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Abstract

The challenges for solving a fully observable non-
deterministic (FOND) planning problem involve: (i) dealing
with infinite paths by generating iterative trial-and-error poli-
cies and (ii) reasoning about non conventional complex goal
formulae. In this paper we propose a new algorithm to solve
FOND problems with temporarily extended goals and differ-
ent policy qualities. The planner, called PACTL-SYM, is based
on symbolic model checking using α-CTL logic: an exten-
sion of CTL that considers actions behind the transitions. To
the best of our knowledge, this is the first FOND planner that
applies symbolic reasoning over the actions (and not over
state transition relations) and can solve problems with com-
plex goals. To aim this, we leverage the significant advances
on symbolic reasoning in deterministic planning, the earlier
works on planning as model-checking and the α-CTL tem-
poral logic with actions, to design an efficient FOND planner
based on symbolic model-checking that is sound and optimal
in domains with dead-ends and cycles, allows planning for
complex goals, and it is competitive with the state-of-the-art
solution based on determinization and heuristic search.

Introduction
Automated planning is a long-standing field of Artificial In-
telligence strongly based on a high-level description lan-
guage used to define a planning task and how the agent ac-
tions may change the world. In general, planning algorithms
reason over this language to automatically generate a plan
of actions for a given task. Classical planning assumes the
world evolves deterministically, i.e. there is no uncertainty
regarding the effects of the agent actions. A more realis-
tic situation is FOND (Fully Observable Non-deterministic)
planning, that assumes uncertainty over the actions effects.
In this case, actions can have effects that either lead the agent
into a goal state or into a loop that will eventually reach the
goal or a dead-end state (a state from which the agent can no
longer achieve its goal). The objective of a FOND planning
problem is to automatically synthesize (construct) a policy,
a mapping between states and actions.

In classical planning, an R-GOAL is a simple reachabil-
ity goal specified by a formula (a world property) possibly
satisfied in a set G of terminal states. Thus, given an initial
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state s0, the agent must reach sg by executing its plan from
s0. A more complex goal is a XR-GOAL, extended reachabil-
ity goal, that additionally specifies, externally in the form of
user knowledge, a world property that must hold in all states
along the plan path to sg .

In FOND planning, due to non determinism, one can also
specify what type of policy best suites the agent, i.e. if the
agent will reach an R-GOAL or XR-GOAL, through: a weak,
strong or strong-cyclic policy (Cimatti et al. 2003). Con-
sider an R-GOAL. With a weak policy the agent must reach
sg ∈ G, but due to the non-determinism, it does not guaran-
tee to do so and can possibly reach a dead-end state. With a
strong policy the agent always achieves sg , in spite of non-
determinism. Finally, with a strong-cyclic policy the agent
always achieves sg , under the fairness assumption that exe-
cution will eventually exit from all existing cycles. While an
agent with a weak policy can be seen as a risk prone agent
(since for some tasks reaching a dead-end is unavoidable),
an agent with a strong policy goal is seen as a risk averse
agent. An agent with strong-cyclic policy goal, besides be-
ing also a risk averse agent, is a trial-and-error agent.

Example 1 (The Gripper Domain) Consider an environ-
ment comprised of n rooms and a robot with two grippers.
The robot can pick up or put down 1 box with its right or
left gripper or 1 box with both grippers (in a safer way). The
goal is to transport m boxes from an initial state to their re-
spective target. With the deterministic action MOVE(L1,L2),
the robot moves from room L1 to room L2, carrying out
none, one or two boxes. With the deterministic action PUT-
DOWN, the robot put down all the boxes he is carrying on.
With the action PICKUP-R (PICKUP-L), the robot picks up
a box with the right (left) gripper. These actions are non-
deterministic: the robot can either succeed or fail causing
the box to be dropped and broken, configuring a dead-end
state (none of the pick up actions can be applied in a broken
box). Finally, with the non-deterministic action PICKUP-RL
the robot uses both grippers to pick up 1 box and it can ei-
ther succeed or fail (applying not enough strength to hold
the box) which causes the robot to stay in the same state and
creating a cycle (with no dead-ends). Note that while the
robot can choose a policy of moving with 2 boxes, 1 in each
gripper, it can be safer carrying out only 1 using 2 grippers1.

1Adapted from www.icaps-conference.org/competitions/
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Figure 1: States of an instance in the Gripper domain with 2
rooms (A and B) and 4 boxes.

Figure 1 shows some states and actions of a small instance
of Example 1 with two rooms and 4 boxes, where the goal is
to have all boxes in room B. Note that the state s2 is a dead-
end. In this example, a strong-cyclic policy would repeat the
action PICKUP-RL in s0 until success and then apply action
MOVE(A,B) and PUTDOWN.

In this work we focus on FOND planning tasks approach-
ing either simple or extended reachability goals, with dif-
ferent plan qualities: weak, strong or strong cyclic. Further-
more, we define complex FOND goal formulae that is able
to explicitly express a planning goal with both: the type of
reachability goal and the desired policy quality. I.e. we show
that the agent’s risk attitude can be explicitly stated as a plan-
ning goal, and we propose algorithms to solve those com-
plex FOND goal formulae that are based on model-checking
theory and competitive with state-of-art FOND solution for
R-GOALs and is the first efficient solution for XR-GOALs.

Related and previous works
Most of the solutions for FOND planning are based on heuris-
tic search and model-checking. While heuristic search solu-
tions can gain in efficiency, they can not give formal guaran-
tees on the returned policy.

Examples of heuristic search to solve FOND problems are
LAO* (Hansen and Zilberstein 1998), FIP (Fu et al. 2011),
PRP (Muise, McIlraith, and Beck 2012) and GAMER (Kiss-
mann and Edelkamp 2009). LAO* explicitly constructs an
AND/OR graph. FIP and PRP are improvements of LAO*;
they create, for every non-deterministic action, a set of deter-
ministic actions and use an efficient deterministic planner to
find a plan for each branch of the original non-deterministic
action. Although PRP is considered the state-of-the-art for
FOND planning, it is suboptimal w.r.t. the size of the re-
turned policy and it can not explicitly deal with complex
goals (e.g. by backtracking the search, PRP always try to find
first a strong or strong cyclic policy before returning a weak
policy). GAMER (Kissmann and Edelkamp 2009) is a FOND
planner that translates the problem into a game against the
nature that can “choose” a non-deterministic effect. It is con-
sidered a symbolic planner since it uses BDDs (Bryant 1992)
in its implementation, however it performs worse than PRP
and also has not been applied for tasks with complex goals.

The other main solution for FOND is based on model
checking (MC) (Clarke and Emerson 1982), where the do-
main is seen as a formal system and the planning goal is
a logical formula that must be satisfied in this system. Yet,
the model-checking approach tries to solve a planning prob-
lem as a formal system, with guarantees over the soundness

and the satisfaction of simple and complex goal formulae.
Examples of model checking solutions are MBP (Cimatti
et al. 2003) and PACTL (Pereira and Barros 2008b; Menezes,
Barros, and Pereira 2014; Bonadia and Barros 2017). The
MBP planner implements MC preimage operations using
BDDs (Binary Decision Diagrams) (Bryant 1992) over the
state transition relation (state, action, state); formally, it is
based on CTL (Clarke and Emerson 1982), a branching time
temporal logic that does not consider actions behind the state
transitions. The MBP limitations are: it does not implement
CTL semantics and it uses extra-logical procedures to reason
over the actions.

PACTL planner overcomes MBP limitations by using the
α-CTL logic (Pereira and Barros 2008b): an CTL extension
that considers the actions behind the state transitions in the
CTL semantics. PACTL includes an algorithm for each type
of policy goal formulae: weak, strong and strong-cyclic. In
Pereira and Barros (2008b) the work is concerned with the
theoretical aspects of FOND based on α-CTL and not with
efficiency. In Menezes, Barros, and Pereira (2014) it was
proposed the first efficient symbolic model checking algo-
rithm based on α-CTL (VACTL-SYM), able to formally rea-
son about actions (not about state transitions as in MBP) and,
by using BDDs, it can scale up. However, VACTL-SYM can
only be used to formally verify if a given policy satisfies
a goal formula, not being able to synthesize policies. The
symbolic version of PACTL, called PACTL-SYM (Bonadia
and Barros 2017), was first proposed to synthesize weak and
strong policies based on α-CTL. In Bonadia et al. (2019) it
was approached the strong-cyclic policies and in Bonadia
(2018), this algorithm was applied to extended reachability
goals for weak, strong or strong-cyclic goal policies. This
work proposes a new version of the strong-cyclic algorithm
which eliminates an unnecessary loop.

Note that several works in FOND (Peot and Smith 1992;
Pryor and Collins 1996; Warren 1976; Weld, Anderson, and
Smith 1998) do not address the problem of dealing with
strong-cyclic policies, neither complex goal formulae. With
the exception of the planner SIMPLAN (Kabanza, Barbeau,
and St-Denis 1997) that can deal with temporally extended
goals but cannot plan for strong-cyclic policies.

A recent FOND planning work (Rodriguez et al. 2021)
proposes an extended FOND model, called FOND+, a more
expressive type of FOND planning model where fairness
assumptions are also stated explicitly and used to explain
and describe different forms of FOND planning for strong
or strong-cyclic planning (not for weak planning). Although
the idea of fairness comes from formal methods to express
how “fair” no-deterministic events occur in a system, this
paper uses this concept in an original way that integrates
qualitative numerical planning (QNP) problems with differ-
ent types of FOND planning problems. However, it can not
deal with temporally extended goals.

Motivation
Most of the planners based on symbolic model checking
(using BDDs to reason over sets of states) are specialized
to deal with deterministic planning, such as the IPC (In-
ternational Planning Competition) winners MIPS (Edelkamp



and Helmert 2001), SYMBA* (Torralba, López, and Borrajo
2013) and CGAMER (Torralba et al. 2017). The growing in-
terest on symbolic approaches by the planning community
is reported in Edelkamp, Kissmann, and Torralba (2015).

Table 1 summarizes the main approaches that have been
used to solve deterministic and FOND planning problems.
On one hand, in classical (deterministic) planning, the focus
has changed from heuristic search algorithms, such as FF
(Hoffmann 2001) and FAST DOWNWARD (Helmert 2006),
to symbolic approaches using BDDs that reason over the ac-
tions’ specification in terms of their preconditions and ef-
fects. On the other hand, in FOND planning it happened the
opposite: the focus has changed from symbolic approaches,
that reason over the planning problem specified in terms
of state transition relations of type (s, a, s′), to the use of
heuristic search like in PRP, considered the state-of-the-art.
However, to the best of our knowledge, there is no FOND
planner that applies formal symbolic approaches to reason
over the actions’ specification in some planning definition
language (i.e. in terms of action’s precondition and non-
deterministic effects), neither that deals with complex goals.

Deterministic Planning FOND Planning
1998-2012: winners of all
editions of the International
Planning Competition used
heuristic search.

2000-2012: best FOND plan-
ners were based on model-
checking performing
symbolic reasoning over
state transition relations.

2014-actual: top-five plan-
ners of IPC 2014 were based
on MC performing
symbolic reasoning over
the actions’ specification.

2012-actual: state-of-the-art
FOND planner PRP uses
heuristic search and deter-
minization.

Table 1: Deterministic and FOND planning evolution.

Thus, in this work we leverage the significant advances
on symbolic reasoning in deterministic planning, the earlier
works on planning as model-checking and the α-CTL tem-
poral logic with actions (Pereira and Barros 2008a) to de-
sign an efficient FOND planner based on symbolic model-
checking that: (i) is sound and optimal in domains with
dead-ends and cycles, (ii) allows planning for complex
goals, and (iii) is competitive with the state-of-the-art so-
lution based on determinization. To the best of our knowl-
edge, this is the first efficient FOND planner that can
solve extended reachability goals and can also synthesize
weak, strong or strong-cyclic policies using symbolic CTL-
based model checking (with no extra-logical proceedings).
The empirical results in the analyzed domains show that
PACTL-SYM outperforms the state-of-the-art FOND planner
PRP based on heuristic search and MBP planner, also based
on model checking.

This paper improves previous works (Bonadia et al. 2019)
(Bonadia and Barros 2017) by proposing a new algorithm
for strong-cyclic policies (Algorithms 1); and presenting
new experiments for extended reachability goals comparing
our algorithm with other FOND solutions.

FOND Planning Foundation
Fully-Observable Non-Deterministic (FOND) planning is a
subclass of planning under uncertainty with fully-observable
states. So, in this setting, the agent does not explicitly plan
for sensing the world since the complete state description is
automatically returned after the execution of an action.
Definition 1 (FOND Planning Domain) Formally, a FOND
planning domain is a tuple D = ⟨S,L,T ⟩ over a set of
propositional atoms P and a set of actions A, such that:
• S is a finite set of states;
• L ∶ S ↦ 2P is a state labeling function; and
• T ∶ S × A → 2S is a non-deterministic state transition

function such that, given a state s ∈ S and an action a ∈
A, T returns a set of possible next states. ◆

A FOND planning problem can also be described by an
action description language, such as STRIPS-like language
(Fikes and Nilsson 1971) or other action languages (Pereira
and Barros 2008a; Herzig, Menezes, and de Barros 2014). In
this case, the set of states S can be induced by the actions.
Definition 2 (FOND Planning Problem) A FOND planning
problem is a tuple P = ⟨D, s0,φ⟩, where D is a FOND plan-
ning domain (Def. 1), s0 ∈ S is the initial state and φ is a
logical goal formula. ◆

A terminal state s ∈ S is a state with no applicable ac-
tions or where the only applicable action is a self-loop action
(called NO-OP). In planning, a terminal state can be a goal
state or a dead-end state. Note that not all dead-end states
are terminal states. A planning domain can have a trap of
dead-ends, which is a strongly-connected component of the
state space from which it is not possible to reach the goal.

For an R-GOAL, φ is a propositional formula indicating
that if a state s satisfies φ, i.e. s ⊧ φ, then s = sg is a terminal
goal state. The set of all goal states ofP is denoted by G. For
an XR-GOAL, φ is given by a pair of propositional formulae
i.e. φ = (φ1, φ2), then φ is seen as a complex goal, where φ2

defines the property that must be satisfied in the (terminal)
goal state, and φ1 defines the property that must hold in all
the states visited along the path to a goal state. We call φ2

the target-goal and φ1 the path-goal 2.
Note that if φ1 = True, the XR-GOAL is equivalent to

an R-GOAL, i.e., (True, φ2) ≡ φ2. We call (φ1, φ2), where
φ1 can be equal to True, a Generalized Reachability Goal
(GR-GOAL).
Definition 3 (FOND Planning Solution) A solution for a
FOND planning problem is a policy π that is a mapping
from states to actions π ∶ S → A, which prescribes action
π(s) ∈ A to be taken in state s ∈ S. ◆

Note that, neither Def. 3 nor Def. 2 explicitly states the
agent’s desire for a specific policy quality, i.e. weak, strong
or strong-cyclic. In the next section, we will introduce the
temporal logic α-CTL and formally define φ for GR-GOALs
to explicitly express the policy quality and propose a new
algorithm able to synthesize policies.

2In this work we assume XR-GOAL where the pair (φ1, φ2)
are propositional formulae. However we can define other types of
complex goals, by relaxing this assumption.



α-CTL: a temporal logic for reasoning about
actions and complex goals

α-CTL (Pereira and Barros 2008b) is a branching time
temporal logic whose semantics is defined over transition-
labeled Kripke structures. Figure 4a shows an example of a
transition-labeled Kripke structure, where nodes are states
and transitions are labeled by the actions. In spite of the im-
portance of actions in the α-CTL’s semantics, they are not
used to compose α-CTL’s formulae. This is because we want
to impose constraints only over the states that will be visited
during the policy execution, and not over the actions that
will be selected during the planning task.

The formulae of α-CTL are composed by atomic proposi-
tions , logical connectives (¬, ∧ and ∨), path quantifiers (∃
and ∀), and the following temporal operators: ⊙ (next), ⊡
(invariantly), ⟐ (finally) and D (until). Let p be an atomic
proposition. The α-CTL’s syntax is inductively defined as
φ ∶∶= ⊺ ∣ p ∣ ¬p ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃ ⊙ φ ∣ ∀ ⊙ φ ∣ ∃⊡ φ ∣ ∀⊡
φ ∣ ∃(φ D φ) ∣ ∀(φ D φ).

Let P be a non-empty finite set of atomic propositions and
A be a non-empty finite set of actions. An α-CTL temporal
model over (P,A) is a transition-labeled Kripke structure
D = ⟨S,L,T ⟩, as in Def. 1. Intuitively, the α-CTL formula
∀⊙φ holds on a state s ∈ D if and only if there exists an ac-
tion α, whose execution in s necessarily leads to an immedi-
ate successor s′ of s satisfying φ. The modality ⊙ represents
the set of α-successors of s, for some particular action α,
and the quantifier ∀ requires that every state in this set can
satisfy φ. The formal definition of the α-CTL’s semantics is
based on the concept of preimage.

Definition 4 (Weak Preimage in α-CTL) Let Y ⊆ S be a
set of states. The weak preimage of Y , denoted by T −∃ (Y ) is
the set {s ∈ S ∶ ∃a∈A .(T (s, a) ∩ Y ) ≠ ∅}. ◆
Definition 5 (Strong Preimage in α-CTL) Let Y ⊆ S be a
set of states. The strong preimage of Y , denoted by T −∀ (Y )
is the set {s ∈ S ∶ ∃a∈A .∅ ≠ T (s, a) ⊆ Y }. ◆

The semantics of the local temporal operators (∃⊙ and
∀⊙) is given by preimage functions, while the semantics of
the global temporal operators (∃⊡, ∀⊡, ∃D and ∀D) is de-
rived from the semantics of the local temporal operators, by
using least (µ) and greatest (ν) fixpoint operations.

Definition 6 (Intension of an α-CTL formula) Let D =
⟨S,L,T ⟩ be a temporal model (or a non-deterministic plan-
ning domain) with signature (P,A). The intension of an
α-CTL formula φ in D (or the set of states satisfying φ in
D), denoted by JφKD, is defined as:

• JpKD = {s ∶ p ∈ L(s)} (by definition, J⊺KD =
S and J�KD = ∅)

• J¬pKD = S ∖ JpKD
• J(φ ∧ φ′)KD = JφKD ∩ Jφ′KD
• J(φ ∨ φ′)KD = JφKD ∪ Jφ′KD
• J∃ ⊙ φKD = T −∃ (JφKD)
• J∀⊙ φKD = T −∀ (JφKD)
• J∃⊡ φKD = νY.(JφKD ∩ T −∃ (Y ))
• J∀⊡ φKD = νY.(JφKD ∩ T −∀ (Y ))
• J∃(φ D φ′)KD = µY.(Jφ′KD ∪ (JφKD ∩ T −∃ (Y )))

• J∀(φ D φ′)KD = µY.(Jφ′KD ∪ (JφKD ∩ T −∀ (Y ))) ◆
Definition 7 (α-CTL satisfiability) Let s be a state in a
temporal model D, and φ an α-CTL (goal) formula. The
α-CTL’s satisfiability relation is defined as: (D, s) ⊧ φ ⇔
s ∈ JφKD. ◆

Figure 2 illustrates computational paths in models that
satisfy α-CTL formulae from a state s. For example, in Fig-
ure 2c, the formula s ⊧ ∃⟐φ expresses that exists an action
whose execution in s starts some trajectories leading to states
satisfying φ.
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Figure 2: α-CTL semantics for some α-CTL operators.

In order to build a planner based on α-CTL, the definition
of intension of α-CTL formulae must be reformulated so that
it is possible to obtain not only the set of states that satisfy a
formula but also the transitions considered during the selec-
tion of those states. Thus, the weak and strong preimages of
a set of states X are redefined, respectively, as:

Definition 8 (Weak Preimage in α-CTL with transitions)
Let X ⊆ S be a set of states. The weak preimage of X is the
set {(s, a) ∶ s ∈ S, a ∈ A and T (s, a) ∩X ≠ ∅} ◆
Definition 9 (Strong Preimage in α-CTL with transitions)
Let X ⊆ S be a set of states. The strong preimage of X is
the set {(s, a) ∶ s ∈ S, a ∈ A and ∅ /= T (s, a) ⊆X} ◆

Specifying Complex Goals in α-CTL
As mentioned before, one advantage of planning based on
model checking is to be able to express complex goals.

Given a FOND planning problem P = ⟨D, s0, φ⟩, the com-
plex goal φ is an α-CTL formula expressing the policy qual-
ity for generalized reachability goal (φ1,φ2) as follows:

• Weak policy for GR-GOAL: φ = ∃(φ1 D φ2),
• Strong policy for GR-GOAL: φ = ∀(φ1 D φ2), and
• Strong-cyclic policy for GR-GOAL: φ = ∀⊡ ∃(φ1 Dφ2),

where (D, s0) ⊧ φ; φ2 is a propositional formula that must
be satisfied in sg ∈ G; and φ1 is a propositional formula that
must be satified in all states in the path to sg ∈ G for an
XR-GOAL and can be equal to ⊺ for an R-GOAL.

Figure 3 presents how to compute a submodel M that
satisfies ∃ ⟐ φ2 (i.e. a weak policy for GR-GOAL with
φ1 = ⊺), supposing that s4 ⊧ φ2. According to Def. 6
(α-CTL semantics), in order to obtain submodel M , it is
necessary to compute the weak preimage, starting from the
set of states X = {s4} (Figure 3a), until a minimal fix-
point is reached. After first iteration, the submodel computed
by preimage is M = {s4, (s1, a3), (s2, a4), (s3, a5)} (Fig-
ure 3b) and, after second iteration, the submodel computed



is M = {s4, (s1, a3), (s2, a4), (s3, a5), (s0, a1), (s0, a2)}
(Figure 3c), which is a minimal fixpoint since the third iter-
ation produces this same submodel.
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Figure 3: Computing a submodel M that satisfies ∃ ⟐ φ2,
supposing that s4 ⊧ φ2. Edges that start from the same state
and with the same label represent the non-deterministic ef-
fects of an action. The gray shadow indicates the submodel
computed by the weak preimage in α-CTL.

PACTL planner: the algorithm
Algorithm 1 shows a pseudo-code of the PACTL planner,
where the main function receives a FOND problem for a gen-
eralized reachability goal with three types of quality goal:
weak, strong and strong-cyclic policy quality.

Given a FOND planning problem P = ⟨D, s0, φ⟩, with
an XR-GOAL φ = ∀(φ1 D φ2), the PACTL algorithm for
strong policies (Algorithm 1, function PACTL-STRONG(P))
computes the set of states G1 that satisfies φ1 (Line 8),
path-goal state set, and the set of states G2, that satisfies
φ2 (Line 9), target-goal state set. Then, the algorithm calls
the function MODELAU (Algorithm 1, function MODE-
LAU(T ,G1,G2)), where the set of states that satisfies G2
is expanded through strong preimage operations (Line 20)
until reaching a fixed point (M = M ′). Note that, at each
strong preimage iteration, the state-action pairs that are not
in G1 are pruned (Line 21). Finally, if the submodel M con-
tains s0, then it is possible to extract a strong policy from M
(Algorithm 1, Line 11).

The PACTL algorithm for weak policies is similar to the
Algorithm 1, function PACTL-STRONG(P). The main dif-
ference is that to compute a weak submodel, the algorithm
uses weak preimage (Def. 4).

Given a FOND planning problem P = ⟨D, s0, φ⟩, with the
complex goal φ = ∀ ⊡ ∃(φ1 D φ2), the PACTL algorithm
for strong-cyclic policies (Algorithm 1, function PACTL-
STRONGCYCLIC(P )) starts by computing the sets G1 and
G2, in Lines 26 and 27; Then it adds for each target-goal
state sg a self-loop action NO-OP, called τ (Line 28). The
algorithm is based on two functions:

• MODELEU(T ,G1,G2): computes (synthesizes) a sub-
model M as a set of state-action pairs that satisfies
∃(φ1 D φ2) by computing the weak preimage (Def. 8),
until a fixpoint is reached. Whenever a weak preimage
is computed, the state-action pairs that are not in G1 are
pruned, that is, the set obtained after each preimage step
is X = {(s, a) ∈ WEAKPREIMAGE(X) ∶ s ∈ G1}. An

important proceeding to do when sinthesizing this model
is to prune self-loop actions for non goal states (i.e., self-
loop actions that are different of τ ), since they will never
be selected in the final policy; and

• MODELAG(T , S): receives the set of states S, contain-
ing all and only the states that belong to the submodel
M (synthesized by MODELEU), and synthesizes a new
submodel M as a set of state-action pairs that necessar-
ily reache some state in S. To synthesize the new M ,
MODELAG starts from the set S and applies the strong
preimage operation (Def. 9), until a fixpoint is reached.

Figure 4 illustrates the execution of PACTL-
STRONGCYCLIC to solve a FOND planning problem
with the path-goal φ1 = ⊺, where s0 is the initial state
and sg is a goal state (i.e. it satisfies φ2). Figure 4b
show the submodel with the new transition added (Al-
gorithm 1, Line 28), Figure 4c shows the submodel M
returned after the call to MODELEU (Line 29), resulting
in M = {(s0, a1), (s0, a2), (s1, a3), (s2, a4), (sg, τ)}.
Then, M is contracted by extracting from it a strong-cyclic
submodel M (Figure 4d with a call to MODELAG (Line
31)), resulting in M = {(s0, a1), (s1, a3), (sg, τ)}. Note
that MODELEU computes a submodel M that can contain a
weak policy if s0 ∈M .
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Figure 4: PACTL-STRONGCYCLIC execution; gray shadow
is the submodel returned by MODELEU and MODELAG.

PACTL-SYM planner: the symbolic algorithm
The PACTL is correct since it is based on formal model
checking theory. However, it is not efficient, since like MBP
it works with the tuples (s, a, s′). This section presents the
PACTL-SYM planner, a symbolic version of PACTL that uses
efficient operations based on symbolic model checking by
reasoning over action descriptions. We first define how to
represent states and actions as logical formulae and the main
symbolic operations. Then we introduce BDDs, a fundamen-
tal data structure for symbolic reasoning used in the imple-
mentation of our proposed planner.



Algorithm 1: PACTL(P)
1 Function Main( P):

Input : P = ⟨D, s0, φ⟩ where D = ⟨S,L,T ⟩
Output: A policy or FAIL

2 switch φ do
3 case ∃(φ1 D φ2) do return PACTL-WEAK(P)
4 case ∀(φ1 D φ2) do return PACTL-STRONG(P)
5 case ∀⟐ ∃(φ1 D φ2) do return

PACTL-STRONGCYCLIC(P)

6

7 Function PACTL-STRONG(P):
Input : P = ⟨D, s0, φ⟩ where D = ⟨S,L,T ⟩,

φ = ∀(φ1 D φ2) .
Output: A policy or FAIL

8 G1← {s ∈ S ∣ s ⊧ φ1} // set of path-goal
states; G1 = ∅ if R-GOAL

9 G2← {s ∈ S ∣ s ⊧ φ2} // set of
target-goal states

10 M ← MODELAU(T ,G1,G2)
11 if so ∈M then return EXTRACTPOLICY(M )
12 else return FAIL

13

14 Function MODELAU(T ,G1,G2):
Input : G1: path-goal states, G2: target-goal states

and T : state transition function
Output: Submodel M

15 M ← G2
16 M ′ ← ∅
17 while M ≠M ′ do
18 M ′ ←M
19 C ← STATES(M ) // submodel states
20 P ← STRONGPREIMAGE(C)
21 P ′ ← {(s, a) ∈ P and s ∈ G1}
22 M ←M ∪ P ′

23 return M

24

25 Function PACTL-STRONGCYCLIC(P):
Input : P = ⟨D, s0, φ⟩ where D = ⟨S,L,T ⟩,

φ = ∀⊡ ∃(φ1 D φ2) and φ1 and φ2 are
propositional formulae.

Output: A policy or FAIL
26 G1← {s ∈ S ∣ s ⊧ φ1}
27 G2← {s ∈ S ∣ s ⊧ φ2}

// add τ-transitions on G2 states
28 T ← T ∪ {t = (s, a, s) ∣ s ∈ G2 and a = τ = noop}
29 M ← MODELEU(T ,G1,G2)
30 S ← STATES(M) // submodel states
31 M ← MODELAG(T , S)
32 if so ∈M then return EXTRACTPOLICY(M )
33 else return FAIL

34

35 Function MODELEU(T ,G1,G2):
Input : G1: path-goal states, G2: target-goal states

and T : state transition function
Output: Submodel M

36 M ← G2
37 M ′ ← ∅
38 while M ≠M ′ do
39 M ′ ←M
40 C ← STATES(M ) // submodel states
41 P ←WEAKPREIMAGE(C)
42 P ′ ← {(s, a) ∈ P and s ∈ G1}
43 P ′′ ← P ′ ∖ {(s, a) ∈ P ′, (s, a, s) ∈ T and a ≠ τ}
44 M ←M ∪ P ′′

45 return M

Symbolic Representation of States and Actions
Symbolic approaches for planning is a trending research
area in artificial intelligence (Edelkamp, Kissmann, and Tor-
ralba 2015; Torralba et al. 2017). In order to propose a sym-
bolic planning method, we need to represent the planning
problem in terms of logical formulae. Consider a planning
domain D defined over a set of atomic propositions P and a
set of actions A. Its logical representation, denoted byDsym,
involves representing a state s as a formula:

ξ(s) = ⋀
p ∈L(s)

p ∧ ⋀
q ∈P∖L(s)

¬q, (1)

and a set of states X ⊆ S can be represented by a disjunction
of every state s ∈X , as showed bellow:

ξ(X) = ⋁
s ∈X

ξ(s). (2)

The symbolic MC done by MBP (Bertoli et al. 2001) uses
formulae representing the planning model as a conjunction
ξ(s)∧a∧ ξ(s′). However, we need a better model represen-
tation, one that allows to generate states on demand that are
based on action description, as follows.

Another way to represent the planning model is to use
a STRIPS based language (Fikes and Nilsson 1971), i.e. in
terms of actions preconditions and effects. A precondition of
action a, denoted by prec(a), defines a set of atomic propo-
sitions that must be true in a state s where the action will
be executed, and the effects represent the changes in s after
the execution of a. The positive effects of action a, denoted
by eff+(a), are the set of atomic propositions that become
true in s and the negative effects, denoted by eff−(a), are the
set of atomic propositions that become false in s. When ac-
tions are non-deterministic, eff(a) represents a set of effects
i.e. eff(a) = {e1, e2,⋯, en} where each ei ∈ eff(a) is given
by eff+(a, ei) and eff−(a, ei). Thus, a non-deterministic ac-
tion a = ⟨prec(a), eff (a, e1),⋯, eff (a, en)⟩ is represented
by the following propositional formulae:

ξ(prec(a)) = ⋀
p ∈prec(a)

p and (3)

ξ(eff(a, ei)) = ( ⋀
q ∈eff+(a,ei)

q ∧ ⋀
r ∈eff−(a,ei)

¬r), ei ∈ eff(a).

(4)
Moreover, we include for each non-deterministic effect ei ∈

eff(a), the set changes(a, ei) of all atomic propositions occurring
in ei. Below, see an example of a symbolic representation of an
action a in a domain with P = {p, q, r}.
ξ(prec(a)) ∶ p ∧ q

ξ(eff(a, e1)) ∶ ¬q ∧ ¬r, changes(a, e1) = {q, r}
ξ(eff(a, e2)) ∶ ¬p ∧ ¬r, changes(a, e2) = {p, r}

As mentioned before, a FOND planning problem can be
described by an action description language. In this context, the
planning domain is given by the set of actions A and the set of
states are induced by the actions. Thus, a symbolic FOND planning
problem is PSym=⟨A , ξ(s0), φ⟩ where A is the set of actions
with each action a ∈ A represented by the tuple ⟨ξ(prec(a)),
ξ(eff(a, e1)), changes(a, e1),⋯, ξ(eff(a, en)), changes(a, en)⟩;
ξ(s0) is a formula representing the initial state and φ is a



formula representing a complex goal. The main advantage of this
representation is to be able to build the state space on demand by
applying actions from the initial state (progressive search) or from
the set of states satisfying φ (regressive search), to generate the
successor or ancestor states, respectively.

Progression and Regression Symbolic Operations
Given a planning problem PSym = ⟨A , ξ(s0), φ⟩ we can gener-
ate the complete state-space through the progression and regres-
sion operations. To define these operations we need a logic that ex-
tends the propositional logic with quantifiers over the proposition
values, called QBF logic (Quantified Boolean Formulae) (Büning
and Bubeck 2009). Given a propositional formula φ and an atomic
proposition p occurring in φ, the existential quantifier in QBF is de-
fined as ∃p.φ ≡ φ[⊺/p] ∨ φ[⊥ /p] . Similarly, the universal quan-
tifier is defined as ∀p.φ ≡ φ[⊺/p] ∧ φ[⊥ /p]. Quantifiers can also
be defined for a set of atomic propositions. Let P = {p1, p2,⋯, pn}
be a subset of atomic propositions occurring in φ. We define ∃P.φ
as ∃p1.(⋯∃pn.φ); and ∀P.φ as ∀p1.(⋯∀pn.φ).

Given a set of states X and an action a, the progresssion of X
by an action a returns a set of states Y that is achieved when a is
executed in states of X . Given a set of states X and an action a, the
regression computes the predecessors of X by a, i.e., a set Y of
abstract states from which the execution of a results in states of X .
Intuitively, a regression is computed by verifying: (1) if action a is
relevant for X (i.e. if its positive effects are satisfied in X and its
negative are not); (2) if positive effects of action a are eliminated
from X; and (3) if the precondition of action a are added in X .

The symbolic progression and regression operations for deter-
ministic actions were proposed by Fourman (2000). In Menezes,
Barros, and Pereira (2014) these operations were extended for non-
deterministic actions (Definitions 10, 11 and 12).

Definition 10 (Symbolic Progression) The progression of a sub-
set of states X by a non-deterministic action a computes
the set of states that can be reached when a is executed
in some state s ∈ X . Formally, given a subset of states
ξ(X) and a symbolic action a = ⟨ξ(prec(a)), ξ(eff(a, e1)),
changes(a, e1),⋯, ξ(eff(a, en)), changes(a, en)⟩, the symbolic
progression, denoted as PROGRESSION(ξ(X), a), is:

( ⋁
ei∈{1...n}

∃changes(a, ei).(ξ(X)∧ ξ(prec(a)))∧ ξ(eff(a, ei)).

(5)

Definition 11 (Symbolic Weak Regression) The weak regression
of a subset of states X by a non-deterministic action a, computes
the set of states from which an state in X is reached by some ef-
fect of a. Thus, given a set of states ξ(X) and a symbolic action
a, the symbolic weak regression, denoted by WEAKREGRESSION
(ξ(X), a), is:

ξ(prec(a))∧ ( ⋁
ei∈{1...n}

∃changes(a, ei).(ξ(eff(a, ei))∧ξ(X))).

(6)

Definition 12 (Symbolic Strong Regression) The strong regres-
sion of a set of states X computes the states from which all
the non-deterministic effects of a reach a state in X . Thus,
given a formula ξ(X) representing the set of states X , we
can compute the symbolic strong regression of a, denoted by
STRONGREGRESSION(ξ(X), a), as:

ξ(prec(a))∧ ( ⋀
ei∈{1...n}

∃changes(a, ei).(ξ(eff(a, ei))∧ξ(X))).

(7)

It is possible to prove that the above regression operations
are equivalent to the corresponding preimage functions (Rintanen
2008). However, we claim that regression operations are more ap-
propriate for planning than preimage, since the compilation of the
actions specification into the transition relation T leads to a com-
binatorial explosion triples (s, a, s′).

Binary Decision Diagrams (BDDs) (Bryant 1992) are a canon-
ical representation for boolean functions f ∶ {0,1}n → {0,1}.
A BDD is similar to a binary decision tree: an acyclic graph where
non-terminal nodes (decision nodes) are labelled with boolean vari-
ables and terminal nodes are labelled with 0 or 1. For compact rep-
resentation, BDDs remove duplicate terminal nodes and redundant
tests. They also impose a variable ordering to allow efficient op-
erations over boolean functions (or propositional formulae) which
have exponential size in other representations, such as truth tables
and conjunctive normal forms.

PACTL-SYM, implements the Algorithm 1 using BDDs to en-
code states and actions and to perform efficient symbolic model-
checking operations, i.e. to perform the symbolic reasoning over
states and actions. Furthermore, to extract a policy, we constructed
a layered structure based on the work of Fourman (2000).

Empirical Analysis
PACTL-SYM was implemented in C++ using the CUDD BDD li-
brary. In thi section, we compare our planner with PRP (us-
ing the code available in https://github.com/QuMuLab/planner-for-
relevant-policies), which is considered the state-of-the-art FOND
planner, and with MBP (available in http://mbp.fbk.eu/), that is also
based on model-checking. We execute experiments considering R-
GOAL and XR-GOAL and we compare the computation time of the
analysed planners in two benchmark planning domains: the Grip-
per and the Triangle Tireworld domains.

Experiments in the Gripper domain
We solve problems in the Gripper domain (Example 1), varying
the number of boxes on the floor. The R-GOAL (φ2) is to move all
boxes to a target location, i.e. ∀⊡ ∃(⊺ D φ2). The XR-GOAL has
a path-goal formula (φ1) specifying that either both grippers must
carry out the same box or both grippers are free, which forces the
robot not selecting the actions PICKUP-R and PICKUP-L, avoiding
a dead-end state, i.e., ∀⊡ ∃(φ1 D φ2).

Table 2 shows the time (sec) spent by the planners to return a
strong-cyclic policy for a complex goal formula. Considering first
the results for the R-GOAL (third, fourth and fifth columns), we
observe that PACTL-SYM-STRONGCYCLIC presented the best re-
sults for all analysed instances. When comparing PACTL-SYM with
MBP, our planner was 5 orders of magnitude faster than MBP for
the Gripper-5 instance. Although based on symbolic model check-
ing, MBP were not able to solve instances larger than Gripper-5;
This is because it uses preimage operations over state transitions
(s, a, s′), which is time and memory consuming when compared
with the symbolic operations used by our planner. When comparing
PACTL-SYM with PRP, we have better time values for the experi-
ments with R-GOAL (3rd column). One reason for the PRP worse
performance, is that heuristics for this domain were not able to eas-
ily find deterministic plans that are part of a strong-cyclic policy.

Considering now the results for the XR-GOAL (Table 2, 2nd col-
umn), PACTL-SYM presented an even better result when compared
with PRP. The reason for this is that the path-goal formula φ1

makes PACTL-SYM to avoid dead-ends and therefore we can de-
scribe the complex goal with a weak policy for XR-GOAL, instead
of a strong-cyclic policy for XR-GOAL. This is because with no
dead-ends, a policy returned by PACTL-SYM-WEAK is in fact a
strong-cyclic policy, which explains the better results.



PACTL-SYM PRP MBP

XR-GOAL R-GOAL R-GOAL R-GOAL

Gripper-1 0 0 0 0
Gripper-2 0 0 28.47 0.07
Gripper-3 0 0.01 28.85 0.99
Gripper-4 0 0.01 29.12 681.32
Gripper-5 0 0.02 29.83 1362.68
Gripper-6 0.01 0.04 30.14 -
Gripper-7 0.01 0.07 31.59 -
Gripper-8 0.02 0.11 30.73 -
Gripper-9 0.02 0.19 31.56 -
Gripper-10 0.03 0.29 32.29 -
Gripper-11 0.04 0.43 33.64 -
Gripper-12 0.06 0.63 33.19 -
Gripper-13 0.08 0.93 34.06 -
Gripper-14 0.11 1.29 34.79 -
Gripper-15 0.14 1.78 34.85 -
Gripper-16 0.18 2.69 35.21 -
Gripper-17 0.23 4.61 37.71 -
Gripper-18 0.28 6.69 36.62 -
Gripper-19 0.34 9.65 38.08 -
Gripper-20 0.41 10.11 37.91 -

Table 2: Time (sec) to compute a strong-cyclic policy.

To evaluate PACTL-SYM-STRONG, we changed action PICKUP-
R to be deterministic, otherwise there was no strong solutions. Still,
the action PICKUP-L can introduce dead-ends and action PICKUP-
RL, cycles. Table 3 shows the results of PACTL-SYM with a strong
and R-GOAL formula, outperforming PRP and MBP.

PACTL-SYM PRP MBP

Instances R-GOAL R-GOAL R-GOAL

Gripper-1 0 0 0
Gripper-2 0 12.88 0.07
Gripper-3 0 13.24 0.79
Gripper-4 0.01 12.80 14.34
Gripper-5 0.01 13.54 619.65
Gripper-10 0.16 15.06 -
Gripper-15 0.72 16.82 -
Gripper-20 5.21 17.84 -

Table 3: Time (sec) to compute a strong policy.

Experiments in the Triangle Tireworld domain
In this domain, a vehicle can move through one-way routes. The
objective is to go from an initial to a target location. In each
movement, there is a non-deterministic effect of puncturing a tire.
States with a flat-tire and no spare-tire are dead-ends. There is a
non-deterministic action MOVE(L1, L2) and a deterministic ac-
tion CHANGE-TIRE(L), applicable if the location L has a spare-
tire. The topology of the locations and routes configures a triangle
whose short path passes through locations with no spare-tires while
the longest path has infinity spare-tires in each location. Instances
vary in terms of locations number and locations with spare-tires.
The R-GOAL formula is to reach the target location and the XR-
GOAL has the path-goal formula specifying the vehicle should pass
only through locations with spare-tire (to avoid dead-ends possibly
caused by having a flat-tire).

Since heuristics to estimate distance are very efficient, PRP pre-
sented better times compared to PACTL-SYM when solving in-

stances with R-GOAL (3rd and 4th columns of Table 4). However,
when solving the same instances with XR-GOAL that avoids dead-
ends, PACTL-SYM outperforms PRP (2nd column of Table 4). Since
in PRP we can not express XR-GOALs, nor solving problems with
this type of complex goal, this experiment shows the great advan-
tage of PACTL-SYM over PRP: the capability to express planning
problems with XR-GOAL that can use knowledge about dead-ends
or any constraints to help planning.

PACTL-SYM PRP

Instances XR-GOAL R-GOAL R-GOAL

TriangleTire 1 0 0 0.02
TriangleTire 2 0 0.01 0.05
TriangleTire 3 0 0.05 0.09
TriangleTire 4 0.01 0.41 0.11
TriangleTire 5 0.01 8.55 0.15
TriangleTire 6 0.03 - 0.21
TriangleTire 7 0.05 - 0.23
TriangleTire 8 0.07 - 0.28
TriangleTire 9 0.13 - 0.31
TriangleTire 10 0.24 - 0.37

Table 4: Time (sec) to compute a strong-cyclic policy.

Conclusions
We have proposed the first FOND planner, called PACTL-SYM, that
can solve problems with complex goals that explicitly describe
both, the type of reachability goal (simple or extended) and the de-
sired plan quality (weak, strong or strong-cyclic). PACTL-SYM is
competitive in time with PRP, considered the state-of-the-art plan-
ner for FOND, and can be even better in problems with cycles and
dead-ends of difficult detection (i.e. that can not be easily detected
by its heuristics). For problems with R-GOAL where PRP can be
better than PACTL-SYM (Table 4), we show that PACTL-SYM can
outperform PRP when we solved the same instances but with an
XR-GOAL to express the knowledge about dead-ends for these
problems (which seems to compensate the heuristics used by PRP).

In fact, PACTL-SYM is the first FOND planner to efficiently
solve complex planning goals, such as R-GOAL for weak, strong
or strong-cyclic policies, expressed in α-CTL. Note that since PRP
can not express or solve FOND problems with XR-GOAL, this
comparison is able to show an important advantage of PACTL-SYM
over PRP. The efficiency of PACTL-SYM comes from its symbolic
reasoning over the actions, and not over the state transition re-
lation, as done by MBP, that is also a symbolic model-checking
based planner. Empirical results show that, in the Gripper Domain,
PACTL-SYM is better in time than PRP with up to 3 orders of mag-
nitude. And in the Triangle Tireworld domain, PACTL-SYM out-
performs PRP when solving the corresponding instances with XR-
GOAL, avoiding the dead-ends of this domain.
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