oal
provably optimal path

CMAX++ [Vemula, Bagnell & Likhachev, AAAI’'21]
- combines CMAX with model-free Q-learning

- learns optimal Q-values of incorrect transitions over time and slowly
switches to using those during planning

- Guarantees task achievement under certain conditions AND
convergence to optimal execution of repeated tasks

Maxim Likhachev Carnegie Mellon University 54
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* Challenges in Search-based Planning

* Constant-time Motion Planning (CTMP) — offline learning for
online planning

« CMAX/CMAX++ for handling inaccurate models

 Summary and thoughts on research directions

Maxim Likhachev Carnegie Mellon University 55
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CTMP algorithms
Islam et al. 21

CMAX
[Vemula 22]

Maxim Likhachev Carnegie Mellon University 56
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sbpd Summary and Thoughts

Challenges in Search-hn<ed Planning:

Challenges in learning to reduce reliance on the

accuracy of the model:

1) How to do it while providing goal-directed
behavior and task achievement guarantees?

2) How to combine learning from demos with model-
based planning while guaranteeing safety?

3) How to get good confidence estimates in learned
policies and how to incorporate those into
planning?

Two main goals:

1) Learning with the aim of speeding up planning

2) Learning with the aim of reducing dependency on
the accuracy of the model
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