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Abstract
Asynchronous motion execution enables dual-arm robots to
move their arms concurrently and independently, making
them more capable and efficient. However, asynchronous mo-
tion requires coordination to avoid collisions between the two
arms. Prior work has approached dual-arm motion execution
by either constraining the motions of the arms to execute one
motion at a time or by synchronizing both arms during plan-
ning. In contrast, we introduce an approach for asynchronous
motion execution that leverages a trajectory reservation com-
ponent that, when combined with off-the-shelf motion plan-
ning, prevents collisions between the arms. This approach re-
serves that projected space for each arm by creating collision
objects in the environment that correspond to planned trajec-
tories. In two simulated demonstrations using a DRC-Hubo
humanoid robot, we show that this approach avoids collisions
while also being more efficient.

1 Introduction
A challenge for dual-arm robots is ensuring that the two
arms, which share a joint physical workspace, operate in
a safe and collision-free way. To avoid collisions between
the arms in these concurrent situations, previous methods
either synchronized the planning and motion execution of
both arms or made adjustments to one of the arm’s velocities
and accelerations to accommodate the motion of the other
arm (Buhl et al. 2019; Kimmel and Bekris 2017). There are
other works that coordinate robot arms if they are working
on a task together (such as working together to carry objects)
(Buhl et al. 2019; Salehian, Figueroa, and Billard 2018;
Yu et al. 2021).

In contrast, we are interested in situations where the
arms are working asynchronously on separate tasks in a
shared workspace but can operate concurrently to increase
the robot’s efficiency. For example, an industrial robot could
pick up an item from a shelf with one arm while picking
up another item with the other arm as seen in Figure 1. Our
work encourages asynchronous concurrency by opportunis-
tically dispatching an arm’s actions for execution even if the
other arm is currently executing a task. To accomplish this,
we introduce a trajectory reservation component that, at ex-
ecution time, enables and encourages this concurrent, asyn-
chronous motion. It does this by creating collision objects
that correspond to the arm’s planned trajectory, which “re-
serve” portions of the environment for the planned motions.

Figure 1: Dual-Arm Robot concurrently executing two pick
actions.

When the planned trajectory is executed, the collision ob-
jects are then removed as the arm passes them. These colli-
sion objects prevent a plan for the opposite arm from inter-
acting with the projected plan, which allows concurrent and
safe execution of motions for the arms independently.

We demonstrate this approach on a DRC-Hubo dual-arm
robot (Heo et al. 2019) operating in the Gazebo simulation
environment (Koenig and Howard 2004) in two scenarios:
(1) the Hubo using both arms to push colored cans on a table
into their matching color bins; (2) the Hubo completes pick
and place tasks in a much larger workspace with much more
interaction between the objects that need to be moved. We
run both scenarios for three different static motion planning
algorithms (RRT-Connect, PRM, and LazyPRM). When en-
abled, the reservation component eliminates all collisions
between the arms and it is more efficient than executing mo-
tions sequentially.

2 Related Work
Several works address dual-arm motion planning. We focus
on two aspects of the literature concerning the work that ad-
dresses dual-arm motion planning and the literature on asyn-
chronous motion planning.

2.1 Dual-Arm Motion Planning
Buhl et al. (2019) operates dual-arm robots by motion plan-
ning in static environments where nothing else is moving;
for a dual arm robot, this often means planning and moving
one arm at a time. While this can guarantee safety in the exe-
cution of movements, it overly constrains motion and cannot
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take advantage of the full flexibility of dual-arm motion.
There are also approaches that focus on synchronizing the

motions of two arms moving at once. Wang et al. (2019) de-
scribe a motion planner to find a single solution for both
arms, ensuring they do not collide with each other during
movement. While this provides the ability to make concur-
rent movements, the necessary synchronicity of the arms
lessens the flexibility of the approach. For example, if one
arm finishes its motion before the other, that arm would need
to wait for the second arm to finish before it could begin
moving again. For true movement flexibility, it is necessary
to have asynchronous motion planning and execution that
supports concurrency.

Other methods for dual-arm concurrent motion impose
some type of time coordination between the arms during
movement. For instance, there are approaches that use a ve-
locity tuning technique that allows the arms to solve for their
motion paths independently and then coordinate their move-
ments together by finding the velocity that allows both arms
to move into the same space while avoiding collisions (Kim-
mel and Bekris 2017).

2.2 Asynchronous Motion Planning and
Execution

Asynchronous motion planning and execution for a dual-
arm robot involves coordinating motion between the arms
in order to avoid self-collisions. In (Salehian, Figueroa, and
Billard 2018), self-collisions were avoided by using a cen-
tralized inverse kinematics solver under self-collision avoid-
ance constraints. To calculate the self-collision avoidance
constraints, a continuous and continuously differentiable
function was learned from a data set of ”collided” and ”non-
collided” multi-arm configurations (Salehian, Figueroa, and
Billard 2018). Once calculated, this function represented the
region of feasible and infeasible robot configurations which
was used to figure out if the configuration of the arms will
be in a ”collided” configuration or not. Their method is a
reactive method whereas, our method reserves collision-free
space for the arms’ trajectories in the environment before
movement.

Moving two arms in the same workspace can modeled as
a multi-agent problem, where each arm is an independent
agent. In (Alami et al. 1998; Gravot and Alami 2001), multi-
ple agents independently plan their motions but synchronize
their motion executions with their neighboring agents. This
brings in comparative work dealing with asynchronous mo-
tions of multiple agents with safety guarantees, as described
by Grady et al. (2010). In that work, the agents’ operation is
broken into intervals called “cycles” of a constant duration.
During each cycle, which are not synced between the mul-
tiple agents, an agent will plan multiple possible trajecto-
ries for its next movement and listen for broadcasts of other
agent trajectories in the neighborhood, the size of which is
defined by the authors. As the time approaches the end of
the cycle, the agent will select a trajectory that will not cause
conflicts with its neighbor’s trajectory, and then will broad-
cast its chosen trajectory to reserve this space for itself. This
work inspired part of our approach, where arms indepen-
dently reserve the space of the environment that corresponds

to their current movement trajectory so that the other arm
does not plan a motion in that space.

3 Trajectory Reservation Component
We build on several open source packages: MoveIt™ (Cole-
man et al. 2014) for motion planning, Gazebo for simulated
execution, and RViz as a visualization tool (Hershberger,
Gossow, and Faust 2008). Asynchronous motion execution
and planning is not possible within MoveIt as is, so we first
describe how we modified MoveIt to support asynchronous
motion planning. We then discuss how our novel reserva-
tion component works with motion planning to enable the
Hubo robot to execute motions without collisions between
the arms.

Modifying MoveIt. As part of our use of the MoveIt soft-
ware platform (Coleman et al. 2014), we used the Open
Motion Planning Library (OMPL), a library of state-of-
the-art sampling based motion planning algorithms (Şucan,
Moll, and Kavraki 2012), and the Flexible Collision Library
(FCL), ”a library for performing three types of proximity
queries on a pair of geometric models composed of trian-
gles” (Pan, Chitta, and Manocha 2012), to conduct motion
planning and collision checking. To enable asynchronous
motions, we created a threaded software component that at
any time can receive a maximum of two joint space or pose
goals (one for each arm of the Hubo robot) from our cen-
tral control component. When such a goal is received, the
motion planning component sends the goal, along with a
snapshot of the current representation of the environment, to
OMPL using MoveIt’s MoveGroupInterface software class.
OMPL, in conjunction with FCL, then attempts to find a col-
lision free motion path.

Depending if a collision-free motion plan was found or
not, our motion planning component will either send a fail-
ure or a success message to our central control component.
The failed motion plan actions are sent back to the motion
planning component for re-planning. The actions with a suc-
cessful motion plan will continue on in the motion planning
component and have their motion plan turned into a trajec-
tory with velocities and accelerations for the joints by the
MoveIt’s time parameterization process.

Adding Trajectory Reservation. In order to ensure the safe
execution of these trajectories, our reservation component
updates the environment to reflect the arm’s imminent exe-
cution trajectory. For each waypoint in the trajectory, it cre-
ates a set of collision objects that match the size and pose
of certain links of the robotic arm at that waypoint as shown
in Figure 2. Again, these collision objects serve to reserve
space in the world for that arm so that if OMPL is called
to find a collision-free motion plan for the other arm while
this motion is being executed, it will not find a collision-free
plan through this space. Therefore, the second arm will not
receive a motion plan that would cause the arm to collide
with the already-moving arm.

After the environment is updated by our reservation com-
ponent, the trajectory is sent to the joint trajectory controller
for that arm in order to move the arm in Gazebo. The joint
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Figure 2: Planned right and left arm trajectories shown as
collision objects in RViz.

trajectory controller for each arm was set up using ROS Con-
trol (Chitta et al. 2017). The execution of these actions are
tracked and once completed are removed from a list of tasks
maintained by the central control component.

4 Evaluation
One claim of this work is that using our novel reservation
component prevents collisions between the arms from oc-
curring while the arms are moving asynchronously in the
workspace. Further, the main benefit of asynchronous mo-
tion execution is being able to complete tasks more effi-
ciently. We evaluated these claims first by creating two sce-
narios, a push scenario and a pick and place scenario. For
each scenario, we used the DRC-Hubo robot (Jung et al.
2018) in the Gazebo simulator (Koenig and Howard 2004).
The robot has two 7-DOF arms that are equipped with a 1-
DOF gripper; note that the robot has additional degrees of
freedom from the hip and leg joints which are not used for
any of our evaluations. One assumption for both scenarios
was that the Hubo Robot was operating in a static environ-
ment besides the motions of its arms.

For both scenarios, we investigate three motion planning
algorithms. RRT-Connect was the default planner chosen
by MoveIt for our robotic scenarios. To this we added the
Probabilistic Roadmap Method (PRM) and LazyPRM
as our other planners to use for this evaluation since they
both differ from RRT-Connect by being multi-query plan-
ners instead of single-query planners (Kavraki et al. 1996;
Bohlin and Kavraki 2000). Also, both PRM and LazyPRM
return paths that are optimal versus the sub-optimal paths
returned by RRT-Connect, but are slower than RRT-Connect
in computing a motion planning solution.

For each scenario and motion planning algorithm, we ran
5 trials with our reservation component and 5 trials with-
out our reservation component in order to test if our reser-
vation component prevented collisions between the arms.
In order to test the efficiency of executing motions asyn-
chronously rather than sequentially, we recorded the total
time of the scenario (push and pick and place) execution, in-
cluding the time required to motion plan every task, for five
trial runs while executing motions asynchronously. Then,
we ran five more trials with tasks executed sequentially and
again recorded the total time of scenario (push and pick and
place) execution for each trial, including the time required
to motion plan every task. For both sequential and asyn-
chronous motion execution, we used our trajectory reserva-

(a) (b)

Figure 3: (a) Push scenario initial set up. (b) Situation where
the left arm cannot start pushing the blue can due to the right
arm occupying that space.

tion system and RRT-Connect.

4.1 Hubo Robot Push Scenario
In the first scenario, the DRC-Hubo robot has the goal of
pushing colored cans into their matching colored bins. There
are four cans set up in pre-specified positions on a table at
waist height of the robot (Figure 3a). The positions and ori-
entations of the cans are assumed to be known by the robot.
To push the cans into their corresponding bins, the robot
needs to coordinate its movements so that its arms do not
collide with one another. For collision planning purposes,
the environment was updated with the table as a collision ob-
ject set at the same height as in Gazebo. This ensures that the
Hubo robot does not plan motions that would collide with
the table.

During the push scenario, the Hubo robot will use our
motion planning, trajectory reservation, and central con-
trol components as discussed in Section 3 until all cans are
pushed off of the table into their matching bins and the arms
have returned to their home position. An example of our
reservation component preventing a collision from occur-
ring during the push scenario is shown in Figure 3b. Here,
the middle of the workspace was reserved by our trajectory
reservation system which prevented the left arm from push-
ing the middle blue can since that would cause a collision
with the right arm. While this space was reserved, the mo-
tion planning component would send back motion failure
messages to the central control component, and the central
control component continues to ask for another motion plan
for the left arm until a success message is sent from the
motion planning component. These procedures resulted in
the left arm holding its current position until the right arm
moved out of the way. Once the right arm moved out of the
way, the motion planning component receives a valid mo-
tion plan and sends a success message to the central control
component, and the left arm can execute its planned motion.

4.2 Hubo Robot Pick and Place Scenario
To further evaluate our work, we created a pick and place
scenario. In this scenario, the Hubo robot had to complete
57 total tasks in a larger workspace, as compared to only
16 tasks for the push scenario. The main objective for the
pick and place scenario was to have the Hubo Robot pick
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up colored cans from shelves and place them into their cor-
responding colored bins. As Figure 1 shows, a red bin was
placed on the left side of the Hubo, and a blue bin was placed
on the right side of the Hubo. The parts of the environment
such as the bookshelf and bins that could cause collision to
Hubo’s arms as they are moving around were generated as
collision objects to avoid during motion planning. The fo-
cus of this work is motion planning and not grasping, so we
did not pursue real grasping of the cans and instead attached
them to the hands when in close proximity.

The motion planning, trajectory reservation, and central
control components follow the procedure stated in Section
3 until all the cans are placed in the bins and Hubo returns
to a home position. The initial setup for the pick and place
scenario is shown in Figure 1. Similar to the push scenario,
there were cases where the Hubo robot had to wait for one
arm to complete its current motion in order to avoid collid-
ing with that arm. For example, the red and blue cans in the
middle of the bottom shelf are placed such that the end ef-
fectors could collide into one another if they try to complete
the pick motion as shown by the left arm in Figure 4.

Figure 4: Situation where the right arm cannot start its pick
action due to the left arm’s end effector occupying that
space.

5 Results
For the Hubo Push Scenario, Table 1 shows no collisions
between the arms while using our reservation component.
However, we had a major collision between the arms that
did not have the reservation component. In each case, this
collision occurred while one arm was pushing a can in the
middle of the table and the other arm tried to push its can
into that same space. For the trial runs testing the efficiency
of asynchronous motion execution, with asynchronous mo-
tion, the average time of scenario execution, including the
time taken for motion planning each task, was one minute,
19 seconds and 17 milliseconds ± two seconds and 13 mil-
liseconds from the start of the first task to the completion
of the last task. With sequential motion, the average time
of scenario execution, including the time taken for motion
planning each task, was one minute, 52 seconds and 3 mil-
liseconds ± one second and 36 milliseconds. Therefore, the
total time of scenario execution with asynchronous motion
was 34% faster than with sequential motion.

For the Hubo Pick and Place Scenario, Table 1 shows no
collisions between the arms for all runs when our reservation
component was used. There were multiple collisions on the
runs without our reservation component. The collisions oc-

Push Scenario Number of Collisions
Motion Planner runs Baseline TRC (ours)
RRTConnect 5 5 0
PRM 5 5 0
LazyPRM 5 5 0

Pick and Place Scenario Number of Collisions
Motion Planner runs Baseline TRC (ours)
RRTConnect 5 9 0
PRM 5 10 0
LazyPRM 5 8 0

Table 1: Number of collisions for both scenarios with our
trajectory reservation component (TRC) and without our
component (Baseline).

curred while the arms were reaching for the middle cans on
the bottom shelf. For the one run with LazyPRM and not us-
ing the reservation component that did not have a collision,
this was due to the left arm having larger planned motions
between each task which meant that the right arm completed
its middle pick and place action for the blue can on the bot-
tom shelf before the left arm started moving into the same
area.

For the trial runs testing the efficiency of asynchronous
motion execution, with asynchronous motion, the average
time of scenario execution, including the time taken for mo-
tion planning each task, was four minutes, 14 seconds and
45 milliseconds ± 16 seconds and 29 milliseconds from the
start of the first task to the completion of the last task. With
sequential motion, the average time of scenario execution
was 6 minutes, 11 seconds, and 51 milliseconds ± 16 sec-
onds and 51 milliseconds. Therefore, the total time of sce-
nario execution with asynchronous motion was 37% faster
than with sequential motion execution.

6 Conclusions and Future Work

We introduced a trajectory reservation component that, com-
bined with off-the-shelf motion planning, enables asyn-
chronous, concurrent motion planning and execution for
a dual-arm robot. Using trajectory reservations eliminated
all collisions when the arms move concurrently and asyn-
chronously for the two scenarios we implemented. It was
also more efficient than the common dual-arm baseline case
of executing motions sequentially, executing sequences of
tasks more quickly.

Future work will continue to develop our asynchronous
motion planning components, including accounting for dy-
namic obstacles in the environment. We plan to enable the
motion planning algorithm to anticipate and avoid collisions
with these obstacles by using the same reservation compo-
nent to broadcast the trajectories of the dynamic obstacles.
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