
Improving Task Planning Knowledge Robustness
for Autonomous Robots

Hadeel Jazzaa, 1 Thomas McCluskey, 2 David Peebles3

University of Huddersfield 1,2,3

hadeel.jazzaa@hud.ac.uk, 1 t.l.mccluskey@hud.ac.uk, 2 d.peebles@hud.ac.uk3

Abstract

For a more robust robot capable of adapting to the
changing environment, the goal of this work is to bridge
the gap between abstract plans and robot action execu-
tion. Our platform combines planning, reasoning and
learning new success values incrementally based on
experience. Refinement involves reasoning over action
execution failure using anomaly detection techniques.
This paper reports on the embedding of a theory refine-
ment process within a real robot. Empirical testing and
evaluation has been performed using the NAO robot in
kitchen scenario.

Introduction
Task planning for autonomous robots presents many
challenges, in particular those stemming from changes
in the environment and the mission requirements. It
is infeasible to pre-program such robotic applications
by predicting, at the design stage, all possible courses
of actions on demand (Ingrand and Ghallab 2017). The
plan execution strategy must account for the action/-
plan failure, which results from ignorance or change
(Cashmore et al. 2015). The planning engine itself may
need updating from time to time, but this is not seen
as critical as the validity of the knowledge being rea-
soned about.

The robot planners and designers of robot con-
trollers, treat actions at a level of abstraction that ne-
glects their subtle differences. The planning system
considers actions as black boxes with performance in-
dependent of the prior and subsequent steps (Stulp
and Beetz 2008). This abstraction is partially achieved
by ignoring action parameters, which are relevant to
the performance not to the action selection (planning).
Our research aims at moving towards the goal of Long-
term autonomy (Kunze et al. 2018). Long-term auton-
omy can be achieved by making the system more ro-
bust through experiential learning: failures and suc-
cesses drive the improvement of the pre-programming
multi-level representation. The research is based on a
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Figure 1: HDJ Intelligent Robot Hierarchical Architec-
ture

multi-level abstraction platform, represented in Figure
1, with the most abstract level being the Planning Do-
main Definition Language (PDDL) and all the abstrac-
tions are related to each other.

Our hypothesis is that the gap between the abstract
plan and its execution is one of the main reasons for
plan execution failure and that action abstraction and
ignoring of action parameters are part of this gap. The
long term aim therefore to bridge this gap between ac-
tions at the high-level stage (abstracted actions) and
actions at low-level stage (low-level commands). We
think bridging this gap will make it possible to enable
robots to adapt to changing situations and lead to more
robust planning and efficient behaviour.

The action parameters and all information related to
the actions and objects involved with that action are
crucial to our approach and so the focus of this study
is to learn from action execution where action (here
represented in PDDL) are transformed from this ab-
stract level to be executed by the control system. Ex-
amining the information and parameters of the failed
action could lead to the discovery of the failure’s cause.
Our take on knowledge refinement is inspired by hu-
man cognitive science. When an individual fails to ex-
ecute a frequently performed task, s/he will try to dis-
cover the reason and the first question that comes to
mind is: “What did I do differently this time that led to
failure?”. The human action control is an integration



of feed-forward and feedback components (Schmidt
1975; Glover 2004). For example: picking a pan up does
not need knowing its exact weight in advance; humans
can determine this easily by picking it up and slightly
increasing the exerted force until the pan leaves the
surface. According to Schmidt (Schmidt 1975), human
action control is hybrid, combining both feed-forward
and feedback components. Schmidt argued that hu-
mans set action schemas by specifying the relevant at-
tributes of that action but leave free parameters to be
specified online while collecting environmental infor-
mation.This indicates the integration of the off-line ac-
tion planning with the online sensorimotor and knowl-
edge update.

The novel aspect of our contribution is the addition
of anomaly detection and subsequent knowledge re-
finement performed by Algorithm 1 on a PDDL do-
main model within a real functioning robot. The re-
finement activity starts after execution has failed and
the feedback of the failed execution has been sent to
the knowledge-base. Before starting the re-planning, to
avoid failures in the future, the system refines the do-
main model that the planning engine relies on to pro-
duce plans.

In this paper we describe a hierarchical robot ar-
chitecture (HDJ) which continuously stores data from
planning experiences, analyses failures in operation,
detects anomalies using historical data, and changes
the planning knowledge in order to make plans pro-
duced in the future more robust. We evaluate the ap-
proach by investigating the result of knowledge refine-
ment within a NAO robot in a kitchen scenario.

Related Work
Most work in anomaly detection in robotics has con-
centrated on condition monitoring and faults detec-
tion, and novelty detection in the environment. In
addition to fewer applications that detect anoma-
lous behaviours. However, there is little evidence that
anomaly detection has been used specifically to iden-
tify inaccuracies in a robot’s symbolic knowledge, ini-
tiated by the execution failure of its own generated
plans, as covered in this work. It has been employed
in robot condition monitoring and fault detection (e.g.,
(Khalastchi et al. 2015), (Hornung et al. 2014), and
(Häussermann, Zweigle, and Levi 2015)) and for nov-
elty detection in environment (e.g., (Crook, Hayes, and
others 2001) and (Crook et al. 2002)). While (Kunze et
al. 2018) employed anomaly detection to learn differ-
ences for object classification and (Ando et al. 2011)
employed it for identifying anomalous behaviours us-
ing time scale and resolution. In addition to this,
anomaly detection has been employed in healthcare
applications, for Robot-Assisted feeding (Park, Hoshi,
and Kemp 2018).

Most of the current contributions for acquiring plan-
ning domain models or control knowledge are con-
cerned with speeding up task planners; only a few

consider learning while acting; even fewer are demon-
strated in robotics (Jiménez et al. 2012). Indeed, many
researchers have been concerned with detecting the
cause of the failure. However, there is little evidence
of techniques of knowledge refinement resulting from
the results of AD, as covered in this work. The pre-
sented approaches exploit different methods to learn
new knowledge for refining planning models. For ex-
ample, LIVE (Ranasinghe and Shen 2008) employs
the incremental enlargement heuristic to examine the
faulty rules while EXPO (Gil 1992) employs the ORM
method to refine incomplete planning knowledge.
GDA (Weber, Mateas, and Jhala 2012) and OBSERVER
(Wang 1996) learn from demonstration. Furthermore,
Probabilistic rules of the success of actions are learned
by PELA system (Jiménez, Fernández, and Borrajo
2013). The RACE system (Rockel et al. 2013) em-
ploys HTN planner to learn from experiences. While
ProbCog (Karapinar, Altan, and Sariel-Talay 2012) em-
ploys Logic Programming (ILP) and Geometric Rea-
soning module. The work in (Lindsay et al. 2020) re-
fines hybrid domain models. It utilises machine learn-
ing techniques to identify the serious situation and
temporal features. The REWRITE’s system(Upal 1999)
refines plans by employs what is called ”a conflicting
choice point”. In another approach, The work in (Stulp
and Beetz 2008) predicates the effects and performance
of the planed actions earlier before the execution stage.

System Overview
The HDJ hierarchical system architecture we employ
is inspired by previous work on robotics architectures
such as the layering used in the functional architec-
ture within a UAV (Doherty, Kvarnström, and Heintz
2009). HDJ consists of three layers (represented in Fig-
ure 1) embedded into an environment that enables the
recording of planning and acting experiences, and sub-
sequent adaptation of knowledge.

Figure 2: HDJ data flow diagram. The existing compo-
nents (Blue boxes) and HDJ components (Green boxes)

Figure 2 presents the data flow through HDJ. It con-
tains original components as well as existing compo-
nents - in particular parts of the ROSPlan (Cashmore et
al. 2015) are utilised in the top level of HDJ. The inter-
mediate level is a reactive level that processes actions



to be executed and processes the execution feedback.
It includes the action dispatcher, action interface and
the extension components of HDJ (the green boxes in
Figure 2). As seen in Figure 2, if the feedback coming
from the control system returns “execution failed”, the
Algorithm 1 is employed to detect the anomalies in the
information of the failed execution that do not appear
in the robot experience.

The action execution is a bottom up process. The
controller executes actions, re-actively responds to im-
mediate changes and provides feedback on the effect
of the action to KB. The controller receives this data
and passes it up to the HDJ reasoner, in the interme-
diate layer. Sensory information is used to update part
of this Knowledge-Base and hence generate updated
state information such as positions of objects (Bailey
and Durrant-Whyte 2006).

The Algorithms in HDJ
Algorithm 1 is the top-level algorithm which collects
data and drives the changes to HDJ’s knowledge (see
Figure 3). This algorithm processes the feedback com-
ing from the control system after each execution. The
control system sends feedback to the Knowledge-Base
and this feedback is either that the execution was suc-
cessful or failed. In the case of “failed”, the informa-
tion of the failed execution will be tested to extract
the differences (anomalies) by employing Algorithm 2,
which can detect a single or group of anomalies (point
and collective). The output of Algorithm 2 is a report
of the extracted differences that are considered as the
potential cause of failure. It is used to learn success
values by Algorithm 3, and then to refine the PDDL
model by executing Algorithm 4, that updates the KB.
Any detected anomaly is a value that indicates param-
eters or pieces of information in the Knowledge Base,
such as pre-conditions and states. Future failure can be
avoided by updating the knowledge of the task’s plan-
ner.

Training Data
The training-data TD can be defined as a history record
of all previous successful executions. Let A = a1,...,an be
the set of attributes that represents all information re-
lated to an action.

TD is an m× n matrix where the columns denote n
attributes and the rows maintain the values of these at-
tributes over m execution. For example, in the domain
model DM in Listing 1, consider the operator ’grip’
that has n number of attributes. The distance between
the robot and the targeted object represents its first at-
tribute (X1) while (X2) is the angle attribute that repre-
sents the position of the targeted object. So, (Xm1) and
(Xm2) are the the distance and angle values in the exe-
cution number (m). As can be seen from the Figure 4,
if we recorded 100 successful execution, then (m) will
take any value between 1 and 100.

Algorithm 1: Discrimination Process Algo-
rithm

Data: Training data, failed action information
Result: KB Update
// Pseudo Code:

1 while plan execution do
2 if not (Feedback.Success) then
3 TD← Training-Data
4 FD← Failed-Data
5 Anomaly Detection(FD, TD)
6 // Implementation of Algorithm 2

7 if QueryResult.count > 0 then
8 // If Outliers exists

9 Out← Detected Outlier
10 Return Out
11 Learning-Processing (Out)
12 // Learn new success values,

Algorithm 3

13 LV← Learned Value
14 Return LV
15 Refinement-model(LV);
16 // Refine the KB, Algorithm 4

17 end
18 else
19 SD← Successful action Data
20 Add-Training-Data (SD);
21 end
22 end

( def ine ( domain NAO)
( : requirements : s t r i p s : typing : f l u e n t s )
( : types waypoint o b j e c t robot gripper )
( : p r e d i c a t e s ( at−robby ? r − robot ?x − waypoint )

( a t ?o − o b j e c t ?x − waypoint )
( f r e e ? r − robot ?g − gripper )
( carry ? r − robot ?o − o b j e c t ?g − gripper ) )

( : f u n c t i o n s ( d i s t t o ? r − robot ?x − waypoint )
( maxdis ? r − robot ?x − waypoint )
( mindis ? r − robot ?x − waypoint )
( hwangle ? r − robot )
( maxhwangle ? r − robot ) )

( : a c t i o n goto : parameters ( ? r − robot ? from ? to − waypoint )
: precondi t ion ( and

( at−robby ? r ? from ) )
: e f f e c t ( and

( at−robby ? r ? to )
( not ( at−robby ? r ? from ) ) ) )

( : a c t i o n grip : parameters ( ? r − robot ? ob j − o b j e c t ? waypoint
−waypoint ?g − gripper )

: precondi t ion
( and ( at−robby ? r ? waypoint )
( a t ? ob j ? waypoint )
( f r e e ? r ?g )
(> ( d i s t t o ? r ? waypoint ) ( mindis ? r ? waypoint ) )
(< ( d i s t t o ? r ? waypoint ) ( maxdis ? r ? waypoint ) )
(< ( hwangle ? r ) ( maxhwangle ? r ) ) )

: e f f e c t ( and
( carry ? r ? ob j ?g )
( not ( at−robby ? r ? waypoint ) )
( not ( f r e e ? r ?g ) ) ) )

Listing 1: A segment of DM



Figure 3: Anomaly detection of a failed execution. The
outlier ‘distance’ value appears far a way from its near-
est neighbour in TD

Algorithm 2 embodies our approach to anomaly de-
tection (the approach is referred to as ADHDJ below).
This is the problem of searching for patterns in data
that differ and raise suspicions about a specific prob-
lem or issue (Zimek and Schubert 2017). We use the
same technique to compare the values of the failed ac-
tion execution with the training data. The purpose is to
discover the suspicious values in the failed execution,
and we suppose that the outlier value is responsible
for that failure.

A standard approach for anomaly detection in
datasets is to create a normal data model and com-
pare/test records against normality (Zimek and Schu-
bert 2017). First, we define normality for the given
data. Because the TD represents the values of success-
ful executions, we assume that historical records of
successful execution contain data values falling within
a normal distribution.

In our anomaly detection approach, the failed execu-
tion record is compared and tested against TD by ex-
tracting the anomalous values of the action execution
features. For our running example, in the Evaluation
Section, the grip action, Figure 3 shows the draw pro-
file of the distance attribute’s history, where the outlier
point represents the value of the distance feature of the
failed action.

Figure 4: ADHDJ search. Each attribute instance (X) of
FD is tested against its X vector in TD. n is number of
attributes. M number of records in TD

ADHDJ can detect both a point or a group of anoma-
lies. In the latter case more than one anomaly value
that belongs to different attributes is found. It deals
with multiple vectors that represents the action at-
tributes. The failed execution information (FD) is a
record of a failed complete action execution that is
given online. FD is an input vector x = x1,...,xn where n
is number of attributes of FD. The online anomaly de-
tection problem is to decide for each given x, whether
or not x is anomalous with respect to TD. ADHDJ ap-
proach tests each attribute of FD and searches for the
same attribute that does not appear in TD. As seen in
Figure 4, ADHDJ considers rules of form X where X at-
tribute takes particular values. We seek the value of X
∈ FD that does not appear in the expected distribution
of TD; Where X∈ TD, that X = X1,,...,Xm. Each action
attribute is represented by X vector where the X vec-
tor is an m× 1 matrix where m is number of successful
executions in TD.

Algorithm 2: Anomaly Detection
// TD-X: Attribute value in the

Training-Data
// FD-X: Attribute value in the

Failed-Data
// FD-X.label: Attribute name in

the Failed-Data
// n = Number of attributes
// m = Record number of TD

1 Open TD Data-set;
2 for ( i← 1 to n ) {
3 for ( j← 1 to m ) {
4 Select FD-X(i) /∈TD-X(j,i) ;
5 next j
6 }
7 Next i
8 }
9 if QueryResult.count > 0 then

// if an anomaly detected
10 Insert into report table FD-X(i).value,

FD-X(i).label;
11 end

HDJ Refining Process and Generalisation.
Algorithm 3 implements the learning-processing
procedure called from Algorithm 1. This algorithm
proposes the LV (learned value) based on the value
of Out. LV is calculated by adding Unit value to the
detected outlier. The size of each Unit is determined
by a parameter that we call the learning rate LR. Unit
is considered as a step toward the NNhg and reduces
the gap between the predicted value (initial DM value)
and success values (the experience). In ML and statis-
tics, the step size or learning rate is a tuning param-
eter in an optimisation algorithm that determines the
step size at each iteration to minimise the cost. It makes



steps down the cost function in the direction with the
steepest descent (Murphy 2012). Figure 5 is a visu-
alised representation of LP for ‘dis’ rule.

Figure 5: Learning process: The calculation of the new
value LV for the ’dis’ rule.

In the presented example, in Figure 5, the Unit size
is one centimetre; This because Out is a distance value
that is measured by the centimetre unit.

Figure 6: Failed execution with anomaly detection .
’HeadYawAngle ’ value is less than its nearest neigh-
bour(Out < NNhg)

The direction in which the step is taken is deter-
mined by the comparison of Out and NNhg. LPA con-
siders two comparisons of outliers. The first compar-
ison is represented in Figure 3, and Figure 5 where
the outlier value is greater than its nearest neighbour.
While the second comparison type is represented in
Figure 6, and Figure 6 where the outlier value is less
than its NNhg. Figure 7 shows how to specify LV for
the two type of anomaly in the ‘distance’ attribute.

In summary, Algorithm 3 derives a new success
value (LV) based on the detected anomaly by Algo-
rithm 2. If the (Out) greater than its nearest neighbour
(NNg) in TD, the new value LV will be (Out minus one
unit). Else, the new value (LV) will be (Out plus one
unit), Figure 5 and Figure 7. Then LV will be passed to
Refinement-model to refine the related value in KB.

Figure 7: learning process for two type of anomalies in
the ’distance’ attribute. LV = Out - Unit this when Out
> NNhg. while if Out < NNhg, LV = Out + Unit

.

Algorithm 3: Learning Process Algorithm
1 While Anomaly Detection
2 if Anomaly-Detection.count > 0 then

// If Outliers exists

3 Out← Detected Anomaly
4 Att← Attribute name
5 Att : get-attribute-name (Out)

// Get the name of the attribute in KB that

represents the outlier value

6 LV← Learned value
7 NNhg← Nearest-Neighbour in TD
8 Unit← One measurement unit

// For example one centimetre

9 if Out > NNhg then
10 LV = Out - Unit;
11 else
12 LV = Out + Unit;

// If anomaly detection less than its

nearest neighbour

13 end
14 Return LV
15 Call Refinement-model(LV, Att);
16 end

Algorithm 4 implements the knowledge refinement
process, called in line number 15 of Algorithm 1. The
refinement process is in charge of updating the KB,
which holds instances values of the PDDL model. Af-
ter a success value (LV) is learned from Algorithm 3
(LV), it is passed to Algorithm 4’s refinement process
to update the relevant value in KB. This sets the up-
date as a temporary update to be confirmed or decline
by next executions, as Figure 8 illustrates.

Refinement Rules: The number of KB instances to
refine in each iteration is domain-specific. Despite AD-



Algorithm 4: Refinement Process Algorithm).
1 Refienment Process
2 while LV Exist do

// If new success value is learned

3 P← Operator
4 LV← Learned-Value
5 Att← Attribute name
6 Select (Att)
7 Update KB (Att, LV, P)
8 if Update is valid then
9 Temporary Update

10 else
11 Undo Update

// (If LV∈ TD) and execution continued

to fail, then reject update. check

Figure 8

// ( Check Figure 8)

12 end
13 end

HDJ can detect more than one anomaly the rational
relationships of the domain model should be consid-
ered when refining its knowledge. Refining a spe-
cific knowledge attribute is specified based on the
relationships between the attributes in the domain.
This is due to the mutual dependency between the

Figure 8: Refinement validation flowchart

action attributes. For example, In the grasping task
of Nao robot, in the Evaluation Section, the ’dis-
tance’ (Xm1) and the ’headyawangle’ (Xm2) attributes
are have an inverse relationship ((Xm1) ∝ (Xm2)) where
the ’headyawangle’ values follows the ’distance’ val-
ues. For this reason we selected the ’headyawangle’ at-
tribute to be refine it when appearing combained with
the ’distance’ attribute, as ’Collective’ anomalies.

Initially, the refined knowledge is set as a temporary
update and waits for confirmation to be set as perma-

Figure 9: Kitchen Scenario.

nent value. Figure 8, is a flowchart representing the
process. The refinement model updates KB incremen-
tally based on experience. The update is set as a tem-
porary update to be confirmed as permanent when it
is validated. The refinement will continue to process in
iterations until successful execution is achieved. Each
time the model reduces the gap between the outlier
and its nearest neighbour in the TD, the new solution
is validated before confirming the update as valid. The
validation checks and compares LV against TD. For the
current fail, if LV ∈ TD update will be reject, draw back
to last confirmed update.

Evaluation
A set of experiments have been designed to test the
effectiveness of the HDJ architecture by exploring its
behaviour within a kitchen scenario (Müller and Beetz
2006). We tested the effectiveness of HDJ software in
reducing the fail executions percentage as a result of
knowledge refinement. For this reason we performed
and recorded a series of experiments without employ-
ing the HDJ system, using the NAO robot. Then, we
performed another series of experiments employing
the HDJ system.

As represented in Figure 9, the kind of tasks given
to the robot are to do with gripping and moving a
cup from a table to another one. Plans that will fail
are executed in order to test the robot abilities in
identifying the cause of execution failure and then to
update and justify KB. Each of the experiments is used
to investigate a particular type of anomaly:

• The distance between the robot to the cup.
• The angle of the position of the cup on the table to

the robot position.
• ‘Collective’ anomalies, where the combination of at-

tributes is detected as being the anomaly.
• ‘Collective’ anomalies, the detection of group of

anomalies.

Experimental Setup
We use PDDLv2.1 for the Domain Model, as illustrated
in the Listings 1. Given operator P in DM, PNE is a



primitive numeric expression (fluent) of a planning in-
stance related to the precondition of P. The execution
of Algorithm 1 detects the cause of a failure, learns suc-
cess values LV, and then uses the learned value to up-
date the KB, by replacing the original value of expres-
sion PNE with the learned value LV.

The functions dist-to, mindis, and maxdis are as-
sociated with the pre-conditions of the operator grip.
These fluents are employed to represent the distance
rule (dis). As seen in Listing 1 , we use a prefix syntax
(comparison) for the grip operator and its precondi-
tion (>=(dist-to ?r ?waypoint) (mindis ?r ?waypoint)).
Similar to the distance rule, the functions hwangle and
maxhwangle are associated with the HeadYawAngle
rule.

The values of fluents are passed and processed by
HDJ system which passes them to the planner, specif-
ically to the problem interface in ROSPlan, Figure 2 is
an example of the PDDL problem file implemented our
experiments. In contrast the value of dist-to is a sen-
sory data (distance value) that measured online and it
is used to update KB. For each failed execution, HDJ
system implements Algorithm 1 to update and refine
the knowledge base of the task planner to avoid future
failure.

( def ine ( problem task )
( : domain NAO)
( : o b j e c t s

wp0 wp1 − waypoint
nao − robot
grp − gripper
redCup − o b j e c t )

( : i n i t
( at−robby nao wp0)
( a t redcup wp1)
( f r e e nao grp )
(= ( d i s t t o nao wp1) 20)
(= ( mindis nao wp1) 12)
(= ( maxdis nao wp1) 23)
(= ( hwangle nao ) 0 . 0 )
(= ( maxhwangle nao ) 0 . 2 ) )

( : goal ( and
( at−robby nao wp1)
( carry nao redcup grp ) )

) )

Listing 2: Problem File

Experiments Investigating Distance Failures: These
experiments investigate distance as a cause of failure,
in particular the distance between the robot and the
cup. The environment is not changed for each execu-
tion (episode), but the initial position of the robot to
the cup is randomly changed.

We intentionally set incorrect ranges for the distance
rule to cause failure and investigate the effectiveness
of the HDJ to correct the distance constraints. The cor-
rect range of (23cm>dis>15cm) was extended to range
(27cm>dis>15cm) in order that some failures would
be caused during execution.

Experiments Investigating Angle Failures: The
available DOF of the arms of NAO robot limits its
abilities in grasping. The head can rotate about yaw
and pitch axes. Each arm has 2 DOF at the shoulder, 2
DOF at the elbow, 1 DOF at the wrist, and 1 additional

Figure 10: The joints values of NAO’s arm in grasping
position at the maximum degree toward the body.

DOF for the hand’s grasping. The angle of the object’s
position is a critical condition for successful grasping.
As seen in Figure 10, the maximum rotation of shoul-
der joint towards the body is only able to bring the arm
in front of the robot’s cameras. The ideal position for
grasping an object is when the HeadYawAngle=0.0.

Figure 11: Success and fail ranges of ’HeadYawangle,
to grip by the right hand of NAO robot.

In this experiment the environment and the ini-
tial position of the robot to the cup is not changed
but the angle of the cup position on the table is
randomly changed (see Figure 11). The distance to
the cup was fixed to 18 cm. The HeadYawAn-
gle rule was intentionally set wrong values. In-
stead of (0.0>HeadYawAngle>-25) we set it to
(0.0>HeadYawAngle>-29), which leads to fail the ex-
ecution.

Experiments Investigating Collective Failures: A
‘Collective’ anomaly is a group of attribute instances
that appear isolated compared to the rest of the
Dataset. A specific case of ‘Collective’ is when each
single attribute is not an anomaly but as a group ap-
pears together as anomaly. For this reason, this ex-
periment is set to test such cases. In DM, Listing
1, we have two preconditions that accept a range
of values of the Distance and HeadYawAngle at-
tributes. For successful grasping, our experiments
have showed that each distance point accepts a spe-
cific range of the HeadYawAngle. As seen in Fig-
ure 12, when the distance increases, the HeadYawAn-
gle range is narrowed and goes toward 0.0 angle.
For example, the 15cm distance accepts the full range
(0.0>HeadYawAngle>-25), for the right hand. How-



Figure 12: The relationship of the ranges of distance
and angle attribute.

ever, the 20 cm distance accepts a shorter range of an-
gle about (0.0>HeadYawAngle>-12).

For this reason, particular combinations (of the Dis-
tance and the HeadYawAngle attributes) cause execu-
tion failure. Even if each attribute by itself is not an
anomaly but their combination forms such a specific
case of ’Collective’ anomalies.

In this experiment we set the ranges of the both rules
HeadYawAngle and dis to (0.0>HeadYawAngle>-25)
and (23cm>dis>15cm) in order. Those ranges are con-
sidered as the success range. However, we know that
within those range a specific cross values will fail the
execution. For each episode, we change both of the ini-
tial position of the robot to the cup, and the angle of
the cup position on the table as well.

Experiments Investigating Failure of a Group of
Anomalies This experiment tests the general case of
’Collective’ anomalies, when detecting two or more at-
tributes as being anomalies: In this experiment we ran-
domly change the initial position of the robot to the
cub but the angle of the cup position on the table is not
changed (see Figure 11). The angle of the cup position
fixed to -27.

We set the ranges of the both HeadYawAn-
gle and dis rules to (0.0>HeadYawAngle>-27) and
(25cm>dis>15cm) in order. These ranges are both in-
correct and lead to failure during the execution. The
correct range of (23cm>dis>15cm) was extended to
range (25cm>dis >15cm). Same for the HeadYawAn-
gle, instead of (0.0>HeadYawAngle>-25) we set it to
(0.0>HeadYawAngle>-27), which leads to fail the ex-
ecution.

Experimental Process and Results
The test results showed that the rate of failure de-
creases over time as the parameters are adjusted by
HDJ system. The overall results of this test represented
in Figure 13. Table 1 represents the accuracy of predic-
tions made by robot.
The experiments demonstrate the efficiency of our ap-
proach in refining the knowledge base of task plan-
ner, in which reducing the plan execution failure for
long term autonomy. For example, by the end of the

Figure 13: Field executions with and without knowl-
edge refinement by HDJ

Attribute Obs. TP TF Preci. Accu. FNR TPR
Distance 65 61 2 96.8% 93.8% 3.17% 96.8%

Angle 32 18 2 46.8% 44.1% 5.8% 44.12%
Collective 39 25 7 71.8% 64% 21.88% 82%
Collective 12 8 3 72.72% 66.6% 25% 75%
(Group)

Table 1: The Overall Accuracy of Predictions by HDJ
Reasoner

distance experiment, the HDJ refinement system suc-
cessfully corrected the values of the distance rule.
The instance value of the maximum allowed distance
(maxdis ?r ?waypoint) was corrected to be 23 Cm,
Figure 14 represents the refined DM while Figure 15
shows plan before and after refinements.

t i o n grip : parameters ( ? r −
robot ? ob j − o b j e c t ?
waypoint

point ?g − gripper )
econdi t ion

( and ( at−robby ? r ? waypoint )
( a t ? ob j ? waypoint )
( f r e e ? r ?g )
(> ( d i s t t o ? r ? waypoint ) 15)
(< ( d i s t t o ? r ? waypoint ) 27 )

(a) The ’distance’ rule before
update

c t i o n grip : parameters ( ? r −
robot ? ob j − o b j e c t ?
waypoint − waypoint ?g −
gripper )

condi t ion
( and ( at−robby ? r ? waypoint )
( a t ? ob j ? waypoint )
( f r e e ? r ?g )
(> ( d i s t t o ? r ? waypoint ) 15)
(< ( d i s t t o ? r ? waypoint ) 23 )

(b) The ’distance’ rule after
update

Figure 14: An example of PDDL domain before and af-
ter refinement. It is based on DM represented in List-
ing 1 where fluents are instantiated with numeric val-
ues. The ’maxdis’ is a ”constant” part of the problem
description but since it is referenced in the precondi-
tions of the ’grip’ action, the refinement updates have
changed the action preconditions.

They also demonstrate the efficiency of the update
validation process, which was proved by the angle
failure experiments. The validation process rejected all
predictions made by reasoning system because they re-
layed on a faulty DM. The domain model neglects the
rational relationship between the ’Distance’ and the
’HeadYawAngle’ attributes, where each distance point
accepts specific range of angle values, which causes in-
correct predictions by HDJ reasoner.

As the relationships between the operator’s param-
eters have to be represented. The missing of such rep-



( goto nao wp0 wp2)
( gr ip nao redcup wp2 wp1 grp )

(a) The plan of failed execu-
tion.

( goto nao wp0 wp4)
( gr ip nao redcup wp4 wp1 grp )

(b) The plan of successful ex-
ecution.

Figure 15: Given the plan rule (27cm>dis>15cm)
which refined to be (23cm>dis>15cm). The plan B
generated from refined, more accurate encoding of do-
main knowledge resulting in successful execution.

resentation can fail action executions. In particular, in
the the angle failure experiment, the refinement pro-
cess behaved like a domain validator, which is consid-
ered to be an extra advantage of using AD. The refine-
ment process uncovers incorrect predictions that were
caused by an inaccurate DM that neglects the rela-
tionship between the distance and the angle attributes.
This lead to expose the fault in our DM.

In another words, our experiments demonstrates
that accurate knowledge can overcome issues related
to inaccurate domain models. However, Despite this
fault, the HDJ (specifically in the Collective’ anomalies
experiments) was able to refine the range of the an-
gle (’HeadYawAngle’) rule. It successfully set the cor-
rect range for each distance value of the distance (’dis’)
rule. This because the HDJ database considers the re-
lationship between these attributes.

Furthermore, the specific case of ‘collective’
anomaly (when only the combination of attributes is
the anomaly and each single attribute by itself is not
an anomaly), reveals a mutual relationship between
the attributes in which such a type of anomaly can
be used to develop a tool to discover such hidden
relationships in domain models. Employing the ’col-
lective’ anomaly detection type gives HDJ an ability to
discover hidden relationships that the current domain
model lacks. So, it can indicate faults in the domain
representation.

Moreover, employing the ‘collective’ anomaly detec-
tion method to over come the model proved that em-
ploying multiple method of anomaly detection is ben-
eficial and can overcome the problems or weaknesses
of each method.

The last experiment demonstrates that the refine-
ments system implements the RPA rules as it selects
one anomaly if a group of anomalies are detected. Fur-
thermore, the experiments also demonstrate that real
application brings the complications related to the real
environment and sensors issues. The experiments in-
dicated that Nao measures the distance to objects is
not accurate enough at the moment, which is the main
source of the false predictions made by NAO in our
experiments. The low resolution of the NAO robot’s
camera (Zhang et al. 2019). In addition to the hard-
ware specifications issue, the method that estimates
the distance, is another factor of inaccurate distance
measures. Different techniques for depth estimation

are exist in which each has different outcomes and
drawbacks.

The inaccuracy of the distance data leads to produc-
ing overlapped data edges between the successful ex-
ecutions data and the fail data, as seen in Figure 16.
For example the distance value ’23 cm’ appears in both
datasets. it appears as successful attribute value in TD
but in same time same value can fail the execution. It
appearance in both sets prevents the robot making suc-
cessful predicates, as it is not considers as anomaly in
TD. Figure 17 represents the predictions made by hu-
man and robot.

Figure 16: The distance datasets.

Figure 17: Graphical representation of the correct pre-
dictions made by the robot, in the distance experiment.

Conclusions
In this paper, we presented the concept of using
anomaly detection to find the cause of action failure
of a real robot, in order to improve the knowledge
of a robot’s task planner. We have demonstrated HDJ
to be capable of autonomously detecting an anomaly,
and refining knowledge to overcome it, so that in fu-
ture plans a robots plan are less likely to fail. We can
conclude that HDJ contributes to bridging that gap
between planning and execution. The existence of a
variety of AD techniques are great beneficial to our
methodology. It opens the door for a variety of imple-
mentations of different planning problems and action
models, and it increases the automation aspects of our
reasoning methodology. It offers a high level of flexi-
bility because it is not limited to a single AD approach,
and we can implement more than one approach as the
latest trend in outer detection systems is the utilising of
multiple techniques; this to overcome the deficiencies
and weaknesses of each approach and to exploit the
advantages of each technique. In the future we plan to
extend the types of knowledge that can be refined by



HDJ, and perform more experimentation involving a
range of scenarios.
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