
Learning in 

Search-based Planning for Robotics

Maxim Likhachev

Associate Professor

Carnegie Mellon University and Waymo

Search-based Planning Lab (SBPL)

Joint work with 

F. Islam, O. Salzman, A. Vemula (and others)



Maxim Likhachev

Research Focus of My Group

• Planning, Decision-making and Learning in robotic systems

• General algorithmic methods with rigorous theoretical guarantees

• Applications to real-world robotic problems/systems

Carnegie Mellon University 2



Maxim Likhachev

Research Focus of My Group

Carnegie Mellon University 3



Maxim Likhachev 4

• Generate a systematic graph representation of the planning problem

• Search the graph for a solution with a heuristic search (e.g., A* search)

• Can interleave the construction of the representation with the search (i.e., construct only 

what is necessary)

What is Search-based Planning

Carnegie Mellon University

motion primitives
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search the graph

for solution:

Lattice-based graph representation for 3D (x,y,θ) planning:

discretize:

construct

the graph:

search the graph

for solution:

2D grid-based graph representation for 2D (x,y) search-based planning:
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High-dimensionality/Graph Size

Carnegie Mellon University
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Methodologies to address it:
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Expensive Edge Cost Evaluation

Carnegie Mellon University

3-D (x,y,Ѳ) planning with full-body collision checking

Work done in collaboration with Willow Garage

[Hornung et al. 12]
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Carnegie Mellon University
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Edge Construction for Dynamic Systems

Carnegie Mellon University

Hard/impossible to construct transitions 

whose endpoints land at the centers of high-d cells

Planning for a highly dynamic driving (collaboration between 
Thyssenkrupp and RobotWits, now part of Waymo)
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Edge Construction for Dynamic Systems

Carnegie Mellon University

Methodologies to address it:
- Soft duplicate detection for search without state    

discretization but de-prioritizing states that are similar to       
previously expanded states (i.e., are soft duplicates) [Du et   
al. 19, Maray et al. 22]
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Reliance on the Accuracy of the Model

Carnegie Mellon University

Planning for tasks requiring heavy interaction with the world

[Saleem & Likhachev 20]
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[Vemula 22]
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Motivation for Constant-time Motion Planning

[Cowley et al., 2013], joint work with CJ Taylor

https://youtu.be/mTFBuSuYuZI

Autonomous truck unloading 

(joint work with Honeywell & NREC - Herman, Pires, etc.)

• Planning often needs to be fast and “constant-time”

• while tasks are often repetitive
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[Cowley et al., 2013], joint work with CJ Taylor

https://youtu.be/mTFBuSuYuZI

Autonomous truck unloading 

(joint work with Honeywell & NREC - Herman, Pires, etc.)

• Planning often needs to be fast and “constant-time”

• while tasks are often repetitive

Can we provide a provably bounded planning time by pre-processing? 

Motivation for Constant-time Motion Planning
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Constant-time Motion Planning (CTMP) class of algorithms 

[Islam et al., ICAPS’19], [Islam et al., RSS’20], [Islam et al., ICRA’21]

Algorithms that learn offline data structures which enable online planners to 
guarantee to find a solution (if one exists) within a (small) user-defined time
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handle goal perturbations)
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Goal Region

Goal Region

Goal Region
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• Given a start state and a goal region

• Discretize the goal region

• We could pre-compute all paths but too long, too much memory… and not 
interesting ☺.

sstart

Rgoal

…

Constant-time Motion Planning (CTMP)
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• Given a start state and a goal region

• Discretize the goal region

sstart

Rgoal

Key idea: 

Given a potential function and any “attractor” state Satt , there 

is typically a large region of states that can reach the attractor 

state following the potential function 

satt

Related to the idea of funnels [Burridge, Rizzi, and Koditschek, ‘99] 

for decomposing an environment into a set of controller domains for 

robust execution

Constant-time Motion Planning (CTMP)
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• Given a start state and a goal region

• Discretize the goal region

sstart

Rgoal

Key idea: 

Given a potential function and any “attractor” state Satt , there 

is typically a large region of states that can reach the attractor 

state following the potential function 

Pre-processing algorithm: 
Decompose Rgoal into a set of subregions R1…K, each defined by {Si

att, ri}, 

s. t. Ui
K Ri completely covers Rgoal

where ri – radius of subregion Ri

Online Planning: 

Given an sgoal in Rgoal: 

a) find which Ri contains sgoal,

b) follow the potential function towards Si
att,

c) once reached, follow the stored path from Si
att to sstart

Details on pre-processing: 
- each subregion Ri can be computed via single backward search from Si

att

- Si+1
att can be any state that lies in the portion of Rgoal that isn’t yet covered

- more details including analysis in [Islam et al., ICAPS’19] 

Constant-time Motion Planning (CTMP)

Provides provable guarantee on finding a plan to the goal (if 

one exists) within a given user-defined time
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• On bin picking 7DOF arm planning

Constant-time Motion Planning (CTMP)
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Examples of observations exploited by these algorithms: 

• Goal region can be decomposed into subsets within which one can get 

to its center by following a potential function [Islam et al., ICAPS’19]

• Paths can be precomputed so as to guide Experience-based planner to 
find a solution within X expansions [Islam et al., RSS’20]

• Disjoint paths guarantee that at least one is feasible given a potential 
for an obstacle blocking one [Islam et al., ICRA’21]

Constant-time Motion Planning (CTMP) class of algorithms 

[Islam et al., ICAPS’19], [Islam et al., RSS’20], [Islam et al., ICRA’21]

Algorithms that learn offline data structures which enable online planners to 
guarantee to find a solution (if one exists) within a (small) user-defined time
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CTMP in Action

CTMP for Shield-based Protection project (work in progress)

CTMP for picking dynamic objects off a conveyor 

with imperfect perception [Islam et al., RSS’20]

CTMP for picking up objects in partially-known 

environments [Islam, Paxton, Eppner, Peele, Likhachev, 

Fox et al., ICRA’21] (collaboration with Nvidia) 
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Motivation

• Planning models for real world tasks are often complex (e.g., physics-based 

simulators, analytically computed motion primitives, etc.), yet often imperfect

• Learning a model on-the-fly requires too many samples for goal-oriented 

execution 

How to interleave planning and execution to 

guarantee task achievement

despite the inaccuracies in the model?
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CMAX

• Main points behind CMAX [Vemula, Oza, Bagnell & Likhachev, RSS’20]

- instead of updating dynamics, inflates the cost of transitions discovered to be 

incorrect

- does not require updates to the dynamics of the model

- uses limited expansion search as planner to bound computation

- uses function approximation to scale to large state spaces

• Guarantees task achievement under certain conditions

Related to 

“cost poisoning” [Zucker et al. 2011]
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CMAX

• The problem is formulated as a shortest path problem 𝑀=(𝕊,𝔸,𝔾,𝑓,𝑐)

𝕊 : State space, 𝔸: Discrete action space, 𝔾: Goal space

Cost function: 𝑐: 𝕊×𝔸→[0,1]

Unknown Deterministic True Dynamics:  𝑓: 𝕊×𝔸→𝕊

Access to Approximate Dynamics:   𝑓’: 𝕊×𝔸→𝕊

State is fully observable

• Objective:

Provably reach the goal online, despite having an inaccurate 
dynamical model, without any resets

1Resets allow the robot to “reset” to a state, usually a previously visited state
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CMAX

• Incorrect transitions:

Transitions where true and approximate dynamics differ 

for example,  𝑓(𝑠,𝑎)≠𝑓′ (𝑠,𝑎) or ∥𝑓(𝑠,𝑎)−𝑓′ (𝑠,𝑎)∥>𝜉

𝜉 - smallest discrepancy handled by low-level feedback controller

𝒳 ⊆ 𝕊×𝔸 = set of “incorrect” transitions

𝒳 is not known beforehand, and is only discovered through online 
executions

Key Idea:

Instead of learning the true dynamics, CMAX maintains 

a running estimate of the set of incorrect transitions 𝒳 and

biases the planner to avoid using transitions known to be incorrect
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CMAX

• Key idea:

While 

current 

state 𝑠𝑡 is 

not a goal

Execute action 

𝑎𝑡 to get

𝑠𝑡+1= 𝑓(𝑠𝑡, 𝑎𝑡)

Plan a path to goal using 𝑓′



Carnegie Mellon University 48Maxim Likhachev

CMAX

• Key idea:

While 

current 

state 𝑠𝑡 is 

not a goal

Execute action 

𝑎𝑡 to get

𝑠𝑡+1= 𝑓(𝑠𝑡, 𝑎𝑡)

Plan a path to goal using 𝑓′

Inflate 

𝑐(𝑠𝑡, 𝑎𝑡) to 

a large 

value
If (𝑠𝑡 , 𝑎𝑡) is incorrect

Move to t = t+1
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CMAX

• Key idea:

While 

current 

state 𝑠𝑡 is 

not a goal

Execute action 

𝑎𝑡 to get

𝑠𝑡+1= 𝑓(𝑠𝑡, 𝑎𝑡)

Plan a path to goal using 𝑓′

Inflate 

𝑐(𝑠𝑡, 𝑎𝑡) to 

a large 

value
If (𝑠𝑡 , 𝑎𝑡) is incorrect

Move to t = t+1

Else, move to t = t+1

Does not update approximate dynamics 𝑓′ !

Theorem. The robot is guaranteed to reach a goal (accomplish its task), i.e. CMAX is 

task-complete, under the assumption that there always exists a path from st to a goal 

that does not contain any transitions (s, a) known to be incorrect, i.e. (s, a) ϵ 𝒳𝑡
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CMAX

• Key idea:

While 

current 

state 𝑠𝑡 is 

not a goal

Execute action 

𝑎𝑡 to get

𝑠𝑡+1= 𝑓(𝑠𝑡, 𝑎𝑡)

Plan a path to goal using 𝑓′

Inflate 

𝑐(𝑠𝑡, 𝑎𝑡) to 

a large 

value
If (𝑠𝑡 , 𝑎𝑡) is incorrect

Move to t = t+1

Else, move to t = t+1

To handle large state-spaces:

extended to support limited-horizon search (e.g., LRTA* [Korf 90])

To handle large state-spaces:

uses function approximators to learn where discrepancies are
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CMAX

• CMAX in action:



Carnegie Mellon University 52Maxim Likhachev

CMAX++

• Task achievement vs. optimality for repeated tasks
CMAX 

after 1st iteration

CMAX 

after nth iteration

icy 

region

potentially highly sub-optimal path
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CMAX++

• Task achievement vs. optimality for repeated tasks

CMAX++ [Vemula, Bagnell & Likhachev, AAAI’21]

- combines CMAX with model-free Q-learning 

- learns optimal Q-values of incorrect transitions over time and slowly 

switches to using those during planning

- Guarantees task achievement under certain conditions AND 

convergence to optimal execution of repeated tasks



Carnegie Mellon University 54Maxim Likhachev

CMAX++

• Task achievement vs. optimality for repeated tasks

CMAX++ [Vemula, Bagnell & Likhachev, AAAI’21]

- combines CMAX with model-free Q-learning 

- learns optimal Q-values of incorrect transitions over time and slowly 

switches to using those during planning

- Guarantees task achievement under certain conditions AND 

convergence to optimal execution of repeated tasks

CMAX++ 

after 1st iteration

CMAX++ 

after nth iteration

icy 

region

provably optimal path
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• Challenges in Search-based Planning

• Constant-time Motion Planning (CTMP) – offline learning for 

online planning

• CMAX/CMAX++ for handling inaccurate models

• Summary and thoughts on research directions

Carnegie Mellon University

Agenda
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Summary and Thoughts

Carnegie Mellon University

Challenges in Search-based Planning:
- high-dimensionality/graph size
- expensive edge cost evaluation
- edge construction for dynamic systems
- reliance on the accuracy of the model 

Challenges in Search-based Planning:
- high-dimensionality/graph size
- expensive edge cost evaluation
- edge construction for dynamic systems
- reliance on the accuracy of the model 

CTMP algorithms 

[Islam et al. 21]

CMAX

[Vemula 22]
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Lots of opportunities to inject Learning into Planning!

Two main goals:
1) Learning with the aim of speeding up planning
2) Learning with the aim of reducing dependency on 

the accuracy of the model
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Two main goals:
1) Learning with the aim of speeding up planning
2) Learning with the aim of reducing dependency on 

the accuracy of the model

Challenges in learning to reduce reliance on the 
accuracy of the model:
1) How to do it while providing goal-directed 

behavior and task achievement guarantees?
2) How to combine learning from demos with model-

based planning while guaranteeing safety?
3) How to get good confidence estimates in learned 

policies and how to incorporate those into 
planning?

Challenges in learning to reduce reliance on the 
accuracy of the model:
1) How to do it while providing goal-directed 

behavior and task achievement guarantees?
2) How to combine learning from demos with model-

based planning while guaranteeing safety?
3) How to get good confidence estimates in learned 

policies and how to incorporate those into 
planning?
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